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Advancements in Simulations of
Lattice Quantum Chromodynamics

Highlights in Computational Quantum Field Theory
5th Vienna Central European Seminar on Particle
Physics and Quantum Field Theory

28. November 2008 Thomas Lippert, Institute for Advanced Simulation



Highlight

“The weight of the world is
quantum chromodynamics”
S. Dürr, Z. Fodor, J. Frison, C.
Hoelbling, R. Hoffmann, S. D. Katz,
S. Krieg, T. Kurth, L. Lellouch, T.
Lippert, K. K. Szabo, G. Vulvert

2 + 1 dynamical flavours

Full agreement with experimental
observations for the first time

Fully controlled uncertainties

QCD is validated in light hadron
sector
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From Quenched to 2 + 1-flavor QCD
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The most patient coworker
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More Details...

⇒ ...talk by Stefan Krieg
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Algorithm Group Wuppertal-Jülich-Regensburg

 

Nigel Cundy, Andreas Frommer, Stefan Krieg, Th. L.,
Andreas Schäfer
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Outline

Basics of Lattice QCD

Fermion Discretization Schemes
Wilson fermions
Overlap fermions
Numerical representation

HMC for OF
Partition function
Step function

Advancements
I. Small mode mixing problem
II. Low tunneling rate problem

Status of Simulation and Outlook
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Physics goals of Lattice-QCD

Hadron spectrum: Verification of QCD

Quark masses: Input for standard model

CKM-matrix: CP-violation, physics beyond SM

Interquark-potential: Confinement

String breaking: Heavy meson decay

Structure functions: Hadron structure

Quark gluon plasma: GSI-FAIR, LHC, FNAL, BNL, etc.

Glueballs: Exotic matter

Topology: η′, UA(1)-problem, chiral symmetry
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Elements of lattice QCD
Lagrangian

LQCD = −1
4

FµνaF aµν + i
nf∑

q=1

ψ̄i
qγ

µ(Dµ)ijψ
j
q −

nf∑
q=1

mqψ̄
i
qψiq

Fµνa = ∂µAa
ν − ∂νAa

µ + gsf a
bcAb

µAc
ν

(Dµ)ij = δij∂µ − igs
∑

a

λa
ij

2
Aa

µ = δij∂µ − igsAijµ
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Quantization through Path Integral

Z =

∫
[dA][dψ̄][dψ]ei

R
d4x LQCD

Fermions: ψ are Grassmann variables, {ψi , ψj} = δij

Lattice computation

Euclidean space t → iτ ⇒ LQCD real positiv definite ⇒
partition function
Discretize space-time ⇒ 4-d lattice
Monte Carlo evaluation on supercomputer ⇒ HMC
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Stochastic Simulation
Gauge action: e−βSg is positiv definit ⇒ Boltzmann

weight
Fermions Gauss integrate over Grassmann

variables ⇒ det M

Z =

∫ ∏
x ,µ

[dUµ(x)] det(M)e−βSg

Importance
sampling

Generate canonical ensemble
according to Boltzmann weight →
Markov process

〈O〉 =
1
N

N∑
i=1

Oi [U i ], σ2
O =

1
N

(
1
N

N∑
i=1

|Oi [U i ]|2 − Ō2

)
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Discretization

U (x+ )μΨ(x)

a
μ

Plaquette

μνP

μ

ν

Gauge links U: ψ′(x) = Uµ(x)ψ(x + µ) =

Peigs
R x+µ

x dxµAµψ(x + µ)

Wilson gauge action: βS =
2Nc
gs2

∑
x ,µ,ν

[
1− 1

2Tr(Pµν(x) + P†
µν(x))

]
−→
a→0 −

1
4FµνFµν
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Fermions and doubling

Sf =

∫
d4x

ψ̄γµ∂µψ + mψ̄ψ→
∑

x

ψ̄xγµ
ψx+µ − ψx−µ

2a
+ mψ̄xψx

=
∑

x

ψ̄xMx ,yψy

Doubling Dirac fermions ⇒ 16 fold degeneracy
Mom. space Greens function ∝ sin−1:

∂µψ →
1

2a
[ψx+µ − ψx−µ] → i sin pµa.

Mass poles of propagator ⇒ 16 poles

π−π 0
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Nielsen-Ninomiya-No-Go Theorem

A lattice fermion action with
hermiticity
discrete translation invariance
locality: ||D(x, y; Uµ)|| ≤ c1 exp(−c2|x− y|)
chiral symmetry

is not possible!
Non-local action Either break Lorentz-invariance on

quantum level or violate important axial
anomaly (quantum effect)

Ways out: Wilson fermions
Overlap fermions
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Wilson fermions

Add 2nd order derivative ψ̄x
ψx+µ−2ψx+ψx−µ

2a

Dw x ,y = (m + 4)δx ,y

− 1
2a

4∑
µ=1

(1− γµ)Uµ(x) δx ,y−µ + (1 + γµ)U†
µ(x − µ)δx ,y+µ

m → 0 The remaining diagonal term together
with the Dirac diagonal parts break
chiral symmetry explicitly but should
become irrelevant with a→0
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Explicit breaking of chiral symmetry
Chirality: Action

Swf =
3∑

i=1

ψ̄i Di
w ψi ,

not invariant under chiral transforms
even for m = 0. Wilson fermions violate
CS on the lattice explicitly

Consequence: The chirally symmetric point of the
theory is not at m = 0 ⇒ additive
renormalization ⇒ complicated tuning
and extrapolation procedure to
mc(β) < 0

⇒ talk by Stefan Krieg
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Overlap fermions for lattice QCD– Advantages

Overlap Fermions (Neuberger) are the formulation of lattice
QCD closest to the continuum

Overlap fermions show lattice variant of chiral symmetry
Consistent quark mass definition
No mixing of operators under renormalisation ⇒ analysis
greatly simplified
The Overlap chiral symmetry is connected to the ABJ
Anomaly exactly as in the continuum
The Overlap ABJ anomaly gives a precisely defined
topological index on the lattice
Overlap fermions are automatically O(a) improved: Better
scaling towards the continuum
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Problems

The Overlap operator is defined via the matrix sign
function of a kernel matrix
Implementation of the sign function requires the repeated
computation of the multiplication of the kernel operator and
a vector
Advanced simulation algorithms require “inversion” of the
overlap operator and thus very frequent computation of the
multiplication of the Overlap operator and a vector
Efficient solvers for the overlap operator have to be found
Simulation algorithms (HMC) require the derivative of the
sign function with respect to the kernel (during MD) ⇒
Problems with discontinuity of the sign function
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Definiton of the Overlap operator

The (massless) Overlap (Dirac) operator is defined as:

Do = 1 + γ5 sign
(
Q
)

with the hermitian Q given by Q = γ5M.
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Ginsparg-Wilson Relation

? Do violates chiral symmetry, however,
violation is mild!!

Locality The overlap operator fulfills the
Ginsparg-Wilson-Relation

γ5Do
−1 + Do

−1γ5 = aγ5 R

R is a local matrix, its matrix elements
vanish exponentially with the distance
Chirality is violated only locally for the
physically relevant propagator
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Implementation of the matrix sign function
Definition of the sign function

sign
(
Q
)

=
∑

i

|ψi〉〈ψi | sign
(
λi
)

Practical implementation: treat lowest EVs using this
definition, employ rational approximation for higher EVs

γ5 sign
(
Q
)

=
M

M†M
= M

N∑
j=0

ωj

Q2 + τj

with the ωi and τi given via the Zolotarev procedure

v.d. Eshof, Frommer, Lippert, Schilling, v.d. Vorst,2001

Shifted inverersions: Muli-Mass solver

Frommer, Nöckel, Güsken, Lippert, Schilling, 1995, 1996
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Optimal solver: SUMR

In HMC simulations of lattice QCD with overlap fermions

b = Dox

has to be solved repeatedly
SUMR is the optimal solver in this case

Arnold, Cundy, v.d. Eshof, Krieg, Lippert, Schäfer 03

Further gains by optimizing the nested system:
(inner system) sign function has to be constructed via
repeated applications of the kernel matrix M.
(outer system) to solve the system the above multiplication
(and thus the sign function) has to be carried out repeatedly
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Relaxation – GMRESR

Relaxation strategies for the (inner) precision of the sign
function while keeping the residual gap under control

‖b − Axk︸ ︷︷ ︸ ‖ ≤ ‖ r k − (b − Axk )︸ ︷︷ ︸ ‖ + ‖ r k︸︷︷︸ ‖.
true residual residual gap computed residual

Cundy, v.d.Eshof, Frommer, Krieg, Lippert, Schäfer 04

With relaxation the optimal solver for overlap fermions for a
large range of lattice sizes is the GMRESR(SUMR) algorithm

SUMR is (single precision) preconditioner to the (double
precision) inversion in the GMRESR scheme.
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Hybrid Monte Carlo

Generate an ensemble of gauge field configurations
weighted by the function (2 flavors)

e−Sg [u] det(H2)

with
H = γ5Do

Estimate determinant using pseudo-fermion fields
generated by a heatbath

det(H2) =

∫
[dφ][dφ†] exp

(
−φ† 1

H2φ

)
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Step Function Problem

HMC contains
1 A Molecular dynamics evolution of the gauge links
2 A Metropolis accept reject step

In 1: discontinuity of the sign function when a kernel matrix
eigenvalue changes sign

∆S = 〈φ| 1
H−

2 (H−
2 − H+

2)
1

H+
2 |φ〉

This is equivalent to a Dirac δ contribution to the MD force
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Solution of the step function problem

Solution to the step function problem
(Fodor et al, Cundy et al):
When encountering a step during MD evolution

Integrate to the exact hyper-surface where the crossing
eigenvalue is zero
If the conjugate momentum is large enough, transmit through
hypersurface
If the conjugate momentum is too small, reflect of the
hypersurface

Schemes differ by the level of energy conservation
Cundy et al. allows for O(τ2) and is guaranteed to fulfill
detailed balance
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Solution in the classical particle picture
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Does this scheme really work?

The scheme works on very small lattices at larger quark
masses
For larger lattices and smaller quark masses:

The density of small eigenmodes of the kernel matrix
increases
The small eigenmodes can mix and produce a close-to-zero
mode
The dynamical system becomes stiff and refuses to change
the (precisely defined) topological sector frequently enough
or at all

Cundy, Frommer, Krieg, Lippert, Arnold, Schilling 08
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I. Small mode mixing problem

Small eigenmodes are treated explicitely in MD evolution
Small eigenmodes can mix
⇒ spikes in the MD force ⇒ low acceptance rate
Reason: by differentiation of EV, relevant part of the force
contains

F = ...+ 〈A|ψ〉〈ψ| d
dτ

Q|ψ〉〈ψ|B〉
sign

(
λ1
)
− sign

(
λ2
)

λ1 − λ2

Small eigenmodes occur more frequently when lattice size
is increased
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Solution (Cundy et al. 07)
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The Problem

Matrix sign function is calculated in terms of Zolotarev,
with the smallest eigenvalues of Q deflated (q generically
stands for U):

sign
(
Q(q)

)
= Q(q)

∑
i

ωi

Q(q)2 + σi
(1−

∑
i

Pi)

+
∑

Piε(λi)

Pix = ψi(ψi , x)

Differentiating the rational approximation with respect to q
is easy; differentiating the eigenvectors is difficult ...
...a straightforward procedure does not work!
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The Trick

Expand the eigenvectors as follows:

|δψi〉 =
∑
j 6=i

[
(cos θij − 1)|ψi〉+ eiφij sin θij |ψj〉

]
Insert this into the eigenvalue equations

tan 2θij =
2
√
〈ψi |δQ|ψj〉〈ψj |δQ|ψi〉

λi − λj + 〈ψi |δQ|ψi〉 − 〈ψj |δQ|ψj〉

eiφij =

√
〈ψj |δQ|ψi〉
〈ψi |δQ|ψj〉
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Challenges sui generis

Algorithm violates area conservation and is not exact
⇒ Update Jacobian must be included in Metropolis step to
correct the area problem
Fermionic force becomes a horrid function of the momenta
Naive momentum update is not reversible. This can be
fixed by an iterative procedure
Resulting algorithm albeit complex does not require
substantially more resources

And it works!!!
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II. Low tunnelling rate problem
Note: Transmission ⇒ top. index changes

Reflection ⇒ no change
Autocorrelation: for topological observables ⇒ tunnelling

rate must be high
!! Generic for all descretizations! With

overlap fermions problem visible for the
first time

Size of discontinuity critical for the transmission rate
A pseudo-fermion estimate of the determinant badly
handles the discontinuity (large ∆S)
Idea:

Split the determinant in terms of EVs
Calculate the small eigenvalue determinant exactly
Treat large eigenvalue determinant with pseudo-fermions
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Solution (Cundy 2008)
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Transmission/Reflection

Original proposal (Fodor et al. / Cundy et al.) analogous to
classical mechanics case
Update the gauge field to the λ = 0 surface; introduce a
discontinuity ∆S in the kinetic energy ⇒ transmit

1
2
π2

new =
1
2
π2

old + ∆S

(πnew , η̂) = (πold , η̂)

√
1 +

2∆S
(πold , η̂)2

When 1 + 2∆S
(πold ,η̂)2 < 0 ⇒ reflect

(πnew , η̂) = −(πold , η̂)
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First step: Improved Proposal

e−(πnew ,η̂)2
= e−(πold ,η̂)

2−∆S + (1− e−∆S)

e−(πnew ,η̂1)
2−(πnew ,η̂2)

2
= e−(πold ,η̂1)

2−(πold ,η̂2)
2

e−τc [(πold ,η̂)(Fold ,η̂)−(πnew ,η̂)(Fnew ,η̂)]

(πnew ,Fold − η̂(η̂,Fold)) = (πold ,Fold − η̂(η̂,Fold))+

(Fold − η̂(Fold , η̂),Fold − η̂(Fold , η̂))

Probability of transmission increased by about a factor of 3
for a given ∆S, improvement of energy conservation

This is not sufficient
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Second step: Fighting pseudo fermion action noise

Estimate via EVs for a single pseudo fermion term shows
a scaling with the quark mass of

∆S = O(µ−2).

⇒ The rate of topological charge change scales at low
mass as

e−1/µ2
.

But ∆S from the fermion determinant is

∆S = O(1).

Low tunneling rate is obviously an artefact of the pseudo
fermions
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Procedure

The fermion determinant is factorized

det H = det(
H
H̃

) det(H̃)

H̃ =(1 + µ)γ5 + (1− µ)ε̃(Q)

S =− φ†
1

H̃2
φ+ 2 log det

[
δij + 〈ψi |

1
H̃
|ψj〉(ε(λi)− ε̃(λi))

]
As long as (ε(λi)− ε̃(λi)) = 0 for all but a few eigenvalues,
one can calculate the additional log term and the force for
this log term easily.
Still have to remove zero modes!!
⇒ Factorize overlap operator similar to Bode et al. (1999)
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Action used

S =Sg[q] +

(
φ1,

1
D̃+(µ+ ∆)

φ1

)
+

(
φ2,

D̃+(µ+ ∆)

D̃+(µ)
φ2

)
+(

φ3,
1

D̃+(µ+ ∆)
φ3

)
+

(
φ4,

D̃+(µ+ ∆)

D̃+(µ)
φ4

)
+

2Tr log
[
δij +

(
ψi ,

1
γ5D̃

ψj

)
(ε̃(λi)− ε(λi))

]
Sg =Tadpole Improved Lüscher Weisz gauge action,
Wilson kernel with one flavour of modified over improved
stout smearing
Improved transmission/reflection and NAC eigenvalue
differentiation

This appears to be a viable algorithm!
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Status of Simulation and Outlook

Currently we work on a 163 × 48-lattice on the Jülich Blue
Gene/P.
We aim at a lattice spacing of around 0.12 fm; mπ ∼ 350
MeV.
The 163 run is currently taking about 6 hours/trajectory on
2048 processors
Simulations with dynamical Overlap fermions will steadily
approach physical lattice sizes and quark masses
The next generation of supercomputers will allow overlap
fermions to run as fast as Wilson fermions today
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...

Enjoy the next talk!
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