SUSY Seesaw and Lepton Flavor Violation at the LHC and ILC

> Frank Deppisch frank.deppisch@desy.de

> > **DESY Hamburg**

in collaboration with S. Albino (Hamburg), D.K. Ghosh (Delhi), R. Rückl (Würzburg)

> 3rd Vienna Central European Seminar on Particle Physics and Quantum Field Theory December 1-3, 2006

Overview

- SUSY
- Neutrinos
- SUSY Seesaw
- Rare decays
- LFV at the ILC
- LFV at the LHC
- Conclusion

Supersymmetry

SUSY relates bosonic and fermionic degrees of freedom $Q|Boson| \rightarrow |Fermion|, Q|Fermion| \rightarrow |Boson|$

- \Rightarrow Every Standard Model particle has a SUSY partner
- Solution to hierarchy problem
- Radiative EW symmetry breaking
- Gauge coupling unification
- Cold Dark Matter

MSSM Minimal extension of the Standard Model with two Higgs doublets and conserved R-parity

Superpotential:

$$W = \hat{u}^{cT} Y_{u} \hat{Q} \cdot \hat{H}_{u}$$
$$- \hat{d}^{cT} Y_{d} \hat{Q} \cdot \hat{H}_{d}$$
$$- \hat{e}^{cT} Y_{e} \hat{Q} \cdot \hat{H}_{d}$$
$$+ \mu \hat{H}_{u} \cdot \hat{H}_{d}$$

Boson	Fermion	Description
g	$ ilde{g}$	gluon/gluino
W	$ ilde{W}$	W boson/wino
В	$ ilde{B}$	B boson/bino
$(ilde{m{ u}}$, $ ilde{m{e}})_L$	$(\mathbf{v}, \mathbf{e})_{\!L}$	L (s)leptons
${ ilde e}_R^*$	e_L^c	R (s)leptons
$(ilde{u}$, $ ilde{d})_{\scriptscriptstyle L}$	$(u,d)_L$	L (s)quarks
${ ilde u}_R^*$	u_L^c	R up-(s)squarks
${ ilde d}_{\scriptscriptstyle R}^*$	d_{L}^{c}	R down-(s)squarks
$(\boldsymbol{h}_{u}^{+}$, $\boldsymbol{h}_{u}^{0})_{L}$	$(ilde{h}_u^+$, $ ilde{h}_u^0)_L$	up-Higgs(inos)
$(h_d^{0,}h_d^-)_L$	$(ilde{h}^{0,}_d ilde{h}^d)_L$	down-Higgs(inos)

mSUGRA

Phenomenology demands breaking of exact SUSY

- \Rightarrow Additional terms in Lagrangian
- \Rightarrow 100+ free parameters

mSUGRA

- Theoretical framework for SUSY breaking
- Universality at M_{GUT}
- Five free parameters
 - $-m_0$ common scalar mass
 - $m_{1/2}$ common gaugino mass
 - A_0 common trilinear coupling
 - $tan\beta$ ratio of Higgs VEVs
 - sign μ sign of Higgs mixing

Scenario SPS1a: m_0 = 100 GeV, $m_{1/2}$ = 250 GeV, A_0 = -100 GeV, tan β = 10, sign μ = +

Neutrinos

- Standard Model: Neutrinos are massless
- But: Experimental observation of neutrino flavor oscillations
- ⇒ Neutrinos have masses and neutrino flavor is violated

$$U^{T}m_{v}U = diag\left(m_{v_{1}}, m_{v_{2}}, m_{v_{3}}\right)$$
$$U = \begin{pmatrix} c_{13}c_{12} & s_{12}c_{13} & s_{13} \\ -s_{12}c_{23} - s_{23}s_{13}c_{12} & c_{23}c_{12} - s_{23}s_{13}s_{12} & s_{23}c_{13} \\ s_{23}s_{12} - s_{13}c_{23}c_{12} & -s_{23}c_{12} - s_{13}s_{12}c_{23} & c_{23}c_{13} \end{pmatrix}$$

• Best fit values for mixing angles and mass differences $\sin^2 \theta_{12} = 0.30, \sin^2 \theta_{23} = 0.50, \sin^2 \theta_{13} = 0.00,$

 $\Delta m_{12}^2 = 7.9 \cdot 10^{-5} \,\text{eV}^2, \,\Delta m_{13}^2 = 2.2 \cdot 10^{-3} \,\text{eV}^2$

• Unknown absolute mass scale $m_{\nu_1} = 0...0.3 \,\mathrm{eV}$

SUSY Seesaw Mechanism

 Add heavy right-handed neutrinos to (MS)SM particle content

$$W = W_{\text{MSSM}} - \frac{1}{2} \hat{v}_R^{cT} M \hat{v}_R^c + \hat{v}_R^{cT} Y_v \hat{L} \cdot \hat{H}_u$$

 Diagonalize seesaw matrix assuming super-heavy right-handed neutrinos

$$\begin{pmatrix} 0 & m_D^T \\ m_D & M_R \end{pmatrix} \text{ with } m_D = Y_v \langle H_u^0 \rangle \ll M_R$$

Effective light neutrino mass matrix at low energies

$$m_v = m_D^T M^{-1} m_D$$
 for $m_D \ll M_R$ $m_v \approx 0.1 \text{eV} \left(\frac{m_D}{100 \text{ GeV}}\right)^2 \left(\frac{M_R}{10^{14} \text{ GeV}}\right)^{-1}$

SUSY Seesaw

• Neutrino flavor mixing radiatively induces slepton flavor mixing from M_{GUT} to the right-handed neutrino mass scales

Slepton mass matrix (6x6):

$$m_{\tilde{l}}^{2} = \begin{pmatrix} m_{\tilde{L}}^{2} & (m_{\tilde{L}\tilde{R}}^{2})^{+} \\ m_{\tilde{L}\tilde{R}}^{2} & m_{\tilde{R}}^{2} \end{pmatrix}$$

 Slepton off-diagonal mass corrections determined by neutrino Yukawa coupling

$$\left(\delta m_{\tilde{L}}^{2} \right)_{ij} = \frac{-1}{8 \pi^{2}} (3 m_{0} + A_{0}) \left(Y_{\nu}^{+} L Y_{\nu} \right)_{ij}$$

$$\left(\delta m_{\tilde{R}}^{2} \right)_{ij} = 0 \qquad L = \log \left(\frac{M_{GUT}}{M_{\nu_{Ri}}} \right) \delta_{ij} \qquad \Box Origin of charged LFV$$

$$\left(\delta m_{\tilde{L}R}^{2} \right)_{ij} = \frac{-3 A_{0}}{8 \pi^{2}} Y_{e} \left(Y_{\nu}^{+} L Y_{\nu} \right)_{ij}$$

Rare LFV Decays

- Current bounds and future sensitivities
 - Br($\mu \rightarrow e\gamma$) < 1.2·10⁻¹¹(10⁻¹³, MEG@PSI)
 - Br($\tau \rightarrow \mu \gamma$) < 3.1.10⁻⁷ (10⁻⁸, LHC?)
 - Br($\tau \rightarrow e\gamma$) < 3.7.10⁻⁷
 - $\mu \rightarrow eee$, μ -e conversion in nuclei, etc.

SUSY Seesaw and LFV at the LHC and ILC

LFV at the ILC

• Slepton-pair production at e^+e^- collider (Krasnikov, Arkani-Hamed et al.)

$$\sigma(e^+e^- \to l_i^- l_j^+ + 2\,\tilde{\chi}_1^0) \propto \frac{|(o\,m_{\tilde{L}})_{ij}|}{m_{\tilde{l}}^2\,\Gamma_{\tilde{l}}^2}\,\sigma(e^+e^- \to l_i^- l_i^+ + 2\,\tilde{\chi}_1^0)$$

Main background: W^+W^- production 1fb signal $\rightarrow 5\sigma$ effect (SPS1a, *L*=500fb⁻¹, Martyn et al.)

SUSY Seesaw and LFV at the LHC and ILC

LFV at the ILC

Model parameter variation

LFV at the LHC

• Squark and gluino production followed by cascade decays via neutralinos and sleptons (Agashe/Graesser, Hisano et al., Bartl et al.)

$$Br(\tilde{\chi}_{2}^{0} \rightarrow l_{i}^{-} l_{j}^{+} \tilde{\chi}_{1}^{0}) \propto \frac{\left|\left(\delta m_{\tilde{L}}^{2}\right)_{ij}\right|^{2}}{m_{\tilde{l}}^{2} \Gamma_{\tilde{l}}^{2}} Br(\tilde{\chi}_{2}^{0} \rightarrow l_{i}^{-} l_{i}^{+} \tilde{\chi}_{1}^{0})$$

1-3/12/2006

LFV at the LHC

Model parameter variation

 Fixed mSUGRA scenario: SPS1a Variation of neutrino parameters,

deg L/R, hier L/R and hier L/deg R neutrinos

SUSY Seesaw and LFV at the LHC and ILC

Conclusion

- SUSY Seesaw induces charged LFV processes
 - Rare decays, e.g. $Br(\mu \rightarrow e\gamma)$
 - Slepton pair production at the ILC
 - Decays of second lightest neutralino at the LHC
- Strong correlations among different processes
 - Allowing predictions
 - In general: $\mu \rightarrow e \gamma$ has superior sensitivity, Colliders can be superior in large m_{1/2} – small m₀ region
 - Colliders provide more information: slepton masses, LFV in left- or right-handed slepton sector
- Determination of model parameters
 - e.g. $Br(\mu \rightarrow e\gamma)$ = 10⁻¹¹ ⇒ $M_R \approx 10^{12-14} \text{ GeV}$