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Chiral symmetry crucial to our understanding of hadronic physics
e pions are waves on a background quark condensate (1))

e chiral extrapolations essential to practical lattice calculations

Anomaly removes classical U (1) chiral symmetry
o SU(Nf) X SU(Nf) X UB(l)

e non trivial symmetry requires N; > 2
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On the lattice ignoring the anomaly gives doublers
e naive fermions: 16 species, exact U(4) x U(4)r Ssymmetry
e staggered fermions: 4 species (tastes), one exact chiral symmetry
e Wilson fermions: one light species
e all chiral symmetries broken by doubler mass term
e overlap, domain wall, perfect actions: N arbitrary but
e not ultra-local: computationally intensive

e anomaly hidden, ~v5 # 45, Trdys = 2v # 0
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Minimally doubled chiral fermion actions have just 2 species
e Karsten 1981
e Wilczek 1987

e recent revival: MC, Borici, Bedague Buchoff Tiburzi Walker-Loud

Motivations
e failure of rooting for staggered
e lack of chiral symmetry for Wilson

e computational demands of overlap, domain-wall approaches

Elegant connection to the electronic structure of graphene

e Vvanishing mass protected by topological considerations
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Graphene: two dimensional hexagonal lattice of carbon atoms
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e http://online.kitp.ucsb.edu/online/bblunch/castroneto/
e A. H. Castro Neto et al., arXiv:0709.1163

P N NG

Held together by strong “sigma’” bonds, sp?
One “pi” electron per site can hop around

Consider only nearest neighbor hopping in the pi system
e tight binding approximation
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Fortuitous choice of coordinates helps solve

Form horizontal bonds into *“sites” involving two types of atom
e “a” on the left end of a horizontal bond
“b” on the right end

e all hoppings are between type a and type b atoms

Label sites by non-orthogonal coordinates z; and x5
e axes at 30 degrees from horizontal
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Hamiltonian
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e hops always between a and b sites

Go to momentum (reciprocal) space
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Hamiltonian breaks into two by two blocks
dp1 dpQ - 0 =z a
'l‘ T ~p17p2
H K/ 27-‘- 27T ap17p2 bp17p2) Z* O bpl,pQ
e Wwhere 2= 1 4+e 1 4 ttP2
— X

~ 0 =z
H(p17p2>_K<Z* O)

Fermion energy levels at F(pi,p2) = £ K|z
e energy vanishes only when |z| does
e exactly two points p1 = p2 = £27/3
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Topological stability
e contour of constant energy near a zero point
e phase of z wraps around unit circle
e cannot collapse contour without going to |z| = 0
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No band gap allowed

e Graphite is black and a conductor
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NO-gO theorem Nielsen and Ninomiya
e periodicity of Brillouin zone
e Wwrapping around one zero must unwrap elsewhere

e two zeros is the minimum possible

Connection with chiral symmetry
e b — —bchanges sign of H

0

~ z . . 1 0
o H(p1,p2) =K <Z* O) anticommutes with o3 = (O _1>

e 03 — 75 In four dimensions
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Four dimensions

Want Dirac operator D to put into path integral action D)
e require “~5 Hermiticity”
o y5Dys = DF
e work with Hermitean “Hamiltonian” H = ~5D
e not the Hamiltonian of the 3D Minkowski theory

Require same form as the two dimensional case

Z

ff(pu)ZK(O* g)

e four component momentum, (p1, p2, p3, P4)
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To keep topological argument %4

e extend z to quaternions

e z—qpt+ia-o

o |2f* = uafb

~

H(p,,) now a four by four matrix
e “energy” eigenvalues still E(p,) = £K|z|
e constant energy surface topologically an Ss

e surrounding a zero should give non-trivial mapping
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Implementation
e nNoOt unique

e here | follow Borici's construction

Start with naive fermions

e forward hOp between sites ’)/MU unit hopping parameter for convenience

e backward hop between sites —, U7
e 1 is the direction of the hop
e [ is the usual gauge field matrix

e Dirac operator D anticommutes with s
e an exact chiral symmetry

e part of an exact SU(4) x SU(4) chiral algebra
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In the free limit, solution in momentum space

D(p) = 2i Z Yy sin(p,,)

e for small momenta reduces to Dirac equation
e 15 extra Dirac equations for components of momenta near O or =

16 “Fermi points”
e “doublers”
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Consider momenta maximally distant from the zeros: p,, = +m/2

Select one of these points, i.e. p, = +m/2 for every
e D(py=m/2)=2i) v, =4l

e T'=35(m+72+73+74)
e unitary, Hermitean, traceless 4 by 4 matrix
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Now consider a unitary transformation
~ W(ﬂ?) — e im(T1twatTs+rs)/2 T ¢($)
o P (z) = einloteatested/2 () T
e phases move Fermi points from p, € {0, 7} to p,, € {£7/2}
e 1’ uses new gamma matrices v, = 'y, T’
e P=s(m+tret+tr+mn) =TI

e new free action: D(p) = 2i >,V sin(m/2 —p,)

D and D physically equivalent
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Complimentarity:  D(p, = 7/2) = D(p, = 0) = 4l

Combine the naive actions

D=D+ D — 4

Free theory
o D(p) =2 Zu (’Vu sin(py,) + 7, sin(m/2 — pu)) — 4l
e atp, ~0 the 4 term cancels D, leaving D(p) ~ v,.p,
e atp, ~ m/2the 41" term cancels D, leaving D(7/2 — p) ~ v,,p,

e Only these two zeros of D(p) remain!

Michael Creutz BNL 16



THEOREM: these are the only zeros of D(p)
e at other zeros of D, D — 4iI" is large

e at other zeros of D, D — 4iI is large
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Chiral symmetry remains exact
[ ) ’}/51) = —D’}/g)

o 01Dt — D

But

o 75 =Tl=—7
e two species rotate oppositely

e symmetry is flavor non-singlet
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Space time symmetries

e usual discrete translation symmetry

o ['= % ZM v, treats primary hypercube diagonal specially

e action symmetric under subgroup of the hypercubic group
e |eaving this diagonal invariant

e includes Z; rotations amongst any three positive directions
o V =exp((in/3)(o12 + 023 + 031)/V3) Y, Vo] = 280,
e cyclicly permutes x1, x5, r3 axes V,I'|=0
e physical rotation by 27 /3

z y

e V3 = —1:we are dealing with fermions
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Repeating with other axes generates the 12 element tetrahedral group

e subgroup of the full hypercubic group

Odd-parity transformations double the symmetry group to 24 elements
o V = ﬁ(l—FiOlg’))(l—|—i021)(1—|—i052) [V,F] =0
e permutes xq, xo axes

o 75— ViV = —v;
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Natural time axis along main diagonal e; + e5 + e3 + ¢4
e T exchanges the two Fermi points

e increases symmetry group to 48 elements

Karsten and Wilczek actions

e ¢4 as the special direction

Charge conjugation: equivalent to particle hole symmetry

e D and 'H = ~5D have eigenvalues in opposite sign pairs
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Special treatment of main diagonal

e interactions can induce lattice distortions along this direction
e L(cos(ap) — )Ty = O(a)
e symmetry restored in continuum limit

e at finite lattice spacing can tune Bedague Buchoff Tiburzi Walker-Loud
o coefficient of )Ty dimension 3 operator
e 6 link plaquettes orthogonal to this diagonal

e zeros topologically robust under such distortions

e Nielsen Ninomiya, MC
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Issues and questions

Requires a multiple of two flavors
e can split degeneracies with Wilson terms

Only one exact chiral symmetry
e notthe full SU(2) ® SU(2)
e enough to protect mass
o 7 a Goldstone boson
e 7T only approximate

Not unique
e only need z(p) with two zeros
e above: Boricr’s variation with orthogonal coordinates
e alternatives: Karsten, Wilczek, MC
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Comparison with staggered

e both have one exact chiral symmetry

e both have only approximate zero modes from topology

e four component versus one component fermion field

e two versus four flavors

e no uncontrolled extrapolation to two physical light flavors
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Summary

e A strictly local lattice fermion action D(A)
e Wwith one exact chiral symmetry V5D = — D5
e describing two flavors; minimum required for chiral symmetry
e a linear combination of two “naive” fermion actions (Borici)

e Space-time symmetries
e translations plus 48 element subgroup of hypercubic rotations
e includes odd parity transformations

e renormalization can induce anisotropy at finite a
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