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Overview

I Attempt to construct possible candidate(s) for renormalisable actions for
gauge theories on NC D = 4 Moyal “space”. The NC analog of the Yang-Mills
action

∫
d4x(Fµν ? Fµν)(x) has UV/IR mixing which spoilts renormalisability.

I First step: Study a possible way to extend the ”harmonic solution” leading to
renormalisable φ4 theory to gauge theories. Based on the computation of the
one-loop effective gauge action obtained from the ”‘harmonic” φ4.
A.de Goursac, JCW, R.Wulkenhaar, Eur.Phys.J.C51(2007)977[hep-th/0703075]. General
structure (agree with Grosse and Wohlgenannt[hep-th0703169]):

Sf ∼
∫

d4x
( α

4g2
Fµν ? Fµν +

Ω′

4g2
{Aµ,Aν}2

? +
κ

2
Aµ ?Aµ

)
unexpected problem: v.e.v 6=0 for gauge potential! Motivates 2nd part...

I 2nd part: Study vacuum configurations. Much simpler to start in D=2 scalar
models with harmonic terms. See A. de Goursac talk.

I 3rd part: Attempt to clarify the role(s) of Aµ. Modification of the
”derivation-based” differential calculus on the Moyal algebras leads to
”Yang-Mills-Higgs” type models (E.Cagnache, T.Masson, JCW, hep-th to appear).
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Content
1 The noncommutative algebraic set-up

Derivation-based differential calculus
Noncommutative connections, curvatures
Gauge transformations
Canonical gauge-invariant connections
The ”simplest” differential calculus.

2 Noncommutative Induced gauge theories
Motivations
Computation of the one-loop effective action
Diagramatics
The structure of the effective action

3 Vacuum configurations
The harmonic φ4-model
Vacuum configurations in the matrix base
New features - SSB revisited

4 Yang-Mills-Higgs type models on Moyal spaces
Basic observation
Symplectic algebra of derivations
Yang-Mills-Higgs type models
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The noncommutative algebraic set-up Derivation-based differential calculus

Derivation-based differential calculus

I The algebraic set-up underlying all the NCFT models considered so far is the
derivation-based differential calculus.

I Der(M): linear space of derivations of some M with associative product ?,
that is linear maps satisfying Leibnitz rule

X : M→M, X (a ? b) = X (a) ? b + a ? X (b), ∀a, b ∈M (1)

∃ Lie Bracket on Der(M) defined by [X ,Y ]D(a)≡X (Y (a))−Y (X (a)) (i).
Der(M) is a module over Z(M) ((zX )(a)=z ? (X (a)), ∀z ∈Z(M).

I From any Lie subalgebra G⊂Der(M) (also a Z(M)-submodule), construction of
a differential calculus can be performed. [Space of 0-forms identified with M, action

of the differential d on 0-forms and 1-forms (Z(M)-linear maps from G to M) defined

∀X , Y∈ G by dω0(X )=X (ω0), dω1(X , Y ) =X (ω1(Y ))− Y (ω1(X ))− ω1([X , Y ]D)(ii).

d2=0 thanks to (i) and (ii). Can be extended to n-forms,Z(M)-multilinear antisymmetric

maps from G to M.]
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The noncommutative algebraic set-up Noncommutative connections, curvatures

Noncommutative connections, curvatures

I Once M equipped with diff. calculus related to G⊂Der(M), construction of
NC connections and curvatures can be done [see: Connes, Dubois-Violette, Kerner,

Madore]. Choose some (projective) right-module H over M.

I NC connection: linear map ∇X : H → H verifying (a∈M, m∈H, X ,Y∈G):

∇X (m ? a) = ∇X (m) ? a + m ? X (a) (2)

∇X+Y (m) = ∇X (m) +∇Y (m),∇(z?X )(m) = z ?∇X (m) (3)

[Recall Der(M) Z(M)-module; (3) reflects ∇X is a morphism of module)]
Curvature: F(X ,Y )(m) ≡ [∇X ,∇Y ](m)−∇[X ,Y ]D (m)

I From now on, M is the Moyal algebra. Recall M=L ∩R; L (resp. R): subspace of

elements of S′(RD) whose multiplication from right (resp. left) by any Schwarz function is

Schwartz. [see e.g Gracia-Bondia, Varilly, J.M.P 1988; Grossmann et al., Ann. Inst. Fourier

1968].

I We now assume: H=M. Then, ∇X determined by ∇X (I), I: the unit ∈M.
Indeed, one has from (2)

∇X (a) = ∇X (I) ? a + X (a), ∀a ∈M, ∀X ∈ G (4)

∇X (I) will serve as a NC analog of a gauge potential.
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The noncommutative algebraic set-up Gauge transformations

Gauge transformations

I Convenient hermitian structure is h0(a1, a2) = a†1 ? a2 so that ∇ in (2)
hermitean provided (∇X (I))†=−∇X (I).

I Gauge transformations are defined by the automorphisms of the ”module M”
preserving the hermitian structure h: γ ∈ Auth(M). One has

γ(a) = γ(I ? a) = γ(I) ? a , ∀a ∈M
h0

(
γ(a1), γ(a2)

)
= h0(a1, a2) ∀a1, a2 ∈M

This implies

γ(I)† ? γ(I) = I
so that the gauge transformations are determined by γ(I) ∈ U(M), where
U(M) is the group of unitary elements of M. From now on, we set γ(I) ≡ g .

I The action of U(M) on ∇X and curvature are

(∇X )γ(a) = γ(∇X (γ−1(a))), ∀a ∈M, ∀X ∈ G (6)

(F(X ,Y )(a))
γ = g ? F(X ,Y )(a) ? g† (7)

This yields

(∇X (I))γ = g ?∇X (I) ? g† + g ? X (g†), ∀g ∈ U(M), ∀X ∈ G (8)
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The noncommutative algebraic set-up Canonical gauge-invariant connections

Canonical gauge-invariant connections

I Existence of inner derivations (9) implies existence of gauge invariant
connections [cf. Dubois-Violette, Kerner, Madore; Dubois-Violette, Masson]. All
derivations of Moyal algebra are inner, i.e for any X∈Der(M):

X (a) = [ηX , a]?, ηX ∈M (9)

I Here, gauge-invariant connection defined by

∇inv
X (I) = −ηX , ∀X ∈ G (10)

∇inv
X (a) = ∇inv

X (I) ? a + [ηX , a]? = −a ? ηX (11)

Invariance: (∇inv
X (a))γ=−g ? (g† ? a ? ηX )=−a ? ηX=∇inv

X (a)

I Tensor forms AX (covariant coordinates):

(∇X −∇inv
X )(a) ≡ AX ? a = (∇X (I) + ηX ) ? a (12)

(AX )γ = g ?AX ? g† (13)

Curvature takes the form

F(X ,Y )(a) = ([AX ,AY ]? −A[X ,Y ]D − ([ηX , ηY ]? − η[X ,Y ]D )) ? a (14)
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The noncommutative algebraic set-up The ”simplest” differential calculus.

The simplest differential calculus

I It is convenient to set ∇µ(I)≡−iAµ.

I The most widely used differential calculus obtained from those space
derivations ∂µ.

I The gauge-invariant connection is simply obtained from ∂µa=[iξµ, a]?,
ξµ=−Θ−1

µν xν so that ηµ=iξµ

I The tensor form (”covariant coordinates”) and curvature are

Aµ = −i(Aµ − ξµ) ≡ −iA0
µ (15)

Fµν = −iΘ−1
µν + [Aµ,Aν ]? = −i(Θ−1

µν − i [A0
µ,A0

ν ]?) ≡ −iF 0
µν

F 0
µν = ∂µAν − ∂νAµ − i [Aµ,Aν ]?

The gauge transformations are given by

(A0
µ)g = g ?A0

µ ? g†, (F 0
µν)g = g ? F 0

µν ? g†
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Noncommutative Induced gauge theories Motivations

Motivations

I Start from the complex-valued ϕ4
4 with harmonic term.

[Grosse, Wulkenhaar; Gurau, Magnen, Rivasseau, Vignes-Tourneret]: (x̃µ = 2Θ−1
µν xν)

S(φ) =

∫
d4x

(
∂µφ† ? ∂µφ + Ω2(x̃µφ)† ? (x̃µφ) + m2φ† ? φ

)
(x) + Sint

I Couple S(φ) to external gauge potential Aµ via minimal coupling prescription
(de Goursac, JCW, Wulkenhaar): ∂µφ 7→ ∇A

µφ=∂µφ− iAµ ? φ,

x̃µφ 7→ −2i∇ξ
µφ + i∇A

µφ=x̃µφ+Aµ ? φ

I Next step: Compute at the one-loop order the effective action Γ(A) obtained
by integrating over the scalar field φ in S(φ,A), for any value of Ω ∈ [0, 1]

I Goals:
I Guess possible form(s) for a candidate as a renormalisable gauge action
I Is there some additional terms that appear in the action, beyond the expected

Fµν ? Fµν .
I How does the harmonic term survive in the resulting effective action?
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Noncommutative Induced gauge theories Computation of the one-loop effective action

The one-loop effective action
I The effective action is formally obtained through the evaluation of the

following functional integral

e−Γ(A) ≡
∫

DφDφ†e−S(φ,A) =

∫
DφDφ†e−S(φ)e−Sint(φ,A),

Sint(φ,A) denotes the terms involving the external gauge potential Aµ.

I At the one-loop order, the above functional reduces to

e−Γ1loop(A) =

∫
DφDφ†e−Sfree(φ)e−Sint(φ,A)

I The effective action Γ1loop(A) can be conveniently obtained in the x-space
formalism. Compute relevant diagrams using the Mehler-type propagator
C (x , y) ≡ 〈φ(x)φ†(y)〉 (set Ω̃ ≡ 2Ω

θ and x ∧ y ≡ 2xµΘ−1
µν yν)

C (x , y) =
Ω2

π2θ2

∫ ∞

0

dt

sinh2(2Ω̃t)
exp(− eΩ

4 coth(eΩt)(x−y)2− eΩ
4 tanh(eΩt)(x+y)2−m2t)

combined with the vertex whose generic expression is∫
d4x(f1 ? f2 ? f3 ? f4)(x) =

1

π4θ4

∫ 4∏
i=1

d4xi f1(x1)f2(x2)f3(x3)f4(x4)

× δ(x1 − x2 + x3 − x4)e
−i

P
i<j (−1)i+j+1xi∧xj .
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Noncommutative Induced gauge theories Diagramatics

Diagramatics
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Noncommutative Induced gauge theories The structure of the effective action

The structure of the effective action

I The result for any Ω∈[0, 1] can be writen as

Γ(A) =
Ω2

4π2(1+Ω2)3

(∫
d4u (Aµ ?Aµ −

1

4
ũ2)

)(
1

ε
+ m2 ln(ε)

)
− (1−Ω2)4

192π2(1+Ω2)4

(∫
d4u Fµν ? Fµν

)
ln(ε)

+
Ω4

8π2(1+Ω2)4

(∫
d4u (Fµν ? Fµν + {Aµ,Aν}2

? −
1

4
(ũ2)2)

)
ln(ε) + . . . ,

I It is similar to the expression obtained by Grosse and Wohlgenannt from a
matrix base approach using heat kernel expansion.

I It involves, beyond the usual expected Yang-Mills contribution
∼
∫

d4x Fµν ? Fµν , additional gauge invariant terms of quadratic and quartic
order in Aµ, ∼

∫
d4x Aµ ?Aµ and ∼

∫
d4x {Aµ,Aν}2

?.

I It involves a mass-type term for the gauge potential Aµ
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(ũ2)2)

)
ln(ε) + . . . ,

I It is similar to the expression obtained by Grosse and Wohlgenannt from a
matrix base approach using heat kernel expansion.

I It involves, beyond the usual expected Yang-Mills contribution
∼
∫

d4x Fµν ? Fµν , additional gauge invariant terms of quadratic and quartic
order in Aµ, ∼

∫
d4x Aµ ?Aµ and ∼

∫
d4x {Aµ,Aν}2

?.

I It involves a mass-type term for the gauge potential Aµ

14



Results in gauge theories on noncommutative Moyal spaces, Central European Seminar, 30 Nov- 02 Dec 2007 Jean-Christophe Wallet, LPT-Orsay

Noncommutative Induced gauge theories The structure of the effective action

The structure of the effective action II

I The fact that the tadpole is non-vanishing is a rather unusual feature for a
Yang-Mills type theory. Indicates that Aµ has a non vanishing expectation
value.

I The following class of actions

S ∼
∫

d4x
( α

4g2
Fµν ? Fµν +

Ω′

4g2
{Aµ,Aν}2

? +
κ

2
Aµ ?Aµ

)
may well involve suitable candidates for renormalisable actions for gauge
theory defined on Moyal spaces.

I Appears to be related possibly to a spectral triple (Grosse, Wulkenhaar).

I Next problem that must be solved: Vacuum determination. Appears to be (at
least technically) difficult.
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Vacuum configurations
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2 Noncommutative Induced gauge theories
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4 Yang-Mills-Higgs type models on Moyal spaces
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Vacuum configurations The harmonic φ4-model

The harmonic φ4-model
I D=2 action for the harmonic (R-valued) φ4-model (λ>0) and eqn of motion

S(φ) =

∫
d2x

1

2
∂µφ?∂µφ+

Ω2

2
(x̃µφ) ? (x̃µφ)− µ2

2
φ?φ+λφ?φ?φ ?φ (16)

−∂2φ + Ω2x̃2φ− µ2φ + 4λφ ? φ ? φ = 0 (17)

(17) does not support φ=Cte solutions whenever Ω 6=0.

I Assume Ω=1. Then, using {x̃2, φ}?=2(x̃2φ− ∂2φ)
1

2
{x̃2, φ}? − µ2φ + 4λφ ? φ ? φ = 0 (18)

I It is convenient to use the matrix basis of the Moyal algebra: fmn(x), m, n∈N.

fmn(r , ϕ)= (−1)m2
√

m!
n! e

iϕ(n−m)(
√

2
θ r)(n−m)Ln−m

m ( 2r2

θ )e−r2/θ, f †mn=fnm,

fmn ? fpq=δnpfmq,
∫

d2xfmn=2πθδmn - Set ∂= 1√
2
(∂1−i∂2), ∂̄= 1√

2
(∂1+i∂2),

∂fmn=
√

n
θ fm,n−1−

√
m+1

θ fm+1,n, ∂̄fmn=
√

m
θ fm−1,n−

√
n+1

θ fm,n+1,

(x̃2)mn=
4
θ (2m+1)δmn

I Eqn of motion in the matrix basis φ(x)=
∑

m,n∈Nφmnfmn(x)

4

θ
(m + n + 1)φmn − µ2φmn + 4λφmkφklφln = 0 (19)
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(m + n + 1)φmn − µ2φmn + 4λφmkφklφln = 0 (19)
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The harmonic φ4-model
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m ( 2r2
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Vacuum configurations Vacuum configurations in the matrix base

Vacuum configurations

I Look for radial solutions v(x)=
∑

m∈N amfmm(x). Eqn. of motion yields

am

(
a2
m +

1

λθ
(2m + 1− µ2

µ2
0

)
)

= 0, µ2
0 =

4

θ
, m ∈ N (20)

so that am=0 or a2
m= 1

λθ (µ2

µ2
0
− 2m − 1). Consistency requires RHS≥0. This

yields 1
2 (µ2

µ2
0
− 1)≥m (m∈N!) so that the sum is truncated:

v(x)=
∑M

m=0 amfmm(x) with M≡[[ 1
2 (µ2

µ2
0
− 1)]].

I Expanding the action around v(x), one has v(x) a minimum of the action
provided the resulting quadratic part Sq is positive.

Sq =
∑

m,n,p,q∈N
φmnΓmn,pqφpq, Γmn,pq = Γmnδmpδnq (21a)

Γmn =
∑

m,n∈N
4π
(
m + n + 1− µ2

µ2
0

+ λθ

M∑
p=0

a2
p(δmp + δnp) + λθ

M∑
p,q=0

apaqδmpδnq

)
(21b)
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Vacuum configurations New features - SSB revisited

Discussion
I Ajust the sequence of am’s in such a way that Γmn is positive for all m, n.

I Recall M≡[[ 1
2 (µ2

µ2
0
− 1)]].

1)M<0. Whenever µ2<µ2
0. am=0, ∀m and Γmn=4π(m + n + 1− µ2

µ2
0
)>0.

2) M>0. Whenever µ2>µ2
0.

I m, n>M, Γmn=4π(m + n + 1− µ2

µ2
0
)>0.

I m<M, n>M, a2
m= 1

λθ
(µ2

µ2
0
− 2m − 1) insures that

Γmn=4π(m + n + 1− µ2

µ2
0

+ λθa2
m)>0.

I same a2
m 6=0 for other cases

I Summary:
Whenever µ2<µ2

0, v=0 is the (global) minimum while in the commutative
situation (or when Ω=0 ie, no harmonic term), vacuum configurations v 6=0
(that trigger SSB) are supported. In some sense, the presence of a harmonic
term prevents SSB to occur.

Whenever µ2>µ2
0, the action has a non trivial vacuum configuration given by

v(x) =
M∑

m=0

amfmm(x), a2
m =

1

λθ
(
µ2

µ2
0

− 2m − 1) (22)
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Yang-Mills-Higgs type models on Moyal spaces

Yang-Mills-Higgs type models on Moyal spaces

1 The noncommutative algebraic set-up

2 Noncommutative Induced gauge theories

3 Vacuum configurations

4 Yang-Mills-Higgs type models on Moyal spaces
Basic observation
Symplectic algebra of derivations
Yang-Mills-Higgs type models
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Yang-Mills-Higgs type models on Moyal spaces Basic observation

Basic observation

I G0: [∂µ, ∂ν ]D=0 leads to the simplest diff. calculus on M.
([∂µ, ∂ν ]D(a)=0= [[ξµ, ξν ]?, a]? trivially verified. ηX→”η∂µ”=ηµ=ξµ).

I Observe G0 is linked with [xµ, f ]?=iΘµν∂ν f which can be interpreted as Lie
derivative along (Vµ)ν such that ∂ν(Vµ)ν=0, i.e Hamiltonian vector field
linked with area-preserving diffeomorphisms. A.P.D. can also be generated
from polynomials of degree 2: [(xµ.xν), a]?=i(xµΘνβ+xνΘµβ)∂βa≡LW (a)
where (W(µν))β verifies ∂β(W(µν))β=0. This would be no longer true for
degree ≥3. Note too surprising because the Moyal bracket [a, b]? reduces to
the Poisson bracket {a, b}PB=Θµν ∂a

∂µ

∂b
∂ν

when restricted to polynomials of

degree 2.

I Suggest to consider the differential calculus generated by those polynomials
with degree 2: [(xµ.xν), a]? combined with X (a)=[ηX , a]? yields a new diff.
calculus.
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Yang-Mills-Higgs type models on Moyal spaces Symplectic algebra of derivations

Symplectic algebra of derivations

I Case D=2 to simplify the presentation. Algebra of derivations generated by

ηX1 =
i

4
√

2θ
(x2

1 + x2
2 ), ηX2 =

i

4
√

2θ
(x2

1 − x2
2 ), ηX3 =

i

2
√

2θ
(x1x2) (23)

and satisfying the commutation rules for a symplectic algebra sp(2, R).
Extension to any D straighforward and yields of course sp(D, R).

[ηX1, ηX2]? =
1√
2
ηX3, [ηX2, ηX3]? = − 1√

2
ηX1, [ηX3, ηX1]? =

1√
2
ηX2

(24)

I Enlarge with inhomogeneous ”spatial part” with those ∂µ to isp(2, R)

[ηX1, ηµ]? =
1

2
√

2
εµνην , etc..., [ηM , ηN ]? = CP

MNηP , M = µ, a = 1, 2, 3.

(25)

I Once the Lie algebra of derivations has been choosen, simple application to
the general machinery yields curvatures. Compared to the simplest situation:
the pattern of covariant coordinates AM larger. New derivations act as
associated to ”internal coordinates”.
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Yang-Mills-Higgs type models on Moyal spaces Yang-Mills-Higgs type models

Yang-Mills-Higgs type models

I Curvature has new terms beyond Fµν . Call Aa=Φa, a=1, 2, 3.

Fµa = [Aµ,Φa]? − µCν
µaAν , Fab = [Φa,Φb]? − µC c

abΦc (26)

I When plugged into an action ∼
∫

dxFMNFMN , the second can be viewed as a
Higgs potential: Higgs role played by those Aa. The (first term)2 involves a
mass term for the gauge potential.

I Can be interpreted as Yang-Mills-Higgs type models on Moyal spaces.

I Additional couplings of the type AµΦΦ and AµAµΦΦ that should in principle
contribute to the singular part of the polarisation tensor, to be computed.
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Yang-Mills-Higgs type models on Moyal spaces Yang-Mills-Higgs type models

Vertices involving Aµ

φ

φ†

Aµ

ξµ

φ

φ†

ξµ

Aµ

ξµ

φ†

φ

Aµ

φ

φ†

Aµ

Aµ
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Yang-Mills-Higgs type models on Moyal spaces Yang-Mills-Higgs type models

Tadpole diagram I
The amplitude for the tadpole diagram is

T1 =
Ω2

4π6θ6

∫
d4x d4u d4z

∫ ∞

0

dt e−tm2

sinh2(Ω̃t) cosh2(Ω̃t)
Aµ(u) e−i(u−x)∧z

× e−
eΩ
4 (coth(eΩt)z2+tanh(eΩt)(2x+z)2

((1− Ω2)(2x̃µ + z̃µ)− 2ũµ)

Introduce the following 8-dimensional vectors X , J and the 8× 8 matrix K defined
by

X =

(
x
z

)
, K =

(
4 tanh(Ω̃t)I 2 tanh(Ω̃t)I− 2iΘ−1

2 tanh(Ω̃t)I + 2iΘ−1 (tanh(Ω̃t) + coth(Ω̃t))I

)
, J =

(
0
i ũ

)
.

This permits one to reexpress the amplitude in a form such that some Gaussian
integrals can be easily performed:

T1 =
Ω2

4π6θ6

∫
d4x d4u d4z

∫ ∞

0

dt e−tm2

sinh2(Ω̃t) cosh2(Ω̃t)
Aµ(u)

× e−
1
2 X .K .X+J.X ((1− Ω2)(2x̃µ + z̃µ)− 2ũµ)

By performing the Gaussian integrals on X , we find

T1 = − Ω4

π2θ2(1 + Ω2)3

∫
d4u

∫ ∞

0

dt e−tm2

sinh2(Ω̃t) cosh2(Ω̃t)
Aµ(u)ũµ e

− 2Ω
θ(1+Ω2)

tanh(eΩt)u2

.
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Yang-Mills-Higgs type models on Moyal spaces Yang-Mills-Higgs type models

Tadpole diagram II

Inspection of the behaviour of T1 for t → 0 shows that this latter expression has a
quadratic as well as a logarithmic UV divergence. From Taylor expansion:

T1 =− Ω2

4π2(1 + Ω2)3

(∫
d4u ũµAµ(u)

)
1

ε
− m2Ω2

4π2(1 + Ω2)3

(∫
d4u ũµAµ(u)

)
ln(ε)

− Ω4

π2θ2(1 + Ω2)4

(∫
d4u u2ũµAµ(u)

)
ln(ε) + . . . ,

where ε → 0 is a cut-off and the ellipses denote finite contributions.
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Yang-Mills-Higgs type models on Moyal spaces Yang-Mills-Higgs type models

Higher order terms

I The regularisation of the diverging amplitudes is performed in a way that
preserves gauge invariance of the most diverging terms. In D = 4, these are
UV quadratically diverging so that the cut-off ε on the various integrals over
the Schwinger parameters (

∫∞
ε

dt) must be suitably chosen.

I We find that this can be achieved with
∫∞

ε
dt for T ′′2 while for T ′2 the

regularisation must be performed with
∫∞

ε/4
.

I In field-theoretical language, gauge invariance is broken by the naive
ε-regularisation of the Schwinger integrals and must be restored by adjusting
the regularisation scheme. Note that the logarithmically divergent part is
insensitive to a finite scaling of the cut-off.
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Yang-Mills-Higgs type models on Moyal spaces Yang-Mills-Higgs type models

Higher order terms II
I The one-loop effective action can be expressed in terms of heat kernels:

Γ1loop(φ,A) = −1

2

∫ ∞

0

dt

t
Tr
(
e−tH(φ,A) − e−tH(0,0)

)
(27)

= −1

2
lim
s→0

Γ(s) Tr
(
H−s(φ,A)− H−s(0, 0)

)
,

where H(φ,A) = δ2S(φ,A)
δφ δφ† . Expanding:

H−s(φ,A) =
(
1 + a1(φ,A)s + a2(φ,A)s2 + . . .

)
H−s(0, 0), (28)

we obtain

Γ1loop(φ,A) = −1

2
lim
s→0

Tr
((

Γ(s+1)a1(φ,A)+sΓ(s+1)a2(φ,A)+. . .
)
H−s(0, 0)

)
.

With Γ(s + 1) = 1− sγ + . . . we have

Γ1loop(φ,A) = −1

2
lim
s→0

Tr
(
a1(φ,A)H−s(0, 0)

)
− 1

2
Ress=0 Tr

((
a2(φ,A)− γa1(φ,A)

)
H−s(0, 0)

)
. (29)

The second line is the Wodzicki residue which corresponds to the
logarithmically divergent part of the one-loop effective action. The
quadratically divergent part − 1

2 lims→0 Tr
(
a1H

−s(0, 0)
)

in the action which
cannot be gauge-invariant.
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