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• Standard space-time = a manifold M;

points x ∈M ↔ finite number of real coordinates xµ ∈ R4.

• Usual quantum mechanics:[
xi, xj

]
= 0 ,

[
pi, pj

]
= 0 ,[

xi, pj
]

= i~δij .

• This picture of space-time is likely to break down at very short distances

∼ Planck length λP ≈ 1.6× 10−33 cm.

• A possible approach to description of physics at short distances is

QFT on a NC space-time

• The generalization of commutation relations for the canonical operators

of the type

xµ → x̂µ : [x̂µ, x̂ν] 6= 0 ,

was suggested long ago, in particular, by

Snyder (1947); Heisenberg (1954);

Gol’fand (1962)



• The first physical application: particle noncommutativity in the lowest

Landau level
Peierls (1933)

− Point particle moving on a plane (x, y) with external magnetic field B

perpendicular to the plane

L =
1

2
mv2 +

e

c
~v · ~A− V with ~A = (0, Bx)

− Set m to zero (strong magnetic field)

L0 =
eB

c
xẏ − V (x, y)

which is of the form pq̇ − h(p, q)⇒
(
eB
c x, y

)
form a canonical pair, i.e.

{x, y}PB =
c

eB
− Upon quantization

[x̂, ŷ] = −i~ c

eB
⇒

induced noncommutativity of coordinates!



• Practical motivation: the hope that QFTs in NC space-time have an

improved UV-behaviour.

Snyder (1947)
Grosse, Klimčik and Prešnajder (1996)

Filk(1996)
Chaichian, Demichev and Prešnajder (1998)

• Physical motivations:

- Black hole formation in the process of measurement at small distances

(∼ λP ) ⇒ additional uncertainty relations for coordinates

Doplicher, Fredenhagen and Roberts (1994)

- Open string + D-brane theory in the background with antisymmetric

tensor

Ardalan, Arfaei and Sheikh-Jabbari (1998)

Seiberg and Witten (1999)



- boundary conditions for open string in constant B-field background:[
gmn(∂ − ∂̄)Xn + 2πα′Bmn(∂ + ∂̄)Xn|

]
z=z̄

= 0

- corresponding propagator

< Xm(z, z̄)Xn(w, w̄) > = −α′(gmnlog|z − w| − gmnlog|z − w̄|
+ Gmnlog|z − w̄|2 +

1

2πα′
θmnlog(−

z − w̄
z̄ − w

)

- in the limit when both z and w approach the real axis: z = z̄ → τ1,

w = w̄ → τ2, the propagator becomes:

< Xm(τ1)X
n(τ2) >= −α′Gmnlog(τ1 − τ2)2 +

i

2
θmnsign(τ1 − τ2)

implying the commutation relation:

[Xm, Xn] = iθmn,

θµν = −(2πα′)2
(

1
g+2πα′BB

1
g−2πα′B

)µν
• Induced noncommutativity? See Gravitational and gauge anomalies

Álvarez-Gaumé and Witten (1984)

Green and Schwarz (1984)



NC space-time and field theory; ?-product

Heisenberg-like commutation relations

[X̂µ, X̂ν] = iθµν ,

θµν - constant antisymmetric matrix =⇒ Lorentz invariance violated

QFT → NC-QFT : Φ(x) → Φ̂(X̂) .

S(cl)[Φ] =
∫
d4x

[
1

2
(∂µΦ)(∂µΦ)−

1

2
m2Φ2 −

λ

4!
Φ4

]
,

⇓

S(θ)[Φ̂] = Tr
[
1

2
(∂̂µΦ̂)(∂̂µΦ̂) −

1

2
m2Φ̂2 −

λ

4!
Φ̂4

]
.

Field theory formulation be based on operator (e.g. Weyl) symbols

Φ(x) = functions on the commutative counterpart of the space-time



Weyl-Moyal correspondence

Φ̂(X̂)←→ Φ(x)

Φ̂(X̂) =
∫
eiαX̂φ(α)dα, Φ(x) =

∫
eiαxφ(α)dα,

where α and x are real variables. Then, using the Baker-Campbell-

Hausdorff formula:

Φ̂(X̂)Ψ̂(X̂) =
∫
eiαX̂φ(α)eiβX̂ψ(β)dαdβ =

∫
ei(α+β)X̂−1

2αµβν[X̂µ,X̂ν]φ(α)ψ(β)dαdβ

Hence the Moyal ?-product is defined:

Φ̂(X̂)Ψ̂(X̂)←→ (Φ ?Ψ)(x),

(Φ ?Ψ)(x) ≡

Φ(x)e
i
2θµν

←−
∂
∂xµ

−→
∂
∂yνΨ(y)


x=y

.

Thus, all the multiplications (e.g. in the Lagrangian) must be replaced

by the ?-product

Sθ[Φ] =
∫
d4x

[
1

2
(∂µΦ) ? (∂µΦ)−

1

2
m2Φ ?Φ−

λ

4!
Φ ?Φ ?Φ ?Φ

]



UV behaviour of NC QFT and topology
Filk (1996)

Chaichian, Demichev and Prešnajder (1998)

a) Noncommutative (Moyal) plane

[xµ, xν] = iθεµν, µ, ν = 0,1

Sθfree[Φ] =
∫
d2x[(∂µΦ†) ? (∂µΦ)−m2Φ† ?Φ]

The propagator is the same as in the commutative theory:

Gθ(x, y) =
1

(2π)2

∫
d2k

ık(x− y)
k2 −m2

If the interaction is switched on, the action

Sθint =
λ

4!

∫
d2x

(
Φ† ?Φ ?Φ† ?Φ

)
produces vertices containing factors proportional to θk2/2, plus additional

phase factors exp[±i(k1 × k2 + k3 × k4)/2] (here, k × p = θµνkµpν) ⇒

u&%
'$

is UV-divergent



b) Compact Lie algebra su(2)

- Lie-algebra type commutation relations

[x̂i, x̂j] = ıλεijkx̂k ,

3∑
i=1

x̂2i = λ2s(s+ 1) , s = 0,1/2,1, ...

- “fuzzy sphere”

Berezin (1975)
Madore (1991)

Grosse, Prešnajder et al. (1996), (1997)

All irreducible representations are finite dim. ⇒ for a fixed s <∞:

φ̂(x̂i) = [(2s+ 1)× (2s+ 1)] − matrices

⇒ Any calculation for S(NC) with s < ∞ reduces to manipulations with

finite-dimensional matrices ⇒ no UV-divergences.



c) Non-compact Lie algebra

������������
������������

I

����1

φ t
2-dim. cylinder:

Cρ = {(x±, t), t ∈ R, x± = ρ±ıφ, ρ = const}

Poisson brackets: {t, x±}p = ±ıx± , {x+, x−}p = 0

x+x− = ρ2 is a central element.

S(cl)[ϕ, ϕ∗] =
∫
Cρ
d2x

[
ϕ∗
(
� +m2

)
ϕ+

1

2
(ϕ∗ϕ)2

]

�ϕ = {t, {t, ϕ}p}p + ρ2{x+, {x−, ϕ}p}p

u&%
'$

∼ gG
(cl)
0 (x, t;x, t) =

∞∑
k=0

g√
k2+m2

=∞



Space-time quantization:

{·, ·}p → (λ/ı)[·, ·],
∫
d2x→ Tr

⇒

u&%
'$

∼ g
∫ π/λ

0
dω

cot
(√

Ω2
λ(ω)−m2+ıε

)
√

Ω2
λ(ω)−m2+ıε

, Ωλ(ω) ≡ 2
λ sin ωλ

2

convergent

⇒ UV-finiteness for planar diagrams (in sharp distinction from the case

of a flat NC-space-time)!! As usual, nonplanar diagrams have even better

convergence properties.

In conclusion, global topological properties are crucial. In order to achieve

the removal of UV divergences of a QFT formulated in NC space-time of

arbitrary dimension, at most one dimension (e.g., time) is allowed to be

non-compact.

Chaichian, Demichev and Prešnajder (1998)



UV/IR mixing

Minwalla, Van Raamsdonk and Seiberg (1999)

φ4 theory with Euclidean action:

S =
∫
d4x

(1
2
(∂µφ)

2 +
1

2
m2φ2 +

1

4!
g2φ ? φ ? φ ? φ

)
Consider the 1-loop corrections to the two-point function Γ(2), coming

from two diagrams:

u&%
'$

Γ(2)
planar = g2

3(2π)4
∫ d4k
k2+m2 ≈

g2

48π2

(
Λ2 −m2lnΛ2

m2 + · · ·
)

&%
'$qt Γ(2)

nonplanar = g2

6(2π)4
∫ d4k
k2+m2e

ik×p ≈ g2

96π2

(
Λ2
eff −m

2ln
Λ2
eff

m2 + · · ·
)

where Λ2
eff = 1

1/Λ2+p◦p, p ◦ q ≡ −pµθ2µνqν = |pµθ2µνqν|.

If |p| � 1
Λθ, then Λeff ≈ Λ. If 1

Λθ � |p|, then Λeff ≈ 1
|pµθµν|.



Renormalize at fixed p, θ; subtract planar mass divergence. In the Λ→∞
limit:

Γ(2)(p) = p2 +M2 +
g2

96π2p ◦ p
−
g2M2

96π2
ln

1

M2p ◦ p
.

An UV divergence has turned into an IR one. The Green’s functions

will have singularities in |p · θ|.
• At fixed p, the θ → 0 limit is singular, non-analytic;

• At fixed θ, new IR singularities appear;

• The limits θ → 0 and Λ → ∞ do not commute (θ and ~ quantizations

do not commute).

• An analysis of UV/IR mixing in NC U(n) theories suggests that the

closed string tachyon that couples non-trivially to the brane (in contrast

to the commutative case) is behind the instabilities in field theory.

Armoni and Lopez (2001)



Unitarity

For on-shell matrix elements, unitarity implies that

2ImMba =
∑
n
MbnMna,

where Mba is the transition matrix element between the states a and b.

NC φ3 theory at one loop

Gomis and Mehen (2000)

• Cutting rules



• Evaluate sum over final states
∑
|M |2 = λ2

16π
sin(γ
√
p2 p◦p/2)√
p2 p◦p

, γ =
√

1− 4m
2

p2

• For θ2µν > 0, Im M = λ2

32π
sin(γ
√
p2 p◦p/2)√
p2 p◦p

,

space-space noncommutativity, unitarity fulfilled

• For θ2µν < 0, Im M = λ2

64π

∫ 1
0 dx J0(

√
|p ◦ p|(m2 + |p2|x(1− x)))

space-time noncommutativity, unitarity violated

• Notice that for θ2µν > 0, i.e. space-space noncommutativity, the unitarity

condition is fulfilled, while for θ2µν < 0, i.e. space-time noncommutativity,

unitarity is violated.

• It was also shown that theories with light-like noncommutativity

θ2 = θµνθµν = 0, i.e. θ0i = −θ1i (the remaining θij = 0), are unitary.

Aharony, Gomis and Mehen (2000)

• Notice: those noncommutative field theories which are unitary can be

obtained as decoupled field theory limits of string theory, while those

which are not unitary can not be obtained from string theory.

• Attempts to prove the unitarity of field theories with space-time non-

commutativity, in the Hamiltonian approach:

Bahns, Doplicher, Fredenhagen and Piacitelli (2002)

Liao and Sibold (2002)



Causality

Scattering in noncommutative field theory

Seiberg, Susskind and Toumbas (2000)

• Consider 2+1 dimensional NC φ4 theory in lowest order perturbation

theory (2→ 2 particle scattering).

• In the case of space-space noncommutativity (θ0i = 0)

ψout(y) ≈ ψin(y)δ(y −
1

2
θPx),

i.e., the outgoing scattered wave appears to originate from the displaced

position y = θPx/2; causality is preserved.



• In the case of space-time noncommutativity θ0i 6= 0, choose for the

incoming wavepacket

φin(p) ∼ Ep
(
e−

(p−p0)2

λ + e−
(p+p0)2

λ

)
.

Then

φout(x) ∼ g

[
F (x;−θ) + 4

√
λe−λ

x2
4 eip0x + F (x; θ)

]
+ (p0 → −p0) ,

where

F (x; θ) ≡
1√
−4iθ

e
−(x+8p0θ)

2

64θ2λ e−i
(x− p0

2λ2θ
)2

16θ e
i
p20

4λ2θ .

• The outgoing packet splits into three parts, one of them advanced and

one retarded. The advanced packet appears to leave the collision place at

a time t = 8p0θ before the incoming packet arrived. The acausal effect

increases with the energy.



Space-time symmetry of NC QFT

• θµν antisymmetric constant matrix ⇒ Lorentz invariance violated

(for a dimension of space-time D > 2).

• Translational invariance preserved.

• On 4-dimensional space there exists a frame in which the antisymmetric

matrix θµν takes the form:

θµν =


0 θ 0 0
−θ 0 0 0
0 0 0 θ′

0 0 −θ′ 0

 .

Lorentz group broken to SO(1,1)× SO(2) subgroup.

Álvarez-Gaumé, Barbón and Zwicky (2001)

• Problem with the representations: both SO(1,1) and SO(2) being

Abelian groups, they have only one-dimensional unitary irreducible repre-

sentation and thus no spinor, vector etc. representations!



Twisted Poincaré symmetry

Chaichian, Kulish, Nishijima and Tureanu (2004)

Chaichian, Prešnajder and Tureanu (2004)

• Action of NC QFT written with ?-product, though it violates Lorentz

symmetry, it is invariant under the twisted Poincaré algebra

• Deform the universal enveloping of the Poincaré algebra U(P) with

Abelian twist element F ∈ U(P)⊗ U(P)

Drinfeld (1983)

Reshetikhin (1990)

F = exp

(
i

2
θµνPµ ⊗ Pν

)
• Commutation relations of Poincaré generators not changed:

[Pµ, Pν] = 0 ,

[Mµν, Pα] = −i(ηµαPν − ηναPµ) ,
[Mµν,Mαβ] = −i(ηµαMνβ − ηµβMνα − ηναMµβ + ηνβMµα)

Essential physical implication: the representations of the twisted

Poincaré algebra are the same as the ones of usual Poincaré algebra



• The twist deforms the action of U(P) in the tensor product of repre-

sentations, defined by the coproduct

∆0 : U(P)→ U(P)⊗ U(P) , ∆0(Y ) = Y ⊗ 1 + 1⊗ Y ,

∆0(Y ) 7→∆t(Y ) = F∆0(Y )F−1

Namely the coproduct of the Lorentz algebra generators is changed:

∆t(Mµν) = e
i
2θ
αβPα⊗Pβ∆0(Mµν)e

− i
2θ
αβPα⊗Pβ .

• The twist also deforms the multiplication in the algebra of representation

of the Poincaré algebra, i.e. algebra of fields Aθ:

mt(φ(x)⊗ ψ(x)) = m ◦ F−1(φ(x)⊗ ψ(x)) =: φ(x) ? ψ(x)

i.e., with the realization on Minkowski space Pµ = i∂µ

φ(x) ? ψ(x) = m ◦ e−
i
2θ
µνPµ⊗Pν(φ(x)⊗ ψ(x)) = m ◦ e

i
2θ
µν∂µ⊗∂ν(φ(x)⊗ ψ(x))

= φ(x)e
i
2θ
µν←−∂µ

−→
∂νψ(x)



• The twisted Poincaré symmetry exists provided that, in a Lagrangean:

(i) we consider ?-products among functions instead of the usual one and

(ii) we take the proper action of generators specified by the twisted co-

product.

• As a byproduct with major physical implications, the representation

content of NC QFT, invariant under the twist-deformed Poincaré algebra,

is identical to the one of the corresponding commutative theory with usual

Poincaré symmetry ⇒ representations (fields) are classified according to

their MASS and SPIN.

• New concept of relativistic invariance: while symmetry under usual

Lorentz transformations guarantees the relativistic invariance of a the-

ory, in NC QFT the concept of relativistic invariance should be replaced

by the requirement of invariance of the theory under twisted Poincaré

transformations.



Precursors

-in the context of NC string theory, using R-matrix

Watts (1999)

- mostly in the context of braided field theory, using the dual language of

Hopf algebras

Oeckl (2000)

Developments

- differential calculus, twisted diffeomorphisms and NC gravity
Wess (2004)

Aschieri, Blohmann, Dimitrijevic, Meyer, Schupp and Wess (2005)
Aschieri, Dimitrijevic, Meyer and Wess (2005)

Álvarez-Gaumé, Meyer and Vázquez-Mozo (2006)

- twist, spin-statistics and NC gravity
Balachandran et al. (2005), (2006), (2007)

Szabo (2006), Riccardi and Szabo (2007)

- supersymmetric twisted Poincaré algebra
Kobayashi and Sasaki (2005)

Zupnik (2005)
Ihl and Saemann (2005)

- global counterpart of the twisted Poincaré algebra

Gonera, Kosinski, Maslanka and Giller (2005)

...



Some known implications...

• R-matrix and new concept of permutations

- R-matrix relates ∆t and ∆op
t = τ ◦∆t, where τ is the flip operator:

R∆t = ∆op
t R, R =

∑
R1 ⊗R2 ⇒ R = F21F−1 = exp(−iθµνPµ ⊗ Pν)

- Concept of permutation changes Chari and Pressley (book 1994)
Chaichian and Demichev (book 1996)

Fiore and Schupp (1995)
Kulish and Mudrov (2004)

τ → τ(R) = FτF−1 = τ R

-in NC QFT, consider realization of Pµ as quantum momentum operator

Pµ =
∫
d3k kµ a

†(k)a(k), [Pµ, a(k)] = −kµa(k), [Pµ, a
†(k)] = kµa

†(k)

- ?-product between creation and annihilation operators, e.g.

a†(k) ? a†(p) = m ◦ F−1
(
a†(k)⊗ a†(p)

)
= a†(k)a†(p)e−

i
2kµθ

µνpµ

⇒ a†(k) ? a†(p) = a†(p) ? a†(k)e−ikµθ
µνpµ

- but µ ◦ F−1τ(R)
(
a†(k)⊗ a†(p)

)
= a†(p) ? a†(k)e−ikµθ

µνpµ

⇒ statistics OK, shown also directly in

Bu, Kim, Lee, Vac and Yee (2006)



• Twisted tensor product of two copies of Aθ

(a1 ⊗ 1)(1⊗ a2) = a1 ⊗ a2, but (1⊗ a2)(a1 ⊗ 1) = (R2a1)⊗ (R1a2),

a1, a2 ∈ Aθ

⇒ xµyν − yνxµ := (xµ ⊗ 1)(1⊗ yν)− (1⊗ yν)(xµ ⊗ 1)

= (xµ ⊗ xν)− (R2x
µ)⊗ (R1y

ν) = (xµ ⊗ xν)− (xµ ⊗ xν) + iθµν

⇒ φ(x) ? φ(y) Oeckl (2000)

Kulish (2005)

• Global counterpart of twisted Poincaré algebra
Oeckl (2000)

Gonera, Kosinski, Maslanka and Giller (2005)

- parameters Λµ ν, aµ of global Poincaré transformations generate the

algebra dual to U(P )

xµ → Λµ ν ⊗ xν + aµ ⊗ 1

- parameters of finite translations do not commute ⇒ NONLOCALITY

[aµ, aν] = iθµν − iΛµ αΛ
ν
βθ
αβ

[Λµ ν, a
µ] = [Λµ α,Λ

ν
β] = 0



Is the concept of twist a symmetry principle in constructing NC field

theories, i.e. any symmetry that NC field theories may enjoy, be it space-

time or internal symmetry, global or local, should be formulated as a

twisted symmetry?



Twisted gauge symmetry?

• NC gauge theories - traditional approach

Hayakawa (1999)

The NC QED action:

SNC QED =
∫
d4x

− 1

4
Fµν ? F

µν + Ψ̄ ? ( 6D −m)Ψ + Lgauge + Lghost


where

Fµν = ∂µAν − ∂νAµ − i(Aµ ? Aν −Aν ? Aµ) ,
DµΨ = ∂µΨ− iAµ ?Ψ .

NC gauge group elements:

U(x) = exp ?{iλ} ≡ 1 + ıλ−
1

2
λ ? λ + .... ,

U(x) ? U(x)−1 = U(x)−1 ? U(x) = 1 .

Gauge transformations:

Aµ → A′µ(x) = U(x) ? Aµ ? U
−1(x) + iU(x) ? ∂µU(x)−1 ,

Ψ(x)→ Ψ′(x) = U(x) ?Ψ(x) .



• Remark: only NC U(n) groups close (not, e.g., SU(n))

• No-go theorem

Terashima (2000)

Chaichian, Prešnajder, Sheikh-Jabbari and Tureanu (2001)

(i) the local NC u(n) algebra only admits the irreducible n × n matrix-

representation. Hence the gauge fields are in the n×n matrix form, while

the matter fields can only be in fundamental, adjoint or singlet states;

(ii) for any NC gauge group consisting of several simple-group factors, the

matter fields can transform nontrivially under at most two group factors.

• Applications:

- NC Standard Model
Chaichian, Prešnajder, Sheikh-Jabbari and Tureanu (2001)

Chaichian, Kobakhidze and Tureanu (2004)
Khoze and Levell (2004)

- NC MSSM

Arai, Saxell and Tureanu (2006)



• Attempt to twist gauge transformations: extend the Poincaré algebra

by semidirect product with the gauge generators and apply the Abelian

twist F = e

(
i
2θ
µνPµ⊗Pν

)
also to the coproduct of the gauge generators

Vassilevich (2006)

Aschieri, Dimitrijevic, Meyer, Schraml and Wess (2006)

- infinitesimal gauge transformation of the individual fields the usual form

(without ?-product):

δαΦ(x) = α(x)Φ(x) , α(x) = iαa(x)Ta , [Ta, Tb] = ifabcTc

- claim

δα(Φ1(x) ?Φ2(x)) = iαa(x)
[
(Φ1(x)T

(1)
a )?Φ2(x) + Φ1(x)?(T

(2)
a Φ2(x))

]
- consequences: any gauge algebra would close and any representation

is allowed, just as in the commutative case, i.e. contradiction with the

no-go theorem!



• Contradiction with the gauge principle:

δα(Φ1(x) ?Φ2(x)) = iαa(x)
[
(Φ1(x)T

(1)
a ) ?Φ2(x) + Φ1(x) ? (T (2)

a Φ2(x))
]
.

is valid only if one assumes that, once δαΦ(x) = α(x)Φ(x), then also

δα((−i)nPµ1...PµnΦ(x)) = δα(∂µ1...∂µnΦ(x)) = α(x)(∂µ1...∂µnΦ(x))

which is true only when the ”local” parameter αa is global!

δα(Φ1 ?Φ2) = m? ◦∆t(α(x))(Φ1(x)⊗Φ2(x))

= m ◦ F−1F∆0(α(x))F−1(Φ1(x)⊗Φ2(x))

= m ◦∆0(α)F−1(Φ1(x)⊗Φ2(x))

= m ◦∆0(α)e

(
i
2θ
µν∂µ⊗∂ν

)
(Φ1(x)⊗Φ2(x))

= m ◦ (δα ⊗ 1 + 1⊗ δα)
[
Φ1 ⊗Φ2 +

i

2
θµν (∂µΦ1 ⊗ ∂νΦ2) + · · ·

]

Chaichian and Tureanu (2006)

However

δα(Dµ1...DµnΦ(x)) = α(x)(Dµ1...DµnΦ(x))



• Non-Abelian twist element of U(P n G):

T = exp
(
−
i

2
θµνDµ ⊗Dν +O(θ2)

)
,

a power series expansion, such that T would satisfy the twist conditions:

(T ⊗ 1)(∆0 ⊗ id)T = (1⊗ T )(id⊗∆0)T , (ε⊗ id)T = 1 = (id⊗ ε)T

Chaichian, Tureanu and Zet (2006)

- new F-product

ΦFΨ = m ◦ exp
(
i

2
θµνDµ ⊗Dν +O(θ2)

)
(Φ⊗Ψ)

should reduce to the usual Moyal ?-product for ordinary functions on

the Minkowski space, which have to be considered in the 1-dimensional

(trivial) representation of the gauge group G, i.e. Taf(x) = 0,

i.e. Dµf(x) = ∂µf(x) =⇒ [xµ, xν]F = [xµ, xν]? = iθµν

-Possible typical second order terms are (with all permutations):

θµνθρσ(1⊗DµDνDρDσ) and θµνθρσ(DµDνDρDσ ⊗ 1)

θµνθρσ(Dµ ⊗DνDρDσ) and θµνθρσ(DµDνDρ ⊗Dσ)
θµνθρσ(DµDν ⊗DρDσ) ,



- Due to the antisymmetry of θµν, the second order in θ, the most general

ansatz is

T = exp{−
i

2
θµν (Dµ ⊗Dν + 1⊗ Fµν + Fµν ⊗ 1)

+
1

2

(
−
i

2

)2
θµνθρσ[a Dµ ⊗DσDνDρ + b Dµ ⊗DνDσDρ + c Dµ ⊗DσDρDν

+ a′ DσDνDρ ⊗Dµ + b′ DνDσDρ ⊗Dµ + c′ DσDρDν ⊗Dµ +O(θ2)]} ,

-requirement to fulfill the twist condition leads to:

a = a′ = −1, but a+ a′ = 2!

⇒ a non-Abelian twist element, which would generalize the Abelian twist

in a gauge covariant manner cannot exist, i.e. Poincaré symmetry and

internal gauge symmetry cannot be unified under a common twist

- situation is reminiscent of the Coleman-Mandula no-go theorem

COULD SUPERSYMMETRY PROVIDE THE SOLUTION?



Some problems still to be understood and solved:

• The relation between the Seiberg-Witten map and the no-go theorem

for NG gauge field theories;

• Analog of Froissart-Martin bound for the cross-section in NC QFT:

Jost-Lehmann-Dyson representation, Lehmann analyticity ellipse

σtot(E) ≤ c ln2 E

E0

• Dirac quantization condition for magnetic monopole

eµ =
n~
2
c

• Looking really at the solutions of NC Gravity, to find out about the

singularity of solutions, Schwarzschild, Reissner-Nordström, black holes...

and repeat the same arguments for the consistency of emergence of the

noncommutativity of space-time based on QM and the NEW way of black

hole formation.

• ...


