Quantum Fields, Curvature, and Cosmology

Stefan Hollands

School of Mathematics
Cardiff University

30/05/2007

Outline

- Introduction/Motivation
- What is QFT?
- Operator Product Expansions
- Perturbation theory
- Quantum Gauge Theory
- Outlook

Motivation

- QFT on manifolds is relevant formalism to describe quantized matter at large spacetime curvature (\rightarrow early Universe).
- Interesting physical effects: primordial fluctuations (structure formation, $\underline{C o s m i c}$ Microwave Background, Baryon/Anti-Baryon asymmetry, Hawking/Unruh effect,

Motivation

- QFT on manifolds is relevant formalism to describe quantized matter at large spacetime curvature (\rightarrow early Universe).
- Interesting physical effects: primordial fluctuations (\rightarrow structure formation, $\underline{\text { Cosmic Microwave Background, }}$ Baryon/Anti-Baryon asymmetry, Hawking/Unruh effect, ...)

Quantum Fluctuations and Structure of Universe

Today

Early Universe

Macroscipic
Density
Fluctuations LARGE!
(CB)

Why is QFT in curved space so different from flat space?

- No S-matrix
- No natural particle interpretation, no vacuum state
- No spacetime symmetries
- No Hamiltonian/conserved energy (Stability? Thermodynamics?)
\Longrightarrow Forced to a formulation which emphasizes the local, geometrical aspects of QFT.
\rightarrow Algebraic formulation, Operator Product Expansion (OPE)
...: This talk

Why is QFT in curved space so different from flat space?

- No S-matrix
- No natural particle interpretation, no vacuum state
- No spacetime symmetries
- No Hamiltonian/conserved energy (Stability? Thermodynamics?)
\Longrightarrow Forced to a formulation which emphasizes the local, geometrical aspects of QFT.
\rightarrow Algebraic formulation, Operator Product Expansion (OPE)
...: This talk

Why is QFT in curved space so different from flat space?

- No S-matrix
- No natural particle interpretation, no vacuum state
- No spacetime symmetries
- No Hamiltonian/conserved energy (Stability? Thermodynamics?)
\Longrightarrow Forced to a formulation which emphasizes the local, geometrical aspects of QFT.
\rightarrow Algebraic formulation, Operator Product Expansion (OPE)
...: This talk

Why is QFT in curved space so different from flat space?

- No S-matrix
- No natural particle interpretation, no vacuum state
- No spacetime symmetries
- No Hamiltonian/conserved energy (Stability? Thermodynamics?)
\Longrightarrow Forced to a formulation which emphasizes the local, geometrical aspects of QFT.
\rightarrow Algebraic formulation, Operator Product Expansion (OPE)
...: This talk

OPE coefficients have functorial behavior under embedding
[S.H. \& Wald, Brunetti et al.]:

- States: Collections of n-point functions $w_{n}=\left\langle\mathcal{O}_{1} \ldots \mathcal{O}_{n}\right\rangle_{\Psi}$ in which OPE holds. $\begin{array}{lll}\text { "Equations" } & \leftrightarrow & \text { Algebraic relations } \\ \text { (+ bracket } & & \begin{array}{l}\text { between quantum }\end{array} \\ \text { structure) } & & \text { fields (OPE) } \\ \text { "Solutions" } & \leftrightarrow & \text { Quantum states }\end{array}$ $\begin{array}{lll}\text { "Equations" } & \leftrightarrow & \text { Algebraic relations } \\ \text { (+ bracket } & & \text { between quantum } \\ \text { structure) } & & \text { fields (OPE) } \\ \text { "Solutions" } & \leftrightarrow & \text { Quantum states }\end{array}$ $\begin{array}{lll}\text { "Equations" } & \leftrightarrow & \text { Algebraic relatio } \\ \text { (+ bracket } & & \begin{array}{l}\text { between quantu }\end{array} \\ \text { structure) } & & \text { fields (OPE) } \\ \text { "Solutions" } & \leftrightarrow & \text { Quantum states }\end{array}$ $\begin{array}{lll}\text { "Equations" } & \leftrightarrow & \text { Algebraic relatio } \\ \text { (+ bracket } & & \begin{array}{l}\text { between quantu }\end{array} \\ \text { structure) } & & \text { fields (OPE) } \\ \text { "Solutions" } & \leftrightarrow & \text { Quantum states }\end{array}$
Example: Free field ϕ :
- OPE: $\phi\left(x_{1}\right) \phi\left(x_{2}\right) \sim$ $H\left(x_{1}, x_{2}\right) 1+\phi^{2}(y)+\ldots$, $H=\frac{u}{\sigma+i t 0}+v \ln (\sigma+i t 0)$.

What is QFT?

"Equations
(+ bracket structure) "Solutions"

States do not have such a behavior under embedding!

What is the OPE?

General formula: [Wison, Zimmermann 1969, ..., s.H. 2006]

$$
\begin{aligned}
&\left\langle\mathcal{O}_{j_{1}}\left(x_{1}\right) \cdots \mathcal{O}_{j_{n}}\left(x_{n}\right)\right\rangle_{\Psi} \\
& \sim \sum_{\text {OPE-coefficients } \leftrightarrow \text { structure"constants" }} \underbrace{C_{j_{1} \ldots j_{n}}^{i}\left(x_{1}, \ldots, x_{n} ; y\right)}\left\langle\mathcal{O}_{i}(y)\right\rangle_{\Psi}
\end{aligned}
$$

- Physical idea: Separate the short distance regime of theory (large "energies") from the energy scale of the state (small) $E^{4} \sim\langle\rho\rangle_{\Psi}$.
- Application: In Early Universe have different scales $E \sim T(t) \sim a(t)^{-1}$, curvature radius $R(t) \sim H(t)^{-1}$.
- OPE-coefficients may be calculated within perturbation theory (Yang-Mills-type theories).

Axiomatization of QFT

I propose to axiomatize quantum field theory as a collection of operator product coefficients $\left\{C_{i_{1} \ldots i_{n}}^{j}\left(x_{1}, \ldots, x_{n} ; y\right)\right\}$, each of with is the (germ of) a distribution on M^{n+1} subject to

- Covariance
- Local (anti-) commutativity
- Microlocal spectrum condition
- Consistency (Associativity)
- Existence of a state

Consequences:

- PCT-theorem holds [s.म. 2003]
- Spin-statistics relation holds [s.H. \& Wald 2007]

Short-distance factorization (Consistency)

Consider different "merger trees"

 ways:$$
\sim \sum_{i} \begin{aligned}
& \mathcal{O}_{1}\left(x_{1}\right) \cdots \mathcal{O}_{n}\left(x_{n}\right) \\
& \sim
\end{aligned}
$$

Different scalings

$$
C_{i l i s i}^{j} C_{i k j}^{\prime} C_{l j_{i 6}}^{k}=C_{i, i, i\left\langle i j i_{6}\right.}^{l_{i}}
$$

Mathematical formulation of associtivity:

"Fulton-MacPherson compactification" [Axerood \& Singer, Fulton \& MaePhesoon]
\leftrightarrow Blow up bndy of configuration space of n points $\operatorname{Conf}[n]=M \times \cdots \times M-\{$ diagonals $\}$

Example:

For n-point configuration space this leads to
$f_{\text {b.d. }}: M[n] \rightarrow \operatorname{Conf}[n]$, with $E[n]=f_{\text {b.d. }}^{-1}(\{$ diagonals $\})$

$$
E[n]=\cup_{\text {trees }} \underbrace{S[\text { merger tree }]}_{\text {faces of different dim }}=\text { stratifold }
$$

Associativity: OPE-coefficient (pulled back by $f_{\text {b.d. }}^{*}$) factorizes in particular way on each face of $E[n] . \rightarrow$ "Operad-like" structure.

Wave front set

OPE-coefficients should satisfy a " μ-local spectrum condition"
[Brunetti et al., SH]
\leftrightarrow positivity of "energy" in tangent space
\leftrightarrow correct " $i \epsilon$-prescription" (domain of holomorphy)
\leftrightarrow (generalized) "Hadamard condition"
Key tool: "Wave front set" |Hör rmander, Duistermaat, Sato,..]
f smooth, comp. support $\quad \Longrightarrow|\hat{f}(k)| \sim 1 /|k|^{N}$
all k, all N
f distributional, comp. support $\Longrightarrow|\hat{f}(k)| \nsim 1 /|k|^{N}$ some k, some N

Wave front set of f at point $x \in X$ defined by

$$
\begin{aligned}
W F_{x}(f) & =\{\text { singular directions in momentum space at } x\} \\
& \subset T_{x}^{*} X
\end{aligned}
$$

Wave front set characterizes singularities of f. In QFT typically $X=M^{n}$ and $f=n$-point function of fields.

The following μ-local spectrum condition ${ }_{\text {[Brunetie eal. } 1998,2000]}$ should hold for the OPE coefficients C :
Wave front set $W F(C)$ has very special form [s.H. 2006]:

Curvature expansion

$$
C\left(x_{1}, \ldots, x_{n} ; y\right)
$$

$=$ structure constants
$=\sum Q\left[\nabla^{k} R(y)\right.$, couplings $]$
\times Lorentz inv. Minkowski distributions $u\left(\xi_{1}, \ldots, \xi_{n}\right)$
ξ_{i}-Normal coordinates

- Can be computed systematically in pert. theory [Hollands 2006]
- Minkowski distributions \leftrightarrow "Mellin-Moments"

$$
u\left(\xi_{1}, \ldots, \xi_{n}\right)=\operatorname{Res}_{z=i \text { power }} \int_{0}^{\infty} C\left(\lambda \xi_{1}, \ldots, \lambda \xi_{n}, y\right) \lambda^{i z} d \lambda
$$

Perturbation theory

OPE-coefficients can be constructed in perturbation theory, e.g. scalar field [s.н. 2006]

$$
L=d^{4} x \sqrt{g}\left[|\nabla \phi|^{2}+\lambda \phi^{4}\right]
$$

- Given a renormalizable Lagrangian L, can construct OPE coefficients as distributions valued in formal power series.
- Satisfy all above properties.
- Holds in all Hadamard states.
- Also works for Yang-Mills theory [s.н. 2007], but more complicated.

For perturbation theory need time-ordered products

$$
T_{n}\left(\phi^{k_{1}}\left(x_{1}\right) \otimes \cdots \otimes \phi^{k_{n}}\left(x_{n}\right)\right) \in \operatorname{Map}\left(\mathcal{C}^{\otimes n}, \mathcal{A}\right)
$$

Problem: A priori only defined on space

$$
M \times \cdots \times M \backslash \bigcup\{\text { diagonals }\}
$$

In this viewpoint: extension=renormalization. [Brunetti etal., SH \& Wald]

- Combinatorial problem: Diagonals intersect each other \rightarrow "nested divergencies"
- Analytical problem: Must understand singularity structure \rightarrow "wave-front-set," (poly)-logarithmic scaling, ...

Local covariance condition reduces "renormalization ambiguity"

Renormalization

First expansion: time-ordered products

$$
\begin{aligned}
& T_{n}\left(\phi^{4}\left(x_{1}\right) \otimes \cdots \otimes \phi^{4}\left(x_{n}\right)\right) \\
= & \sum t_{i_{1} \ldots i_{n}}\left(x_{1}, \ldots, x_{n}\right): \underbrace{\phi^{i_{1}}\left(x_{1}\right) \cdots \phi^{i_{n}}\left(x_{n}\right)}_{\text {cov. def. Wick product }}:
\end{aligned}
$$

Second expansion: \mathbb{C}-valued distributions

$$
t\left(x_{1}, \ldots, x_{n-1}, y\right)
$$

$\sim \sum P\left[\nabla^{k} R(y)\right.$, couplings $]$
\times Lorentzinv. Minkowski distributions

(1) Subdivergences already renormalized.
(2) Diagrams "live" in tangent space $T_{y} M$
(3) E.a. dimensional
regularization possible
at this stage.

Third expansion: Diagrams

$$
v\left(\xi_{1}, \ldots, \xi_{\mathrm{n}-1}\right)=
$$

massless

(1) Subdivergences already renormalized.
(2) Diagrams "live" in tangent space $T_{y} M$.
(3) E.g. dimensional
regularization possible
at this stage.

\Rightarrow Renormalization possible to arbitrary orders!

Third expansion: Diagrams

$$
v\left(\xi_{1}, \ldots, \xi_{n-1}\right)=
$$

(1) Subdivergences already renormalized.
(2) Diagrams "live" in tangent space $T_{y} M$.
(3) E.g. dimensional regularization possible at this stage.

Example: 3-point OPE

To leading order in perturbation theory, and leading order in deviation from flat space, 3-point OPE in scalar $\lambda \phi^{4}$-theory has structure

$$
\begin{aligned}
& \phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \sim \\
& {[\underbrace{\left.\sum \frac{D}{\sigma_{i j}}+\frac{\lambda}{a} \sum \mathrm{Cl}_{2}\left(\alpha_{i}\right)+\ldots\right]}_{\text {OPE-coefficient } C\left(x_{1}, x_{2}, x_{3} ; y\right)} \phi(y)} \\
& \text { (+other operators) }
\end{aligned}
$$

$\mathrm{Cl}_{2}(z)$-Clausen function $\sigma_{i j}$-geodesic distance a-curved space area of triangle

3-Point Operator Product

 D-geometrical determinant

Yang-Mills theory

Can repeat procedure for Yang-Mills theory, $L=d^{4} x \sqrt{g}|F|^{2}$, with $F=d A+i \lambda[A, A]$ curvature of non-abelian gauge connection. New issues:

- Need to deal with local gauge invariance

$$
A \rightarrow G^{-1} A G+G^{-1} d G
$$

- Pass to gauge-fixed theory with additional fields.
- Recover original theory as cohomology of auxiliary theory.
- Need suitable renormalization prescription (\rightarrow "Ward identities").

Strategy

- Introduce auxiliary theory $L=L_{y m}+L_{g f}+L_{g h}+L_{a f}$, with more fields and BRST-invariance.
- Construct quantized auxiliary theory.
- Define quantum BRST-current J, ensure that $d * J=0$.
- Define quantum BRST-charge $Q=\int_{\Sigma} J$, ensure that $Q^{2}=0$.
- Define interacting field observables as cohomology of Q
- OPE closes among gauge invariant operators
- Renormalization group flow ("operator mixing") closes among gauge-invariant fields.

Ward identities

Construction requires the satisfaction of new set of identities [s.н. 2007]:

$$
\left[Q_{0}, T\left(e_{\otimes}^{i \Psi / \hbar}\right)\right]=\frac{1}{2} T\left(\left(S_{0}+\Psi, S_{0}+\Psi\right) \otimes e_{\otimes}^{i \Psi / \hbar}\right)
$$

where $S=S_{0}+\lambda S_{1}+\lambda^{2} S_{2}$, and $\Psi=\int f \wedge \mathcal{O}$ is a local observable smeared with cutoff function. Bracket defined by

$$
(P, Q)=\int d^{4} x \sqrt{g}\left(\frac{\delta P}{\delta \phi(x)} \frac{\delta Q}{\delta \phi^{\ddagger}(x)} \pm(P \leftrightarrow Q)\right)
$$

Proof is difficult and requires techniques from relative cohomolgy.

New application of OPE in curved space: OPE can e.g. be used in calculations of quantum field theory fluctuations in early universe, where curvature cannot be neglected.

Example: Consider $w_{3}=\langle\phi \phi \phi\rangle_{\Psi}$ where ϕ suitable field parametrizing density contrast $\delta \rho / \rho$.

- Step 1: Compute OPE-coefficients from perturbation theory (reliable in asymptotically free theories).
- Step 2: Write $w_{3} \sim \sum$
- Step 3: Get form factors $\left\langle\mathcal{O}_{i}\right\rangle_{\Psi}$ e.g. from (a) AdS-CFT, (b) view as input parameters.

Application: Non-Gaussianities in CMB, bispectrum $(\rightarrow$ $f_{N L}=w_{3} / w_{2}^{3 / 2}$ [Shellard,Maldacena,Spergel,...], [Eriksen et al., Bartolo et al., Cabella et al., Gaztanaga et al. (constraints from WMAP data),...]), ...

New application of OPE in curved space: OPE can e.g. be used in calculations of quantum field theory fluctuations in early universe, where curvature cannot be neglected.

Example: Consider $w_{3}=\langle\phi \phi \phi\rangle_{\Psi}$ where ϕ suitable field parametrizing density contrast $\delta \rho / \rho$.

- Step 1: Compute OPE-coefficients from perturbation theory (reliable in asymptotically free theories).
- Step 2: Write $w_{3} \sim \sum C^{i}\left\langle\mathcal{O}_{i}\right\rangle_{\Psi}$.
- Step 3: Get form factors $\left\langle\mathcal{O}_{i}\right\rangle_{\Psi}$ e.g. from (a) AdS-CFT, (b) view as input parameters.

Application: Non-Gaussianities in CMB, bispectrum $(\rightarrow$ $f_{N L}=w_{3} / w_{2}^{3 / 2}$ [Shellard,Maldacena,Spergel,...], [Eriksen et al., Bartolo et al., Cabella et al., Gaztanaga et al. (constraints from WMAP data),...]), ...

New application of OPE in curved space: OPE can e.g. be used in calculations of quantum field theory fluctuations in early universe, where curvature cannot be neglected.
Example: Consider $w_{3}=\langle\phi \phi \phi\rangle_{\Psi}$ where ϕ suitable field parametrizing density contrast $\delta \rho / \rho$.

- Step 1: Compute OPE-coefficients from perturbation theory (reliable in asymptotically free theories).
- Step 2: Write $w_{3} \sim \sum C^{i}\left\langle\mathcal{O}_{i}\right\rangle_{\Psi}$.
- Step 3: Get form factors $\left\langle\mathcal{O}_{i}\right\rangle_{\Psi}$ e.g. from (a) AdS-CFT, (b) view as input parameters.

Application: Non-Gaussianities in CMB, bispectrum $(\rightarrow$ $f_{N L}=w_{3} / w_{2}^{3 / 2}$ [Shellard,Maldacena,Spergel,...], [Eriksen et al., Bartolo et al., Cabella et al., Gaztanaga et al. (constraints from WMAP data),...]), ...

Conclusions

- QFT in curved spacetime is a well-developed formalism capable of treating physically interesting interacting models
- Renormalized OPE in curved spacetime available
- Potential applications in Early Universe/cosmology
- Gauge fields can be treated if suitable Ward identities imposed
- Open issues: Supersymmetry, non-pert. regime, singular backgrounds, convergence of pert. series, consistency conditions,...

