Recents results in gauge theories on noncommutative Moyal spaces

Jean-Christophe Wallet

Laboratoire de Physique Théorique
Université Paris XI
works in coll. with A. de Goursac, T. Masson, A. Tanasa, R. Wulkenhaar
arXiv:hep-th/0703075, 0708.2471[hep-th], 0709.3950[hep-th]

4th Vienna Central European Seminar on Particle Physics and Quantum field theory
"Commutative and Noncommutative Quantum Fields", 30 Nov.-02 Dec. 2007

Overview

- Attempt to construct possible candidate(s) for renormalisable actions for gauge theories on NC $D=4$ Moyal "space". The NC analog of the Yang-Mills action $\int d^{4} x\left(F_{\mu \nu} \star F_{\mu \nu}\right)(x)$ has UV/IR mixing which spoilts renormalisability.

Overview

- Attempt to construct possible candidate(s) for renormalisable actions for gauge theories on NC $D=4$ Moyal "space". The NC analog of the Yang-Mills action $\int d^{4} x\left(F_{\mu \nu} \star F_{\mu \nu}\right)(x)$ has UV/IR mixing which spoilts renormalisability.
- First step: Study a possible way to extend the "harmonic solution" leading to renormalisable ϕ^{4} theory to gauge theories. Based on the computation of the one-loop effective gauge action obtained from the "'harmonic" ϕ^{4}. A.de Goursac, JCW, R.Wulkenhaar, Eur.Phys.J.C51(2007)977[hep-th/0703075]. General structure (agree with Grosse and Wohlgenannt[hep-th0703169]):

$$
S_{f} \sim \int d^{4} \times\left(\frac{\alpha}{4 g^{2}} F_{\mu \nu} \star F_{\mu \nu}+\frac{\Omega^{\prime}}{4 g^{2}}\left\{\mathcal{A}_{\mu}, \mathcal{A}_{\nu}\right\}_{\star}^{2}+\frac{\kappa}{2} \mathcal{A}_{\mu} \star \mathcal{A}_{\mu}\right)
$$

unexpected problem: v.e.v $\neq 0$ for gauge potential! Motivates 2nd part...

Overview

- Attempt to construct possible candidate(s) for renormalisable actions for gauge theories on NC $D=4$ Moyal "space". The NC analog of the Yang-Mills action $\int d^{4} x\left(F_{\mu \nu} \star F_{\mu \nu}\right)(x)$ has UV/IR mixing which spoilts renormalisability.
- First step: Study a possible way to extend the "harmonic solution" leading to renormalisable ϕ^{4} theory to gauge theories. Based on the computation of the one-loop effective gauge action obtained from the "'harmonic" ϕ^{4}. A.de Goursac, JCW, R.Wulkenhaar, Eur.Phys.J.C51(2007)977[hep-th/0703075]. General structure (agree with Grosse and Wohlgenannt[hep-th0703169]):

$$
S_{f} \sim \int d^{4} \times\left(\frac{\alpha}{4 g^{2}} F_{\mu \nu} \star F_{\mu \nu}+\frac{\Omega^{\prime}}{4 g^{2}}\left\{\mathcal{A}_{\mu}, \mathcal{A}_{\nu}\right\}_{\star}^{2}+\frac{\kappa}{2} \mathcal{A}_{\mu} \star \mathcal{A}_{\mu}\right)
$$

unexpected problem: v.e.v $\neq 0$ for gauge potential! Motivates 2nd part...

- 2nd part: Study vacuum configurations. Much simpler to start in $D=2$ scalar models with harmonic terms. See A. de Goursac talk.

Overview

- Attempt to construct possible candidate(s) for renormalisable actions for gauge theories on NC $D=4$ Moyal "space". The NC analog of the Yang-Mills action $\int d^{4} x\left(F_{\mu \nu} \star F_{\mu \nu}\right)(x)$ has UV/IR mixing which spoilts renormalisability.
- First step: Study a possible way to extend the "harmonic solution" leading to renormalisable ϕ^{4} theory to gauge theories. Based on the computation of the one-loop effective gauge action obtained from the "'harmonic" ϕ^{4}. A.de Goursac, JCW, R.Wulkenhaar, Eur.Phys.J.C51(2007)977[hep-th/0703075]. General structure (agree with Grosse and Wohlgenannt[hep-th0703169]):

$$
S_{f} \sim \int d^{4} \times\left(\frac{\alpha}{4 g^{2}} F_{\mu \nu} \star F_{\mu \nu}+\frac{\Omega^{\prime}}{4 g^{2}}\left\{\mathcal{A}_{\mu}, \mathcal{A}_{\nu}\right\}_{\star}^{2}+\frac{\kappa}{2} \mathcal{A}_{\mu} \star \mathcal{A}_{\mu}\right)
$$

unexpected problem: v.e.v $\neq 0$ for gauge potential! Motivates 2nd part...

- 2nd part: Study vacuum configurations. Much simpler to start in $D=2$ scalar models with harmonic terms. See A. de Goursac talk.
- 3rd part: Attempt to clarify the role(s) of \mathcal{A}_{μ}. Modification of the "derivation-based" differential calculus on the Moyal algebras leads to "Yang-Mills-Higgs" type models (E.Cagnache, T.Masson, JCW, hep-th to appear).

Content

(1) The noncommutative algebraic set-up

- Derivation-based differential calculus
- Noncommutative connections, curvatures
- Gauge transformations
- Canonical gauge-invariant connections
- The "simplest" differential calculus.
(2) Noncommutative Induced gauge theories
- Motivations
- Computation of the one-loop effective action
- Diagramatics
- The structure of the effective action
(3) Vacuum configurations
- The harmonic ϕ^{4}-model
- Vacuum configurations in the matrix base
- New features - SSB revisited
(4) Yang-Mills-Higgs type models on Moyal spaces
- Basic observation
- Symplectic algebra of derivations
- Yang-Mills-Higgs type models

The noncommutative algebraic set-up

(1) The noncommutative algebraic set-up

- Derivation-based differential calculus
- Noncommutative connections, curvatures
- Gauge transformations
- Canonical gauge-invariant connections
- The "simplest" differential calculus.

2 Noncommutative Induced gauge theories
(3) Vacuum configurations
4) Yang-Mills-Higgs type models on Moyal spaces

Derivation-based differential calculus

- The algebraic set-up underlying all the NCFT models considered so far is the derivation-based differential calculus.

Derivation-based differential calculus

- The algebraic set-up underlying all the NCFT models considered so far is the derivation-based differential calculus.
- $\operatorname{Der}(\mathcal{M})$: linear space of derivations of some \mathcal{M} with associative product *, that is linear maps satisfying Leibnitz rule

$$
\begin{equation*}
X: \mathcal{M} \rightarrow \mathcal{M}, \quad X(a \star b)=X(a) \star b+a \star X(b), \quad \forall a, b \in \mathcal{M} \tag{1}
\end{equation*}
$$

\exists Lie Bracket on $\operatorname{Der}(\mathcal{M})$ defined by $[X, Y]_{D}(a) \equiv X(Y(a))-Y(X(a))$ (i). $\operatorname{Der}(\mathcal{M})$ is a module over $\mathcal{Z}(\mathcal{M})((z X)(a)=z \star(X(a)), \forall z \in \mathcal{Z}(\mathcal{M})$.

Derivation-based differential calculus

- The algebraic set-up underlying all the NCFT models considered so far is the derivation-based differential calculus.
- $\operatorname{Der}(\mathcal{M})$: linear space of derivations of some \mathcal{M} with associative product *, that is linear maps satisfying Leibnitz rule

$$
\begin{equation*}
X: \mathcal{M} \rightarrow \mathcal{M}, \quad X(a \star b)=X(a) \star b+a \star X(b), \quad \forall a, b \in \mathcal{M} \tag{1}
\end{equation*}
$$

\exists Lie Bracket on $\operatorname{Der}(\mathcal{M})$ defined by $[X, Y]_{D}(a) \equiv X(Y(a))-Y(X(a))$ (i). $\operatorname{Der}(\mathcal{M})$ is a module over $\mathcal{Z}(\mathcal{M})((z X)(a)=z \star(X(a)), \forall z \in \mathcal{Z}(\mathcal{M})$.

- From any Lie subalgebra $\mathcal{G} \subset \operatorname{Der}(\mathcal{M})$ (also a $\mathcal{Z}(\mathcal{M})$-submodule), construction of a differential calculus can be performed. [Space of 0 -forms identified with \mathcal{M}, action of the differential d on 0 -forms and 1 -forms $(\mathcal{Z}(\mathcal{M})$-linear maps from \mathcal{G} to $\mathcal{M})$ defined $\forall X, Y \in \mathcal{G}$ by $d \omega_{0}(X)=X\left(\omega_{0}\right), d \omega_{1}(X, Y)=X\left(\omega_{1}(Y)\right)-Y\left(\omega_{1}(X)\right)-\omega_{1}\left([X, Y]_{D}\right)(i i)$. $d^{2}=0$ thanks to (i) and (ii). Can be extended to n-forms, $\mathcal{Z}(\mathcal{M})$-multilinear antisymmetric maps from \mathcal{G} to \mathcal{M}.]

Noncommutative connections, curvatures

- Once \mathcal{M} equipped with diff. calculus related to $\mathcal{G} \subset \operatorname{Der}(\mathcal{M})$, construction of NC connections and curvatures can be done [see: Connes, Dubois-Violette, Kerner, Madore]. Choose some (projective) right-module \mathcal{H} over \mathcal{M}.

Noncommutative connections, curvatures

- Once \mathcal{M} equipped with diff. calculus related to $\mathcal{G} \subset \operatorname{Der}(\mathcal{M})$, construction of NC connections and curvatures can be done [see: Connes, Dubois-Violette, Kerner, Madore]. Choose some (projective) right-module \mathcal{H} over \mathcal{M}.
- NC connection: linear map $\nabla_{X}: \mathcal{H} \rightarrow \mathcal{H}$ verifying ($a \in \mathcal{M}, m \in \mathcal{H}, X, Y \in \mathcal{G}$):

$$
\begin{gather*}
\nabla_{X}(m \star a)=\nabla_{X}(m) \star a+m \star X(a) \tag{2}\\
\nabla_{X+Y}(m)=\nabla_{X}(m)+\nabla_{Y}(m), \nabla_{(z \star X)}(m)=z \star \nabla_{X}(m) \tag{3}
\end{gather*}
$$

[Recall $\operatorname{Der}(\mathcal{M}) \mathcal{Z}(\mathbb{M})$-module; (3) reflects ∇_{X} is a morphism of module)] Curvature: $F_{(X, Y)}(m) \equiv\left[\nabla_{X}, \nabla_{Y}\right](m)-\nabla_{[X, Y]_{D}}(m)$

Noncommutative connections, curvatures

- Once \mathcal{M} equipped with diff. calculus related to $\mathcal{G} \subset \operatorname{Der}(\mathcal{M})$, construction of NC connections and curvatures can be done [see: Connes, Dubois-Violette, Kerner, Madore]. Choose some (projective) right-module \mathcal{H} over \mathcal{M}.
- NC connection: linear map $\nabla_{X}: \mathcal{H} \rightarrow \mathcal{H}$ verifying ($a \in \mathcal{M}, m \in \mathcal{H}, X, Y \in \mathcal{G}$):

$$
\begin{gather*}
\nabla_{X}(m \star a)=\nabla_{X}(m) \star a+m \star X(a) \tag{2}\\
\nabla_{X+Y}(m)=\nabla_{X}(m)+\nabla_{Y}(m), \nabla_{(z \star X)}(m)=z \star \nabla_{X}(m) \tag{3}
\end{gather*}
$$

[Recall $\operatorname{Der}(\mathcal{M}) \mathcal{Z}(\mathbb{M})$-module; (3) reflects ∇_{X} is a morphism of module)]
Curvature: $F_{(X, Y)}(m) \equiv\left[\nabla_{X}, \nabla_{Y}\right](m)-\nabla_{[X, Y]_{D}}(m)$

- From now on, \mathcal{M} is the Moyal algebra. Recall $\mathcal{M}=\mathcal{L} \cap \mathcal{R} ; \mathcal{L}$ (resp. \mathcal{R}): subspace of elements of $\mathcal{S}^{\prime}\left(\mathbb{R}^{D}\right)$ whose multiplication from right (resp. left) by any Schwarz function is Schwartz. [see e.g Gracia-Bondia, Varilly, J.M.P 1988; Grossmann et al., Ann. Inst. Fourier 1968].

Noncommutative connections, curvatures

- Once \mathcal{M} equipped with diff. calculus related to $\mathcal{G} \subset \operatorname{Der}(\mathcal{M})$, construction of NC connections and curvatures can be done [see: Connes, Dubois-Violette, Kerner, Madore]. Choose some (projective) right-module \mathcal{H} over \mathcal{M}.
- NC connection: linear map $\nabla_{X}: \mathcal{H} \rightarrow \mathcal{H}$ verifying ($a \in \mathcal{M}, m \in \mathcal{H}, X, Y \in \mathcal{G}$):

$$
\begin{gather*}
\nabla_{X}(m \star a)=\nabla_{X}(m) \star a+m \star X(a) \tag{2}\\
\nabla_{X+Y}(m)=\nabla_{X}(m)+\nabla_{Y}(m), \nabla_{(z \star X)}(m)=z \star \nabla_{X}(m) \tag{3}
\end{gather*}
$$

[Recall $\operatorname{Der}(\mathcal{M}) \mathcal{Z}(\mathbb{M})$-module; (3) reflects ∇_{X} is a morphism of module)]
Curvature: $F_{(X, Y)}(m) \equiv\left[\nabla_{X}, \nabla_{Y}\right](m)-\nabla_{[X, Y]_{D}}(m)$

- From now on, \mathcal{M} is the Moyal algebra. Recall $\mathcal{M}=\mathcal{L} \cap \mathcal{R} ; \mathcal{L}$ (resp. \mathcal{R}): subspace of elements of $\mathcal{S}^{\prime}\left(\mathbb{R}^{D}\right)$ whose multiplication from right (resp. left) by any Schwarz function is Schwartz. [see e.g Gracia-Bondia, Varilly, J.M.P 1988; Grossmann et al., Ann. Inst. Fourier 1968].
- We now assume: $\mathcal{H}=\mathcal{M}$. Then, ∇_{X} determined by $\nabla_{X}(\mathbb{I}), \mathbb{I}$: the unit $\in \mathcal{M}$. Indeed, one has from (2)

$$
\begin{equation*}
\nabla_{X}(a)=\nabla_{X}(\mathbb{I}) \star a+X(a), \quad \forall a \in \mathcal{M}, \quad \forall X \in \mathcal{G} \tag{4}
\end{equation*}
$$

$\nabla_{X}(\mathbb{I})$ will serve as a NC analog of a gauge potential.

Gauge transformations

- Convenient hermitian structure is $h_{0}\left(a_{1}, a_{2}\right)=a_{1}^{\dagger} \star a_{2}$ so that ∇ in (2) hermitean provided $\left(\nabla_{X}(\mathbb{I})\right)^{\dagger}=-\nabla_{X}(\mathbb{I})$.

Gauge transformations

- Convenient hermitian structure is $h_{0}\left(a_{1}, a_{2}\right)=a_{1}^{\dagger} \star a_{2}$ so that ∇ in (2) hermitean provided $\left(\nabla_{X}(\mathbb{I})\right)^{\dagger}=-\nabla_{X}(\mathbb{I})$.
- Gauge transformations are defined by the automorphisms of the "module \mathcal{M} " preserving the hermitian structure $h: \gamma \in \operatorname{Aut}_{h}(\mathcal{M})$. One has

$$
\begin{aligned}
\gamma(a) & =\gamma(\mathbb{I} \star a)=\gamma(\mathbb{I}) \star a, \quad \forall a \in \mathcal{M} \\
h_{0}\left(\gamma\left(a_{1}\right), \gamma\left(a_{2}\right)\right) & =h_{0}\left(a_{1}, a_{2}\right) \quad \forall a_{1}, a_{2} \in \mathcal{M}
\end{aligned}
$$

This implies

$$
\gamma(\mathbb{I})^{\dagger} \star \gamma(\mathbb{I})=\mathbb{I}
$$

so that the gauge transformations are determined by $\gamma(\mathbb{I}) \in \mathcal{U}(\mathcal{M})$, where $\mathcal{U}(\mathcal{M})$ is the group of unitary elements of \mathcal{M}. From now on, we set $\gamma(\mathbb{I}) \equiv g$.

Gauge transformations

- Convenient hermitian structure is $h_{0}\left(a_{1}, a_{2}\right)=a_{1}^{\dagger} \star a_{2}$ so that ∇ in (2) hermitean provided $\left(\nabla_{X}(\mathbb{I})\right)^{\dagger}=-\nabla_{X}(\mathbb{I})$.
- Gauge transformations are defined by the automorphisms of the "module \mathcal{M} " preserving the hermitian structure $h: \gamma \in \operatorname{Aut}_{h}(\mathcal{M})$. One has

$$
\begin{aligned}
\gamma(a) & =\gamma(\mathbb{I} \star a)=\gamma(\mathbb{I}) \star a, \quad \forall a \in \mathcal{M} \\
h_{0}\left(\gamma\left(a_{1}\right), \gamma\left(a_{2}\right)\right) & =h_{0}\left(a_{1}, a_{2}\right) \quad \forall a_{1}, a_{2} \in \mathcal{M}
\end{aligned}
$$

This implies

$$
\gamma(\mathbb{I})^{\dagger} \star \gamma(\mathbb{I})=\mathbb{I}
$$

so that the gauge transformations are determined by $\gamma(\mathbb{I}) \in \mathcal{U}(\mathcal{M})$, where $\mathcal{U}(\mathcal{M})$ is the group of unitary elements of \mathcal{M}. From now on, we set $\gamma(\mathbb{I}) \equiv g$.

- The action of $\mathcal{U}(\mathcal{M})$ on ∇_{X} and curvature are

$$
\begin{gather*}
\left(\nabla_{X}\right)^{\gamma}(a)=\gamma\left(\nabla_{X}\left(\gamma^{-1}(a)\right)\right), \quad \forall a \in \mathcal{M}, \quad \forall X \in \mathcal{G} \tag{6}\\
\left(F_{(X, Y)}(a)\right)^{\gamma}=g \star F_{(X, Y)}(a) \star g^{\dagger} \tag{7}
\end{gather*}
$$

This yields

$$
\begin{equation*}
\left(\nabla_{x}(\mathbb{I})\right)^{\gamma}=g \star \nabla_{X}(\mathbb{I}) \star g^{\dagger}+g \star X\left(g^{\dagger}\right), \quad \forall g \in \mathcal{U}(\mathcal{M}), \quad \forall X \in \mathcal{G} \tag{8}
\end{equation*}
$$

Canonical gauge-invariant connections

- Existence of inner derivations (9) implies existence of gauge invariant connections [cf. Dubois-Violette, Kerner, Madore; Dubois-Violette, Masson]. All derivations of Moyal algebra are inner, i.e for any $X \in \operatorname{Der}(\mathcal{M})$:

$$
\begin{equation*}
X(a)=\left[\eta_{X}, a\right]_{\star}, \quad \eta_{X} \in \mathcal{M} \tag{9}
\end{equation*}
$$

Canonical gauge-invariant connections

- Existence of inner derivations (9) implies existence of gauge invariant connections [cf. Dubois-Violette, Kerner, Madore; Dubois-Violette, Masson]. All derivations of Moyal algebra are inner, i.e for any $X \in \operatorname{Der}(\mathcal{M})$:

$$
\begin{equation*}
X(a)=\left[\eta_{X}, a\right]_{\star}, \quad \eta_{X} \in \mathcal{M} \tag{9}
\end{equation*}
$$

- Here, gauge-invariant connection defined by

$$
\begin{gather*}
\nabla_{X}^{i n v}(\mathbb{I})=-\eta_{X}, \quad \forall X \in \mathcal{G} \tag{10}\\
\nabla_{X}^{i n v}(a)=\nabla_{X}^{i n v}(\mathbb{I}) \star a+\left[\eta_{X}, a\right]_{\star}=-a \star \eta_{X} \tag{11}\\
\text { Invariance: }\left(\nabla_{X}^{i n v}(a)\right)^{\gamma}=-g \star\left(g^{\dagger} \star a \star \eta_{X}\right)=-a \star \eta_{X}=\nabla_{X}^{i n v}(a)
\end{gather*}
$$

Canonical gauge-invariant connections

- Existence of inner derivations (9) implies existence of gauge invariant connections [cf. Dubois-Violette, Kerner, Madore; Dubois-Violette, Masson]. All derivations of Moyal algebra are inner, i.e for any $X \in \operatorname{Der}(\mathcal{M})$:

$$
\begin{equation*}
X(a)=\left[\eta_{X}, a\right]_{\star}, \quad \eta_{X} \in \mathcal{M} \tag{9}
\end{equation*}
$$

- Here, gauge-invariant connection defined by

$$
\begin{equation*}
\nabla_{X}^{i n v}(\mathbb{I})=-\eta_{X}, \quad \forall X \in \mathcal{G} \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
\nabla_{X}^{i n v}(a)=\nabla_{X}^{i n v}(\mathbb{I}) \star a+\left[\eta_{X}, a\right]_{\star}=-a \star \eta_{X} \tag{11}
\end{equation*}
$$

Invariance: $\left(\nabla_{X}^{\text {inv }}(a)\right)^{\gamma}=-g \star\left(g^{\dagger} \star a \star \eta_{X}\right)=-a \star \eta_{X}=\nabla_{X}^{\text {inv }}(a)$

- Tensor forms \mathcal{A}_{X} (covariant coordinates):

$$
\begin{gather*}
\left(\nabla_{X}-\nabla_{X}^{i n \nu}\right)(a) \equiv \mathcal{A}_{X} \star a=\left(\nabla_{X}(\mathbb{I})+\eta_{X}\right) \star a \tag{12}\\
\left(\mathcal{A}_{X}\right)^{\gamma}=g \star \mathcal{A}_{X} \star g^{\dagger} \tag{13}
\end{gather*}
$$

Curvature takes the form

$$
\begin{equation*}
F_{(X, Y)}(a)=\left(\left[\mathcal{A}_{X}, \mathcal{A}_{Y}\right]_{\star}-\mathcal{A}_{[X, Y]_{D}}-\left(\left[\eta_{X}, \eta_{Y}\right]_{\star}-\eta_{[X, Y]_{D}}\right)\right) \star a \tag{14}
\end{equation*}
$$

The simplest differential calculus

- It is convenient to set $\nabla_{\mu}(\mathbb{I}) \equiv-i A_{\mu}$.

The simplest differential calculus

- It is convenient to set $\nabla_{\mu}(\mathbb{I}) \equiv-i A_{\mu}$.
- The most widely used differential calculus obtained from those space derivations ∂_{μ}.

The simplest differential calculus

- It is convenient to set $\nabla_{\mu}(\mathbb{I}) \equiv-i A_{\mu}$.
- The most widely used differential calculus obtained from those space derivations ∂_{μ}.
- The gauge-invariant connection is simply obtained from $\partial_{\mu} a=\left[i \xi_{\mu}, a\right]_{\star}$, $\xi_{\mu}=-\Theta_{\mu \nu}^{-1} x^{\nu}$ so that $\eta_{\mu}=i \xi_{\mu}$

The simplest differential calculus

- It is convenient to set $\nabla_{\mu}(\mathbb{I}) \equiv-i A_{\mu}$.
- The most widely used differential calculus obtained from those space derivations ∂_{μ}.
- The gauge-invariant connection is simply obtained from $\partial_{\mu} a=\left[i \xi_{\mu}, a\right]_{\star}$, $\xi_{\mu}=-\Theta_{\mu \nu}^{-1} x^{\nu}$ so that $\eta_{\mu}=i \xi_{\mu}$
- The tensor form (" covariant coordinates") and curvature are

$$
\begin{gather*}
\mathcal{A}_{\mu}=-i\left(A_{\mu}-\xi_{\mu}\right) \equiv-i \mathcal{A}_{\mu}^{0} \tag{15}\\
F_{\mu \nu}=-i \Theta_{\mu \nu}^{-1}+\left[\mathcal{A}_{\mu}, \mathcal{A}_{\nu}\right]_{\star}=-i\left(\Theta_{\mu \nu}^{-1}-i\left[\mathcal{A}_{\mu}^{0}, \mathcal{A}_{\nu}^{0}\right]_{\star}\right) \equiv-i F_{\mu \nu}^{0} \\
F_{\mu \nu}^{0}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}-i\left[A_{\mu}, A_{\nu}\right]_{\star}
\end{gather*}
$$

The gauge transformations are given by

$$
\left(\mathcal{A}_{\mu}^{0}\right)^{g}=g \star \mathcal{A}_{\mu}^{0} \star g^{\dagger}, \quad\left(F_{\mu \nu}^{0}\right)^{g}=g \star F_{\mu \nu}^{0} \star g^{\dagger}
$$

Noncommutative Induced gauge theories

(1) The noncommutative algebraic set-up
(2) Noncommutative Induced gauge theories

- Motivations
- Computation of the one-loop effective action
- Diagramatics
- The structure of the effective action
(3) Vacuum configurations
(4) Yang-Mills-Higgs type models on Moyal spaces

Motivations

- Start from the complex-valued φ_{4}^{4} with harmonic term. [Grosse, Wulkenhaar; Gurau, Magnen, Rivasseau, Vignes-Tourneret]: $\left(\widetilde{x}_{\mu}=2 \Theta_{\mu \nu}^{-1} x_{\nu}\right)$

$$
S(\phi)=\int d^{4} x\left(\partial_{\mu} \phi^{\dagger} \star \partial_{\mu} \phi+\Omega^{2}\left(\widetilde{x}_{\mu} \phi\right)^{\dagger} \star\left(\widetilde{x}_{\mu} \phi\right)+m^{2} \phi^{\dagger} \star \phi\right)(x)+S_{i n t}
$$

- Couple $S(\phi)$ to external gauge potential A_{μ} via minimal coupling prescription (de Goursac, JCW, Wulkenhaar): $\partial_{\mu} \phi \mapsto \nabla_{\mu}^{A} \phi=\partial_{\mu} \phi-i A_{\mu} \star \phi$, $\widetilde{x}_{\mu} \phi \mapsto-2 i \nabla_{\mu}^{\xi} \phi+i \nabla_{\mu}^{A} \phi=\widetilde{x}_{\mu} \phi+A_{\mu} \star \phi$

Motivations

- Start from the complex-valued φ_{4}^{4} with harmonic term. [Grosse, Wulkenhaar; Gurau, Magnen, Rivasseau, Vignes-Tourneret]: $\left(\widetilde{x}_{\mu}=2 \Theta_{\mu \nu}^{-1} x_{\nu}\right)$

$$
S(\phi)=\int d^{4} x\left(\partial_{\mu} \phi^{\dagger} \star \partial_{\mu} \phi+\Omega^{2}\left(\widetilde{x}_{\mu} \phi\right)^{\dagger} \star\left(\widetilde{x}_{\mu} \phi\right)+m^{2} \phi^{\dagger} \star \phi\right)(x)+S_{i n t}
$$

- Couple $S(\phi)$ to external gauge potential A_{μ} via minimal coupling prescription (de Goursac, JCW, Wulkenhaar): $\partial_{\mu} \phi \mapsto \nabla_{\mu}^{A} \phi=\partial_{\mu} \phi-i A_{\mu} \star \phi$, $\widetilde{x}_{\mu} \phi \mapsto-2 i \nabla_{\mu}^{\xi} \phi+i \nabla_{\mu}^{A} \phi=\widetilde{x}_{\mu} \phi+A_{\mu} \star \phi$
- Next step: Compute at the one-loop order the effective action $\Gamma(A)$ obtained by integrating over the scalar field ϕ in $S(\phi, A)$, for any value of $\Omega \in[0,1]$

Motivations

- Start from the complex-valued φ_{4}^{4} with harmonic term. [Grosse, Wulkenhaar; Gurau, Magnen, Rivasseau, Vignes-Tourneret]: $\left(\widetilde{x}_{\mu}=2 \Theta_{\mu \nu}^{-1} x_{\nu}\right)$

$$
S(\phi)=\int d^{4} x\left(\partial_{\mu} \phi^{\dagger} \star \partial_{\mu} \phi+\Omega^{2}\left(\widetilde{x}_{\mu} \phi\right)^{\dagger} \star\left(\widetilde{x}_{\mu} \phi\right)+m^{2} \phi^{\dagger} \star \phi\right)(x)+S_{i n t}
$$

- Couple $S(\phi)$ to external gauge potential A_{μ} via minimal coupling prescription (de Goursac, JCW, Wulkenhaar): $\partial_{\mu} \phi \mapsto \nabla_{\mu}^{A} \phi=\partial_{\mu} \phi-i A_{\mu} \star \phi$, $\widetilde{x}_{\mu} \phi \mapsto-2 i \nabla_{\mu}^{\xi} \phi+i \nabla_{\mu}^{A} \phi=\widetilde{x}_{\mu} \phi+A_{\mu} \star \phi$
- Next step: Compute at the one-loop order the effective action $\Gamma(A)$ obtained by integrating over the scalar field ϕ in $S(\phi, A)$, for any value of $\Omega \in[0,1]$
- Goals:
- Guess possible form(s) for a candidate as a renormalisable gauge action
- Is there some additional terms that appear in the action, beyond the expected $F_{\mu \nu} \star F_{\mu \nu}$.
- How does the harmonic term survive in the resulting effective action?

The one-loop effective action

- The effective action is formally obtained through the evaluation of the following functional integral

$$
e^{-\Gamma(A)} \equiv \int D \phi D \phi^{\dagger} e^{-S(\phi, A)}=\int D \phi D \phi^{\dagger} e^{-S(\phi)} e^{-S_{i n t}(\phi, A)},
$$

$S_{\text {int }}(\phi, A)$ denotes the terms involving the external gauge potential A_{μ}.

The one-loop effective action

- The effective action is formally obtained through the evaluation of the following functional integral

$$
e^{-\Gamma(A)} \equiv \int D \phi D \phi^{\dagger} e^{-S(\phi, A)}=\int D \phi D \phi^{\dagger} e^{-S(\phi)} e^{-S_{i n t}(\phi, A)},
$$

$S_{\text {int }}(\phi, A)$ denotes the terms involving the external gauge potential A_{μ}.

- At the one-loop order, the above functional reduces to

$$
e^{-\Gamma_{\text {looop }}(A)}=\int D \phi D \phi^{\dagger} e^{-S_{\text {free }}(\phi)} e^{-S_{\text {int }}(\phi, A)}
$$

The one-loop effective action

- The effective action is formally obtained through the evaluation of the following functional integral

$$
e^{-\Gamma(A)} \equiv \int D \phi D \phi^{\dagger} e^{-S(\phi, A)}=\int D \phi D \phi^{\dagger} e^{-S(\phi)} e^{-S_{i n t}(\phi, A)}
$$

$S_{\text {int }}(\phi, A)$ denotes the terms involving the external gauge potential A_{μ}.

- At the one-loop order, the above functional reduces to

$$
e^{-\Gamma_{1 / \text { oop }}(A)}=\int D \phi D \phi^{\dagger} e^{-S_{\text {free }}(\phi)} e^{-S_{\text {int }}(\phi, A)}
$$

- The effective action $\Gamma_{\text {1/oop }}(A)$ can be conveniently obtained in the x-space formalism. Compute relevant diagrams using the Mehler-type propagator

$$
\begin{aligned}
& C(x, y) \equiv\left\langle\phi(x) \phi^{\dagger}(y)\right\rangle\left(\text { set } \widetilde{\Omega} \equiv 2 \frac{\Omega}{\theta} \text { and } x \wedge y \equiv 2 x_{\mu} \Theta_{\mu \nu}^{-1} y_{\nu}\right) \\
& C(x, y)=\frac{\Omega^{2}}{\pi^{2} \theta^{2}} \int_{0}^{\infty} \frac{d t}{\sinh ^{2}(2 \widetilde{\Omega} t)} \exp { }^{\left(-\frac{\tilde{\Omega}}{4} \operatorname{coth}(\widetilde{\Omega} t)(x-y)^{2}-\frac{\tilde{\pi}}{4} \tanh (\widetilde{\Omega} t)(x+y)^{2}-m^{2} t\right)}
\end{aligned}
$$

combined with the vertex whose generic expression is

$$
\begin{aligned}
\int d^{4} x\left(f_{1} \star f_{2} \star f_{3} \star f_{4}\right)(x) & =\frac{1}{\pi^{4} \theta^{4}} \int \prod_{i=1}^{4} d^{4} x_{i} f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) f_{3}\left(x_{3}\right) f_{4}\left(x_{4}\right) \\
& \times \delta\left(x_{1}-x_{2}+x_{3}-x_{4}\right) e^{-i \sum_{i<j}(-1)^{i+j+1} x_{i} \wedge x_{j}}
\end{aligned}
$$

Diagramatics

The structure of the effective action

- The result for any $\Omega \in[0,1]$ can be writen as

$$
\begin{aligned}
\Gamma(A) & =\frac{\Omega^{2}}{4 \pi^{2}\left(1+\Omega^{2}\right)^{3}}\left(\int d^{4} u\left(\mathcal{A}_{\mu} \star \mathcal{A}_{\mu}-\frac{1}{4} \widetilde{u}^{2}\right)\right)\left(\frac{1}{\epsilon}+m^{2} \ln (\epsilon)\right) \\
& -\frac{\left(1-\Omega^{2}\right)^{4}}{192 \pi^{2}\left(1+\Omega^{2}\right)^{4}}\left(\int d^{4} u F_{\mu \nu} \star F_{\mu \nu}\right) \ln (\epsilon) \\
& +\frac{\Omega^{4}}{8 \pi^{2}\left(1+\Omega^{2}\right)^{4}}\left(\int d^{4} u\left(F_{\mu \nu} \star F_{\mu \nu}+\left\{\mathcal{A}_{\mu}, \mathcal{A}_{\nu}\right\}_{\star}^{2}-\frac{1}{4}\left(\widetilde{u}^{2}\right)^{2}\right)\right) \ln (\epsilon)+\ldots,
\end{aligned}
$$

The structure of the effective action

- The result for any $\Omega \in[0,1]$ can be writen as

$$
\begin{aligned}
\Gamma(A) & =\frac{\Omega^{2}}{4 \pi^{2}\left(1+\Omega^{2}\right)^{3}}\left(\int d^{4} u\left(\mathcal{A}_{\mu} \star \mathcal{A}_{\mu}-\frac{1}{4} \widetilde{u}^{2}\right)\right)\left(\frac{1}{\epsilon}+m^{2} \ln (\epsilon)\right) \\
& -\frac{\left(1-\Omega^{2}\right)^{4}}{192 \pi^{2}\left(1+\Omega^{2}\right)^{4}}\left(\int d^{4} u F_{\mu \nu} \star F_{\mu \nu}\right) \ln (\epsilon) \\
& +\frac{\Omega^{4}}{8 \pi^{2}\left(1+\Omega^{2}\right)^{4}}\left(\int d^{4} u\left(F_{\mu \nu} \star F_{\mu \nu}+\left\{\mathcal{A}_{\mu}, \mathcal{A}_{\nu}\right\}_{\star}^{2}-\frac{1}{4}\left(\widetilde{u}^{2}\right)^{2}\right)\right) \ln (\epsilon)+\ldots,
\end{aligned}
$$

- It is similar to the expression obtained by Grosse and Wohlgenannt from a matrix base approach using heat kernel expansion.

The structure of the effective action

- The result for any $\Omega \in[0,1]$ can be writen as

$$
\begin{aligned}
\Gamma(A) & =\frac{\Omega^{2}}{4 \pi^{2}\left(1+\Omega^{2}\right)^{3}}\left(\int d^{4} u\left(\mathcal{A}_{\mu} \star \mathcal{A}_{\mu}-\frac{1}{4} \widetilde{u}^{2}\right)\right)\left(\frac{1}{\epsilon}+m^{2} \ln (\epsilon)\right) \\
& -\frac{\left(1-\Omega^{2}\right)^{4}}{192 \pi^{2}\left(1+\Omega^{2}\right)^{4}}\left(\int d^{4} u F_{\mu \nu} \star F_{\mu \nu}\right) \ln (\epsilon) \\
& +\frac{\Omega^{4}}{8 \pi^{2}\left(1+\Omega^{2}\right)^{4}}\left(\int d^{4} u\left(F_{\mu \nu} \star F_{\mu \nu}+\left\{\mathcal{A}_{\mu}, \mathcal{A}_{\nu}\right\}_{\star}^{2}-\frac{1}{4}\left(\widetilde{u}^{2}\right)^{2}\right)\right) \ln (\epsilon)+\ldots,
\end{aligned}
$$

- It is similar to the expression obtained by Grosse and Wohlgenannt from a matrix base approach using heat kernel expansion.
- It involves, beyond the usual expected Yang-Mills contribution $\sim \int d^{4} \times F_{\mu \nu} \star F_{\mu \nu}$, additional gauge invariant terms of quadratic and quartic order in $\mathcal{A}_{\mu}, \sim \int d^{4} \times \mathcal{A}_{\mu} \star \mathcal{A}_{\mu}$ and $\sim \int d^{4} \times\left\{\mathcal{A}_{\mu}, \mathcal{A}_{\nu}\right\}_{\star}^{2}$.

The structure of the effective action

- The result for any $\Omega \in[0,1]$ can be writen as

$$
\begin{aligned}
\Gamma(A) & =\frac{\Omega^{2}}{4 \pi^{2}\left(1+\Omega^{2}\right)^{3}}\left(\int d^{4} u\left(\mathcal{A}_{\mu} \star \mathcal{A}_{\mu}-\frac{1}{4} \widetilde{u}^{2}\right)\right)\left(\frac{1}{\epsilon}+m^{2} \ln (\epsilon)\right) \\
& -\frac{\left(1-\Omega^{2}\right)^{4}}{192 \pi^{2}\left(1+\Omega^{2}\right)^{4}}\left(\int d^{4} u F_{\mu \nu} \star F_{\mu \nu}\right) \ln (\epsilon) \\
& +\frac{\Omega^{4}}{8 \pi^{2}\left(1+\Omega^{2}\right)^{4}}\left(\int d^{4} u\left(F_{\mu \nu} \star F_{\mu \nu}+\left\{\mathcal{A}_{\mu}, \mathcal{A}_{\nu}\right\}_{\star}^{2}-\frac{1}{4}\left(\widetilde{u}^{2}\right)^{2}\right)\right) \ln (\epsilon)+\ldots,
\end{aligned}
$$

- It is similar to the expression obtained by Grosse and Wohlgenannt from a matrix base approach using heat kernel expansion.
- It involves, beyond the usual expected Yang-Mills contribution $\sim \int d^{4} \times F_{\mu \nu} \star F_{\mu \nu}$, additional gauge invariant terms of quadratic and quartic order in $\mathcal{A}_{\mu}, \sim \int d^{4} \times \mathcal{A}_{\mu} \star \mathcal{A}_{\mu}$ and $\sim \int d^{4} \times\left\{\mathcal{A}_{\mu}, \mathcal{A}_{\nu}\right\}_{\star}^{2}$.
- It involves a mass-type term for the gauge potential A_{μ}

The structure of the effective action II

- The fact that the tadpole is non-vanishing is a rather unusual feature for a Yang-Mills type theory. Indicates that A_{μ} has a non vanishing expectation value.

The structure of the effective action II

- The fact that the tadpole is non-vanishing is a rather unusual feature for a Yang-Mills type theory. Indicates that A_{μ} has a non vanishing expectation value.
- The following class of actions

$$
S \sim \int d^{4} \times\left(\frac{\alpha}{4 g^{2}} F_{\mu \nu} \star F_{\mu \nu}+\frac{\Omega^{\prime}}{4 g^{2}}\left\{\mathcal{A}_{\mu}, \mathcal{A}_{\nu}\right\}_{\star}^{2}+\frac{\kappa}{2} \mathcal{A}_{\mu} \star \mathcal{A}_{\mu}\right)
$$

may well involve suitable candidates for renormalisable actions for gauge theory defined on Moyal spaces.

The structure of the effective action II

- The fact that the tadpole is non-vanishing is a rather unusual feature for a Yang-Mills type theory. Indicates that A_{μ} has a non vanishing expectation value.
- The following class of actions

$$
S \sim \int d^{4} \times\left(\frac{\alpha}{4 g^{2}} F_{\mu \nu} \star F_{\mu \nu}+\frac{\Omega^{\prime}}{4 g^{2}}\left\{\mathcal{A}_{\mu}, \mathcal{A}_{\nu}\right\}_{\star}^{2}+\frac{\kappa}{2} \mathcal{A}_{\mu} \star \mathcal{A}_{\mu}\right)
$$

may well involve suitable candidates for renormalisable actions for gauge theory defined on Moyal spaces.

- Appears to be related possibly to a spectral triple (Grosse, Wulkenhaar).

The structure of the effective action II

- The fact that the tadpole is non-vanishing is a rather unusual feature for a Yang-Mills type theory. Indicates that A_{μ} has a non vanishing expectation value.
- The following class of actions

$$
S \sim \int d^{4} \times\left(\frac{\alpha}{4 g^{2}} F_{\mu \nu} \star F_{\mu \nu}+\frac{\Omega^{\prime}}{4 g^{2}}\left\{\mathcal{A}_{\mu}, \mathcal{A}_{\nu}\right\}_{\star}^{2}+\frac{\kappa}{2} \mathcal{A}_{\mu} \star \mathcal{A}_{\mu}\right)
$$

may well involve suitable candidates for renormalisable actions for gauge theory defined on Moyal spaces.

- Appears to be related possibly to a spectral triple (Grosse, Wulkenhaar).
- Next problem that must be solved: Vacuum determination. Appears to be (at least technically) difficult.

Vacuum configurations

(1) The noncommutative algebraic set-up
(2) Noncommutative Induced gauge theories
(3) Vacuum configurations

- The harmonic ϕ^{4}-model
- Vacuum configurations in the matrix base
- New features - SSB revisited

4 Yang-Mills-Higgs type models on Moyal spaces

The harmonic ϕ^{4}-model

- $D=2$ action for the harmonic (\mathbb{R}-valued) ϕ^{4}-model $(\lambda>0)$ and eqn of motion

$$
\begin{gather*}
S(\phi)=\int d^{2} \times \frac{1}{2} \partial_{\mu} \phi \star \partial_{\mu} \phi+\frac{\Omega^{2}}{2}\left(\widetilde{x}_{\mu} \phi\right) \star\left(\widetilde{x}_{\mu} \phi\right)-\frac{\mu^{2}}{2} \phi \star \phi+\lambda \phi \star \phi \star \phi \star \phi \tag{16}\\
-\partial^{2} \phi+\Omega^{2} \widetilde{x}^{2} \phi-\mu^{2} \phi+4 \lambda \phi \star \phi \star \phi=0 \tag{17}
\end{gather*}
$$

(17) does not support $\phi=$ Cte solutions whenever $\Omega \neq 0$.

The harmonic ϕ^{4}-model

- $D=2$ action for the harmonic (\mathbb{R}-valued) ϕ^{4}-model $(\lambda>0)$ and eqn of motion

$$
\begin{gather*}
S(\phi)=\int d^{2} \times \frac{1}{2} \partial_{\mu} \phi \star \partial_{\mu} \phi+\frac{\Omega^{2}}{2}\left(\widetilde{x}_{\mu} \phi\right) \star\left(\widetilde{x}_{\mu} \phi\right)-\frac{\mu^{2}}{2} \phi \star \phi+\lambda \phi \star \phi \star \phi \star \phi \tag{16}\\
-\partial^{2} \phi+\Omega^{2} \widetilde{x}^{2} \phi-\mu^{2} \phi+4 \lambda \phi \star \phi \star \phi=0 \tag{17}
\end{gather*}
$$

(17) does not support $\phi=$ Cte solutions whenever $\Omega \neq 0$.

- Assume $\Omega=1$. Then, using $\left\{\widetilde{x}^{2}, \phi\right\}_{\star}=2\left(\widetilde{x}^{2} \phi-\partial^{2} \phi\right)$

$$
\begin{equation*}
\frac{1}{2}\left\{\widetilde{x}^{2}, \phi\right\}_{\star}-\mu^{2} \phi+4 \lambda \phi \star \phi \star \phi=0 \tag{18}
\end{equation*}
$$

The harmonic ϕ^{4}-model

- $D=2$ action for the harmonic (\mathbb{R}-valued) ϕ^{4}-model $(\lambda>0)$ and eqn of motion

$$
\begin{gather*}
S(\phi)=\int d^{2} \times \frac{1}{2} \partial_{\mu} \phi \star \partial_{\mu} \phi+\frac{\Omega^{2}}{2}\left(\widetilde{x}_{\mu} \phi\right) \star\left(\widetilde{x}_{\mu} \phi\right)-\frac{\mu^{2}}{2} \phi \star \phi+\lambda \phi \star \phi \star \phi \star \phi \tag{16}\\
-\partial^{2} \phi+\Omega^{2} \widetilde{x}^{2} \phi-\mu^{2} \phi+4 \lambda \phi \star \phi \star \phi=0 \tag{17}
\end{gather*}
$$

(17) does not support $\phi=$ Cte solutions whenever $\Omega \neq 0$.

- Assume $\Omega=1$. Then, using $\left\{\widetilde{x}^{2}, \phi\right\}_{\star}=2\left(\widetilde{x}^{2} \phi-\partial^{2} \phi\right)$

$$
\begin{equation*}
\frac{1}{2}\left\{\widetilde{x}^{2}, \phi\right\}_{\star}-\mu^{2} \phi+4 \lambda \phi \star \phi \star \phi=0 \tag{18}
\end{equation*}
$$

- It is convenient to use the matrix basis of the Moyal algebra: $f_{m n}(x), m, n \in \mathbb{N}$.
$f_{m n}(r, \varphi)=(-1)^{m} 2 \sqrt{\frac{m!}{n!}} e^{i \varphi(n-m)}\left(\sqrt{\frac{2}{\theta}} r\right)^{(n-m)} L_{m}^{n-m}\left(\frac{2 r^{2}}{\theta}\right) e^{-r^{2} / \theta}, f_{m n}^{\dagger}=f_{n m}$, $f_{m n} \star f_{p q}=\delta_{n p} f_{m q}, \int d^{2} x f_{m n}=2 \pi \theta \delta_{m n}-$ Set $\partial=\frac{1}{\sqrt{2}}\left(\partial_{1}-i \partial_{2}\right), \bar{\partial}=\frac{1}{\sqrt{2}}\left(\partial_{1}+i \partial_{2}\right)$,
$\partial f_{m n}=\sqrt{\frac{\pi}{\theta}} f_{m, n-1}-\sqrt{\frac{m+1}{\theta}} f_{m+1, n}, \bar{\partial} f_{m n}=\sqrt{\frac{m}{\theta}} f_{m-1, n}-\sqrt{\frac{n+1}{\theta}} f_{m, n+1}$,
$\left(\widetilde{x}^{2}\right)_{m n}=\frac{4}{\theta}(2 m+1) \delta_{m n}$

The harmonic ϕ^{4}-model

- $D=2$ action for the harmonic (\mathbb{R}-valued) ϕ^{4}-model $(\lambda>0)$ and eqn of motion

$$
\begin{gather*}
S(\phi)=\int d^{2} \times \frac{1}{2} \partial_{\mu} \phi \star \partial_{\mu} \phi+\frac{\Omega^{2}}{2}\left(\widetilde{x}_{\mu} \phi\right) \star\left(\widetilde{x}_{\mu} \phi\right)-\frac{\mu^{2}}{2} \phi \star \phi+\lambda \phi \star \phi \star \phi \star \phi \tag{16}\\
-\partial^{2} \phi+\Omega^{2} \widetilde{x}^{2} \phi-\mu^{2} \phi+4 \lambda \phi \star \phi \star \phi=0 \tag{17}
\end{gather*}
$$

(17) does not support $\phi=$ Cte solutions whenever $\Omega \neq 0$.

- Assume $\Omega=1$. Then, using $\left\{\widetilde{x}^{2}, \phi\right\}_{\star}=2\left(\widetilde{x}^{2} \phi-\partial^{2} \phi\right)$

$$
\begin{equation*}
\frac{1}{2}\left\{\widetilde{x}^{2}, \phi\right\}_{\star}-\mu^{2} \phi+4 \lambda \phi \star \phi \star \phi=0 \tag{18}
\end{equation*}
$$

- It is convenient to use the matrix basis of the Moyal algebra: $f_{m n}(x), m, n \in \mathbb{N}$.

$$
\begin{aligned}
& f_{m n}(r, \varphi)=(-1)^{m} 2 \sqrt{\frac{m!}{n!}} e^{i \varphi(n-m)}\left(\sqrt{\frac{2}{\theta}} r\right)^{(n-m)} L_{m}^{n-m}\left(\frac{2 r^{2}}{\theta}\right) e^{-r^{2} / \theta}, f_{m n}^{\dagger}=f_{n m}, \\
& f_{m n} \star f_{p q}=\delta_{n p} f_{m q}, \int d^{2} x f_{m n}=2 \pi \theta \delta_{m n}-\text { Set } \partial=\frac{1}{\sqrt{2}}\left(\partial_{1}-i \partial_{2}\right), \bar{\partial}=\frac{1}{\sqrt{2}}\left(\partial_{1}+i \partial_{2}\right), \\
& \partial f_{m n}=\sqrt{\frac{n}{\theta}} f_{m, n-1}-\sqrt{\frac{m+1}{\theta}} f_{m+1, n}, \bar{\partial} f_{m n}=\sqrt{\frac{m}{\theta}} f_{m-1, n}-\sqrt{\frac{n+1}{\theta}} f_{m, n+1}, \\
& \left(\widetilde{x}^{2}\right)_{m n}=\frac{4}{\theta}(2 m+1) \delta_{m n}
\end{aligned}
$$

- Eqn of motion in the matrix basis $\phi(x)=\sum_{m, n \in \mathbb{N}} \phi_{m n} f_{m n}(x)$

$$
\begin{equation*}
\frac{4}{\theta}(m+n+1) \phi_{m n}-\mu^{2} \phi_{m n}+4 \lambda \phi_{m k} \phi_{k l} \phi_{l n}=0 \tag{19}
\end{equation*}
$$

Vacuum configurations

- Look for radial solutions $v(x)=\sum_{m \in \mathbb{N}} a_{m} f_{m m}(x)$. Eqn. of motion yields

$$
\begin{equation*}
a_{m}\left(a_{m}^{2}+\frac{1}{\lambda \theta}\left(2 m+1-\frac{\mu^{2}}{\mu_{0}^{2}}\right)\right)=0, \quad \mu_{0}^{2}=\frac{4}{\theta}, \quad m \in \mathbb{N} \tag{20}
\end{equation*}
$$

so that $a_{m}=0$ or $a_{m}^{2}=\frac{1}{\lambda \theta}\left(\frac{\mu^{2}}{\mu_{0}^{2}}-2 m-1\right)$. Consistency requires RHS ≥ 0. This yields $\frac{1}{2}\left(\frac{\mu^{2}}{\mu_{0}^{2}}-1\right) \geq m(m \in \mathbb{N}!)$ so that the sum is truncated:
$v(x)=\sum_{m=0}^{M} a_{m} f_{m m}(x)$ with $M \equiv\left[\left[\frac{1}{2}\left(\frac{\mu^{2}}{\mu_{0}^{2}}-1\right)\right]\right]$.

Vacuum configurations

- Look for radial solutions $v(x)=\sum_{m \in \mathbb{N}} a_{m} f_{m m}(x)$. Eqn. of motion yields

$$
\begin{equation*}
a_{m}\left(a_{m}^{2}+\frac{1}{\lambda \theta}\left(2 m+1-\frac{\mu^{2}}{\mu_{0}^{2}}\right)\right)=0, \quad \mu_{0}^{2}=\frac{4}{\theta}, \quad m \in \mathbb{N} \tag{20}
\end{equation*}
$$

so that $a_{m}=0$ or $a_{m}^{2}=\frac{1}{\lambda \theta}\left(\frac{\mu^{2}}{\mu_{0}^{2}}-2 m-1\right)$. Consistency requires RHS ≥ 0. This yields $\frac{1}{2}\left(\frac{\mu^{2}}{\mu_{0}^{2}}-1\right) \geq m(m \in \mathbb{N}!)$ so that the sum is truncated: $v(x)=\sum_{m=0}^{M} a_{m} f_{m m}(x)$ with $M \equiv\left[\left[\frac{1}{2}\left(\frac{\mu^{2}}{\mu_{0}^{2}}-1\right)\right]\right]$.

- Expanding the action around $v(x)$, one has $v(x)$ a minimum of the action provided the resulting quadratic part S_{q} is positive.

$$
\begin{gather*}
S_{q}=\sum_{m, n, p, q \in \mathbb{N}} \phi_{m n} \Gamma_{m n, p q} \phi_{p q}, \quad \Gamma_{m n, p q}=\Gamma_{m n} \delta_{m p} \delta_{n q} \tag{21a}\\
\Gamma_{m n}=\sum_{m, n \in \mathbb{N}} 4 \pi\left(m+n+1-\frac{\mu^{2}}{\mu_{0}^{2}}+\lambda \theta \sum_{p=0}^{M} a_{p}^{2}\left(\delta_{m p}+\delta_{n p}\right)+\lambda \theta \sum_{p, q=0}^{M} a_{p} a_{q} \delta_{m p} \delta_{n q}\right) \tag{21b}
\end{gather*}
$$

Discussion

- Ajust the sequence of a_{m} 's in such a way that $\Gamma_{m n}$ is positive for all m, n.

Discussion

- Ajust the sequence of a_{m} 's in such a way that $\Gamma_{m n}$ is positive for all m, n.
- Recall $M \equiv\left[\left[\frac{1}{2}\left(\frac{\mu^{2}}{\mu_{0}^{2}}-1\right)\right]\right]$.

1) $M<0$. Whenever $\mu^{2}<\mu_{0}^{2}$. $a_{m}=0, \forall m$ and $\Gamma_{m n}=4 \pi\left(m+n+1-\frac{\mu^{2}}{\mu_{0}^{2}}\right)>0$.
2) $M>0$. Whenever $\mu^{2}>\mu_{0}^{2}$.

- $m, n>M, \Gamma_{m n}=4 \pi\left(m+n+1-\frac{\mu^{2}}{\mu_{0}^{2}}\right)>0$.
- $m<M, n>M, a_{m}^{2}=\frac{1}{\lambda \theta}\left(\frac{\mu^{2}}{\mu_{0}^{2}}-2 m-1\right)$ insures that
$\Gamma_{m n}=4 \pi\left(m+n+1-\frac{\mu^{2}}{\mu_{0}^{2}}+\lambda \theta a_{m}^{2}\right)>0$.
- same $a_{m}^{2} \neq 0$ for other cases

Discussion

- Ajust the sequence of a_{m} ' s in such a way that $\Gamma_{m n}$ is positive for all m, n.
- Recall $M \equiv\left[\left[\frac{1}{2}\left(\frac{\mu^{2}}{\mu_{0}^{2}}-1\right)\right]\right]$.

1) $M<0$. Whenever $\mu^{2}<\mu_{0}^{2}$. $a_{m}=0, \forall m$ and $\Gamma_{m n}=4 \pi\left(m+n+1-\frac{\mu^{2}}{\mu_{0}^{2}}\right)>0$.
2) $M>0$. Whenever $\mu^{2}>\mu_{0}^{2}$.

- $m, n>M, \Gamma_{m n}=4 \pi\left(m+n+1-\frac{\mu^{2}}{\mu_{0}^{2}}\right)>0$.
- $m<M, n>M, a_{m}^{2}=\frac{1}{\lambda \theta}\left(\frac{\mu^{2}}{\mu_{0}^{2}}-2 m-1\right)$ insures that

$$
\Gamma_{m n}=4 \pi\left(m+n+1-\frac{\mu^{2}}{\mu_{0}^{2}}+\lambda \theta a_{m}^{2}\right)>0
$$

- same $a_{m}^{2} \neq 0$ for other cases
- Summary:

Whenever $\mu^{2}<\mu_{0}^{2}, v=0$ is the (global) minimum while in the commutative situation (or when $\Omega=0$ ie, no harmonic term), vacuum configurations $v \neq 0$ (that trigger SSB) are supported. In some sense, the presence of a harmonic term prevents SSB to occur.
Whenever $\mu^{2}>\mu_{0}^{2}$, the action has a non trivial vacuum configuration given by

$$
\begin{equation*}
v(x)=\sum_{m=0}^{M} a_{m} f_{m m}(x), \quad a_{m}^{2}=\frac{1}{\lambda \theta}\left(\frac{\mu^{2}}{\mu_{0}^{2}}-2 m-1\right) \tag{22}
\end{equation*}
$$

Yang-Mills-Higgs type models on Moyal spaces

(1) The noncommutative algebraic set-up
(2) Noncommutative Induced gauge theories
(3) Vacuum configurations

4 Yang-Mills-Higgs type models on Moyal spaces

- Basic observation
- Symplectic algebra of derivations
- Yang-Mills-Higgs type models

Basic observation

- $\mathcal{G}_{0}:\left[\partial_{\mu}, \partial_{\nu}\right]_{D}=0$ leads to the simplest diff. calculus on \mathcal{M}. ($\left[\partial_{\mu}, \partial_{\nu}\right]_{D}(a)=0=\left[\left[\xi_{\mu}, \xi_{\nu}\right]_{\star}, a\right]_{\star}$ trivially verified. $\eta_{X} \rightarrow " \eta_{\partial_{\mu}}{ }^{"}=\eta_{\mu}=\xi_{\mu}$).

Basic observation

- $\mathcal{G}_{0}:\left[\partial_{\mu}, \partial_{\nu}\right]_{D}=0$ leads to the simplest diff. calculus on \mathcal{M}. ($\left[\partial_{\mu}, \partial_{\nu}\right]_{D}(a)=0=\left[\left[\xi_{\mu}, \xi_{\nu}\right]_{\star}, a\right]_{\star}$ trivially verified. $\eta_{X} \rightarrow " \eta_{\partial_{\mu}}{ }^{"}=\eta_{\mu}=\xi_{\mu}$).
- Observe \mathcal{G}_{0} is linked with $\left[x_{\mu}, f\right]_{\star}=i \Theta_{\mu \nu} \partial^{\nu} f$ which can be interpreted as Lie derivative along $\left(V_{\mu}\right)_{\nu}$ such that $\partial^{\nu}\left(V_{\mu}\right)_{\nu}=0$, i.e Hamiltonian vector field linked with area-preserving diffeomorphisms. A.P.D. can also be generated from polynomials of degree 2: $\left[\left(x_{\mu} \cdot x_{\nu}\right), a\right]_{\star}=i\left(x_{\mu} \Theta_{\nu \beta}+x_{\nu} \Theta_{\mu \beta}\right) \partial_{\beta} a \equiv L_{W}(a)$ where $\left(W_{(\mu \nu)}\right)_{\beta}$ verifies $\partial^{\beta}\left(W_{(\mu \nu)}\right)_{\beta}=0$. This would be no longer true for degree ≥ 3. Note too surprising because the Moyal bracket $[a, b]_{\star}$ reduces to the Poisson bracket $\{a, b\}_{P B}=\Theta^{\mu \nu} \frac{\partial a}{\partial_{\mu}} \frac{\partial b}{\partial_{\nu}}$ when restricted to polynomials of degree 2.

Basic observation

- $\mathcal{G}_{0}:\left[\partial_{\mu}, \partial_{\nu}\right]_{D}=0$ leads to the simplest diff. calculus on \mathcal{M}. ($\left[\partial_{\mu}, \partial_{\nu}\right]_{D}(a)=0=\left[\left[\xi_{\mu}, \xi_{\nu}\right]_{\star}, a\right]_{\star}$ trivially verified. $\eta_{X} \rightarrow " \eta_{\partial_{\mu}}{ }^{"}=\eta_{\mu}=\xi_{\mu}$).
- Observe \mathcal{G}_{0} is linked with $\left[x_{\mu}, f\right]_{\star}=i \Theta_{\mu \nu} \partial^{\nu} f$ which can be interpreted as Lie derivative along $\left(V_{\mu}\right)_{\nu}$ such that $\partial^{\nu}\left(V_{\mu}\right)_{\nu}=0$, i.e Hamiltonian vector field linked with area-preserving diffeomorphisms. A.P.D. can also be generated from polynomials of degree 2: $\left[\left(x_{\mu} \cdot x_{\nu}\right), a\right]_{\star}=i\left(x_{\mu} \Theta_{\nu \beta}+x_{\nu} \Theta_{\mu \beta}\right) \partial_{\beta} a \equiv L_{W}(a)$ where $\left(W_{(\mu \nu)}\right)_{\beta}$ verifies $\partial^{\beta}\left(W_{(\mu \nu)}\right)_{\beta}=0$. This would be no longer true for degree ≥ 3. Note too surprising because the Moyal bracket $[a, b]_{\star}$ reduces to the Poisson bracket $\{a, b\}_{P B}=\Theta^{\mu \nu} \frac{\partial a}{\partial_{\mu}} \frac{\partial b}{\partial_{\nu}}$ when restricted to polynomials of degree 2.
- Suggest to consider the differential calculus generated by those polynomials with degree 2: $\left[\left(x_{\mu} \cdot x_{\nu}\right), a\right]_{\star}$ combined with $X(a)=\left[\eta_{X}, a\right]_{\star}$ yields a new diff. calculus.

Symplectic algebra of derivations

- Case $D=2$ to simplify the presentation. Algebra of derivations generated by

$$
\begin{equation*}
\eta_{X 1}=\frac{i}{4 \sqrt{2} \theta}\left(x_{1}^{2}+x_{2}^{2}\right), \quad \eta_{X 2}=\frac{i}{4 \sqrt{2} \theta}\left(x_{1}^{2}-x_{2}^{2}\right), \quad \eta_{X 3}=\frac{i}{2 \sqrt{2} \theta}\left(x_{1} x_{2}\right) \tag{23}
\end{equation*}
$$

and satisfying the commutation rules for a symplectic algebra $s p(2, \mathbb{R})$.
Extension to any D straighforward and yields of course $\operatorname{sp}(D, \mathbb{R})$.

$$
\begin{equation*}
\left[\eta_{X 1}, \eta_{X 2}\right]_{\star}=\frac{1}{\sqrt{2}} \eta_{X 3}, \quad\left[\eta_{X 2}, \eta_{X 3}\right]_{\star}=-\frac{1}{\sqrt{2}} \eta_{X 1}, \quad\left[\eta_{X 3}, \eta_{X 1}\right]_{\star}=\frac{1}{\sqrt{2}} \eta_{X 2} \tag{24}
\end{equation*}
$$

Symplectic algebra of derivations

- Case $D=2$ to simplify the presentation. Algebra of derivations generated by

$$
\begin{equation*}
\eta_{X 1}=\frac{i}{4 \sqrt{2} \theta}\left(x_{1}^{2}+x_{2}^{2}\right), \quad \eta_{X 2}=\frac{i}{4 \sqrt{2} \theta}\left(x_{1}^{2}-x_{2}^{2}\right), \quad \eta_{X 3}=\frac{i}{2 \sqrt{2} \theta}\left(x_{1} x_{2}\right) \tag{23}
\end{equation*}
$$

and satisfying the commutation rules for a symplectic algebra $s p(2, \mathbb{R})$.
Extension to any D straighforward and yields of course $\operatorname{sp}(D, \mathbb{R})$.

$$
\begin{equation*}
\left[\eta_{X 1}, \eta_{X 2}\right]_{\star}=\frac{1}{\sqrt{2}} \eta_{X 3}, \quad\left[\eta_{X 2}, \eta_{X 3}\right]_{\star}=-\frac{1}{\sqrt{2}} \eta_{X 1}, \quad\left[\eta_{X 3}, \eta_{X 1}\right]_{\star}=\frac{1}{\sqrt{2}} \eta_{X 2} \tag{24}
\end{equation*}
$$

- Enlarge with inhomogeneous "spatial part" with those ∂_{μ} to isp $(2, \mathbb{R})$

$$
\begin{equation*}
\left[\eta_{X_{1}}, \eta_{\mu}\right]_{\star}=\frac{1}{2 \sqrt{2}} \epsilon_{\mu \nu} \eta_{\nu}, \text { etc } \ldots, \quad\left[\eta_{M}, \eta_{N}\right]_{\star}=C_{M N}^{P} \eta_{P}, \quad M=\mu, a=1,2,3 . \tag{25}
\end{equation*}
$$

Symplectic algebra of derivations

- Case $D=2$ to simplify the presentation. Algebra of derivations generated by

$$
\begin{equation*}
\eta_{X 1}=\frac{i}{4 \sqrt{2} \theta}\left(x_{1}^{2}+x_{2}^{2}\right), \quad \eta_{X 2}=\frac{i}{4 \sqrt{2} \theta}\left(x_{1}^{2}-x_{2}^{2}\right), \quad \eta_{X 3}=\frac{i}{2 \sqrt{2} \theta}\left(x_{1} x_{2}\right) \tag{23}
\end{equation*}
$$

and satisfying the commutation rules for a symplectic algebra $\operatorname{sp}(2, \mathbb{R})$.
Extension to any D straighforward and yields of course $\operatorname{sp}(D, \mathbb{R})$.

$$
\begin{equation*}
\left[\eta_{X 1}, \eta_{X 2}\right]_{\star}=\frac{1}{\sqrt{2}} \eta_{X 3}, \quad\left[\eta_{X 2}, \eta_{X 3}\right]_{\star}=-\frac{1}{\sqrt{2}} \eta_{X 1}, \quad\left[\eta_{X 3}, \eta_{X 1}\right]_{\star}=\frac{1}{\sqrt{2}} \eta_{X 2} \tag{24}
\end{equation*}
$$

- Enlarge with inhomogeneous "spatial part" with those ∂_{μ} to isp $(2, \mathbb{R})$

$$
\begin{equation*}
\left[\eta_{X 1}, \eta_{\mu}\right]_{\star}=\frac{1}{2 \sqrt{2}} \epsilon_{\mu \nu} \eta_{\nu}, \text { etc } \ldots, \quad\left[\eta_{M}, \eta_{N}\right]_{\star}=C_{M N}^{P} \eta_{P}, \quad M=\mu, a=1,2,3 \tag{25}
\end{equation*}
$$

- Once the Lie algebra of derivations has been choosen, simple application to the general machinery yields curvatures. Compared to the simplest situation: the pattern of covariant coordinates \mathcal{A}_{M} larger. New derivations act as associated to "internal coordinates".

Yang-Mills-Higgs type models

- Curvature has new terms beyond $F_{\mu \nu}$. Call $\mathcal{A}_{a}=\Phi_{a}, a=1,2,3$.

$$
\begin{equation*}
F_{\mu a}=\left[\mathcal{A}_{\mu}, \Phi_{a}\right]_{\star}-\mu C_{\mu a}^{\nu} \mathcal{A}_{\nu}, \quad F_{a b}=\left[\Phi_{a}, \Phi_{b}\right]_{\star}-\mu C_{a b}^{c} \Phi_{c} \tag{26}
\end{equation*}
$$

- When plugged into an action $\sim \int d x F_{M N} F_{M N}$, the second can be viewed as a Higgs potential: Higgs role played by those \mathcal{A}_{a}. The (first term) ${ }^{2}$ involves a mass term for the gauge potential.
- Can be interpreted as Yang-Mills-Higgs type models on Moyal spaces.
- Additional couplings of the type $A_{\mu} \Phi \Phi$ and $A_{\mu} A_{\mu} \Phi \Phi$ that should in principle contribute to the singular part of the polarisation tensor, to be computed.

Vertices involving \mathbf{A}_{μ}

Tadpole diagram I

The amplitude for the tadpole diagram is

$$
\begin{aligned}
\mathcal{T}_{1}= & \frac{\Omega^{2}}{4 \pi^{6} \theta^{6}} \int d^{4} x d^{4} u d^{4} z \int_{0}^{\infty} \frac{d t e^{-t m^{2}}}{\sinh ^{2}(\widetilde{\Omega} t) \cosh ^{2}(\widetilde{\Omega} t)} A_{\mu}(u) e^{-i(u-x) \wedge z} \\
& \times e^{-\frac{\tilde{\Omega}}{4}\left(\operatorname{coth}(\tilde{\Omega} t) z^{2}+\tanh (\tilde{\Omega} t)(2 x+z)^{2}\right.}\left(\left(1-\Omega^{2}\right)\left(2 \widetilde{x}_{\mu}+\widetilde{z}_{\mu}\right)-2 \widetilde{u}_{\mu}\right)
\end{aligned}
$$

Introduce the following 8 -dimensional vectors X, J and the 8×8 matrix K defined by
$X=\binom{x}{z}, \quad K=\left(\begin{array}{cc}4 \tanh (\widetilde{\Omega} t) \mathbb{I} & 2 \tanh (\widetilde{\Omega} t) \mathbb{I}-2 i \Theta^{-1} \\ 2 \tanh (\widetilde{\Omega} t) \mathbb{I}+2 i \Theta^{-1} & (\tanh (\widetilde{\Omega} t)+\operatorname{coth}(\widetilde{\Omega} t)) \mathbb{I}\end{array}\right), \quad J=\binom{0}{i \tilde{u}}$
This permits one to reexpress the amplitude in a form such that some Gaussian integrals can be easily performed:

$$
\begin{aligned}
\mathcal{T}_{1}= & \frac{\Omega^{2}}{4 \pi^{6} \theta^{6}} \int d^{4} x d^{4} u d^{4} z \int_{0}^{\infty} \frac{d t e^{-t m^{2}}}{\sinh ^{2}(\widetilde{\Omega} t) \cosh ^{2}(\widetilde{\Omega} t)} A_{\mu}(u) \\
& \times e^{-\frac{1}{2} X \cdot K \cdot X+J \cdot X}\left(\left(1-\Omega^{2}\right)\left(2 \widetilde{x}_{\mu}+\widetilde{z}_{\mu}\right)-2 \widetilde{u}_{\mu}\right)
\end{aligned}
$$

By performing the Gaussian integrals on X, we find
$\mathcal{T}_{1}=-\frac{\Omega^{4}}{\pi^{2} \theta^{2}\left(1+\Omega^{2}\right)^{3}} \int d^{4} u \int_{0}^{\infty} \frac{d t e^{-t m^{2}}}{\sinh ^{2}(\widetilde{\Omega} t) \cosh ^{2}(\widetilde{\Omega} t)} A_{\mu}(u) \widetilde{u}_{\mu} e^{-\frac{2 \Omega}{\theta\left(1+\Omega^{2}\right)} \tanh (\widetilde{\Omega} t) u^{2}}$.

Tadpole diagram II

Inspection of the behaviour of \mathcal{T}_{1} for $t \rightarrow 0$ shows that this latter expression has a quadratic as well as a logarithmic UV divergence. From Taylor expansion:

$$
\begin{aligned}
\mathcal{T}_{1}= & -\frac{\Omega^{2}}{4 \pi^{2}\left(1+\Omega^{2}\right)^{3}}\left(\int d^{4} u \widetilde{u}_{\mu} A_{\mu}(u)\right) \frac{1}{\epsilon}-\frac{m^{2} \Omega^{2}}{4 \pi^{2}\left(1+\Omega^{2}\right)^{3}}\left(\int d^{4} u \widetilde{u}_{\mu} A_{\mu}(u)\right) \ln \\
& -\frac{\Omega^{4}}{\pi^{2} \theta^{2}\left(1+\Omega^{2}\right)^{4}}\left(\int d^{4} u u^{2} \widetilde{u}_{\mu} A_{\mu}(u)\right) \ln (\epsilon)+\ldots,
\end{aligned}
$$

where $\epsilon \rightarrow 0$ is a cut-off and the ellipses denote finite contributions.

Higher order terms

- The regularisation of the diverging amplitudes is performed in a way that preserves gauge invariance of the most diverging terms. In $D=4$, these are UV quadratically diverging so that the cut-off ϵ on the various integrals over the Schwinger parameters ($\int_{\epsilon}^{\infty} d t$) must be suitably chosen.
- We find that this can be achieved with $\int_{\epsilon}^{\infty} d t$ for $\mathcal{T}_{2}^{\prime \prime}$ while for \mathcal{T}_{2}^{\prime} the regularisation must be performed with $\int_{\epsilon / 4}^{\infty}$.
- In field-theoretical language, gauge invariance is broken by the naive ϵ-regularisation of the Schwinger integrals and must be restored by adjusting the regularisation scheme. Note that the logarithmically divergent part is insensitive to a finite scaling of the cut-off.

Higher order terms II

- The one-loop effective action can be expressed in terms of heat kernels:

$$
\begin{align*}
\Gamma_{1 \text { loop }}(\phi, A) & =-\frac{1}{2} \int_{0}^{\infty} \frac{d t}{t} \operatorname{Tr}\left(e^{-t H(\phi, A)}-e^{-t H(0,0)}\right) \tag{27}\\
& =-\frac{1}{2} \lim _{s \rightarrow 0} \Gamma(s) \operatorname{Tr}\left(H^{-s}(\phi, A)-H^{-s}(0,0)\right),
\end{align*}
$$

where $H(\phi, A)=\frac{\delta^{2} S(\phi, A)}{\delta \phi \delta \phi^{\dagger}}$. Expanding:

$$
\begin{equation*}
H^{-s}(\phi, A)=\left(1+a_{1}(\phi, A) s+a_{2}(\phi, A) s^{2}+\ldots\right) H^{-s}(0,0) \tag{28}
\end{equation*}
$$

we obtain
$\Gamma_{\text {1loop }}(\phi, A)=-\frac{1}{2} \lim _{s \rightarrow 0} \operatorname{Tr}\left(\left(\Gamma(s+1) a_{1}(\phi, A)+s \Gamma(s+1) a_{2}(\phi, A)+\ldots\right) H^{-s}(0,0)\right)$.
With $\Gamma(s+1)=1-s \gamma+\ldots$ we have

$$
\begin{align*}
\Gamma_{1 \text { loop }}(\phi, A) & =-\frac{1}{2} \lim _{s \rightarrow 0} \operatorname{Tr}\left(a_{1}(\phi, A) H^{-s}(0,0)\right) \\
& -\frac{1}{2} \operatorname{Res}_{s=0} \operatorname{Tr}\left(\left(a_{2}(\phi, A)-\gamma a_{1}(\phi, A)\right) H^{-s}(0,0)\right) . \tag{29}
\end{align*}
$$

The second line is the Wodzicki residue which corresponds to the logarithmically divergent part of the one-loop effective action. The quadratically divergent part $-\frac{1}{2} \lim _{s \rightarrow 0} \operatorname{Tr}\left(a_{1} H^{-s}(0,0)\right)$ in the action which cannot be gauge-invariant.

