Testing SUSY Unification

Werner Porod

Universität Würzburg

3rd Vienna Central European Seminar '06

Werner Porod (Uni. Würzburg)

Two Scale Picture of Nature

Standard Model

gravity \oplus particle physics

Two Scale Picture of Nature

Standard Model

gravity \oplus particle physics

SUSY: allows also for gauge coupling unification, radiative electroweak symmetry breaking, . . .

Exploring high scale structures (GUT,PL ...)

- Proton decay
- Cosmology at early time of the universe
- Neutrino physics (see-saw), fermion mass textures
- Extrapolation of high precision parameters:

gauge and Yukawa couplings SUSY parameters

Experimental information

• LEP/Tevatron:

Higgs heavier than 100 GeV charginos/sleptons heavier than 100 GeV squarks (except \tilde{t}, \tilde{b}), gluinos heavier than 200 GeV

• rare decays:

bounds on flavour violation beyond CKM

- Cold dark matter: $\Omega h^2 \lesssim 0.11$
- high precision measurements of gauge couplings
 ⇒ unification if SUSY is present

Evolution of gauge couplings

Regularities at High Scales

Low Energy Parameters

masses cross sections polarization

Measurements:

 \downarrow

SUSY parameters:

gaugino parameters M_i scalar masses: $M_{H_i}^2$, M_E^2 , M_L^2 , ... Higgs/Higgsino parameters: μ , tan β trilinear couplings: A_t , A_b , A_τ Mass measurements, LHC

Mass measurements, LHC

Mass measurements, ILC

3rd Vienna Central European Seminar '06

Werner Porod (Uni. Würzburg)

Expected Accuracies

<u>LHC:</u> masses of squarks, gluinos, winos, bino within a few per-cent

<u>LC:</u> sleptons, winos, bino within per-mile

$\tilde{\chi}_1^+$	183.05 ± 0.15	0.08 %	$ ilde{e}_R$	224.82 ± 0.15	0.06 %
$\tilde{\chi}_2^+$	385.28 ± 0.28		$ ilde{e}_L$	269.09 ± 0.28	
$\tilde{\chi}_1^0$	97.86 ± 0.20	0.2 %	$ ilde{u}_R$	572.0 ± 10.0	1.8 %
$\tilde{\chi}_2^{\bar{0}}$	184.65 ± 0.30		$ ilde{u}_L$	589.0 ± 10.0	

typical values for mSUGRA scenario

<u>LHC + LC</u>: combining data of both machines can improve accuracies on some masses considerably, e.g. $\Delta m_{\tilde{\chi}_2^0}$ up to an order of magnitude. (B.K. Gjelsten, D. Miller, P. Osland and G. Polesello)

RGE structures

explicit solutions of 1-loop RGEs:

$$\begin{split} M_1 &= 0.41 M_{1/2} & \Rightarrow M_{1/2} \ easy \\ M_L^2 &= M_0^2 + 0.47 M_{1/2}^2 & \Rightarrow M_0 \ easy \\ M_Q^2 &= M_0^2 + 5.1 M_{1/2}^2 & \Rightarrow M_0 \ difficult \\ M_{H_2}^2 &= -0.03 M_0^2 - 1.34 M_{1/2}^2 + \dots & \Rightarrow M_0 \ very \ difficult \end{split}$$

Top-Down (taking mSUGRA as example) $M_{1/2} = 250 \pm 0.08$ GeV $M_0 = 200 \pm 0.09$ GeV $A_0 = -100 \pm 1.8$ GeV

mSUGRA

 $\tan \beta = 10$, $M_0 = 70$ GeV, $M_{1/2} = 250$ GeV, $A_0 = -300$, $\operatorname{sign}(\mu) = 1$

1 σ error bands

GMSB

 $M_M = 200 \text{ TeV}, \Lambda = 100 \text{ TeV}, N_5 = 1, \tan \beta = 15, A_0 = 0, \operatorname{sign}(\mu) = 1$

1 σ error bands

Summary

- Reconstruction of the underlying high scale theory is feasible
- LHC allows for measurement in the per-cent range
 most likely information on spectrum will not be complete
 ⇒ top-down fits to exclude models
- High precision measurements at future e^+e^- colliders are necessary for bottom-up approach