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Chiral symmetry crucial to our understanding of hadronic physics

• pions are waves on a background quark condensate 〈ψψ〉
• chiral extrapolations essential to practical lattice calculations

Anomaly removes classical U(1) chiral symmetry

• SU(Nf ) × SU(Nf ) × UB(1)

• non trivial symmetry requires Nf ≥ 2
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On the lattice ignoring the anomaly gives doublers

• naive fermions: 16 species, exact U(4)L × U(4)R symmetry

• staggered fermions: 4 species (tastes), one exact chiral symmetry

• Wilson fermions: one light species

• all chiral symmetries broken by doubler mass term

• overlap, domain wall, perfect actions: Nf arbitrary but

• not ultra-local: computationally intensive

• anomaly hidden, γ5 6= γ̂5, Trγ̂5 = 2ν 6= 0
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Minimally doubled chiral fermion actions have just 2 species

• Karsten 1981

• Wilczek 1987

• recent revival: MC, Borici, Bedaque Buchoff Tiburzi Walker-Loud

Motivations

• failure of rooting for staggered

• lack of chiral symmetry for Wilson

• computational demands of overlap, domain-wall approaches

Elegant connection to the electronic structure of graphene

• vanishing mass protected by topological considerations
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Graphene: two dimensional hexagonal lattice of carbon atoms

• http://online.kitp.ucsb.edu/online/bblunch/castroneto/

• A. H. Castro Neto et al., arXiv:0709.1163

Held together by strong ‘‘sigma’’ bonds, sp2

One ‘‘pi’’ electron per site can hop around

Consider only nearest neighbor hopping in the pi system

• tight binding approximation
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Fortuitous choice of coordinates helps solve

xx2 1

a b

Form horizontal bonds into ‘‘sites’’ involving two types of atom

• ‘‘a’’ on the left end of a horizontal bond

• ‘‘b’’ on the right end

• all hoppings are between type a and type b atoms

Label sites by non-orthogonal coordinates x1 and x2

• axes at 30 degrees from horizontal
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Hamiltonian

H = K
∑

x1,x2

a†x1,x2
bx1,x2

+ b†x1,x2
ax1,x2

+a†x1+1,x2
bx1,x2

+ b†x1−1,x2
ax1,x2

+a†x1,x2−1bx1,x2
+ b†x1,x2+1ax1,x2

a

a

b

b

a b

• hops always between a and b sites

Go to momentum (reciprocal) space

• ax1,x2
=

∫ π

−π
dp1

2π
dp2

2π eip1x1 eip2x2 ãp1,p2
.

• −π < pµ ≤ π
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Hamiltonian breaks into two by two blocks

H = K

∫ π

−π

dp1

2π

dp2

2π
( ã†p1,p2

b̃†p1,p2
)

(

0 z
z∗ 0

)(

ãp1,p2

b̃p1,p2

)

• where z = 1 + e−ip1 + e+ip2

a

b
a

b
a b

H̃(p1, p2) = K

(

0 z
z∗ 0

)

Fermion energy levels at E(p1, p2) = ±K|z|
• energy vanishes only when |z| does

• exactly two points p1 = p2 = ±2π/3

Michael Creutz BNL 7



Topological stability

• contour of constant energy near a zero point

• phase of z wraps around unit circle

• cannot collapse contour without going to |z| = 0

p1

p2

π2π/3−2π/3−π

2π/3

−2π/3

π

−π

E

p p

E

allowed forbidden

No band gap allowed

• Graphite is black and a conductor
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No-go theorem Nielsen and Ninomiya

• periodicity of Brillouin zone

• wrapping around one zero must unwrap elsewhere

• two zeros is the minimum possible

Connection with chiral symmetry

• b→ −b changes sign of H

• H̃(p1, p2) = K

(

0 z
z∗ 0

)

anticommutes with σ3 =

(

1 0
0 −1

)

• σ3 → γ5 in four dimensions
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Four dimensions

Want Dirac operator D to put into path integral action ψDψ

• require ‘‘γ5 Hermiticity’’

• γ5Dγ5 = D†

• work with Hermitean ‘‘Hamiltonian’’ H = γ5D

• not the Hamiltonian of the 3D Minkowski theory

Require same form as the two dimensional case

H̃(pµ) = K

(

0 z
z∗ 0

)

• four component momentum, (p1, p2, p3, p4)
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To keep topological argument

• extend z to quaternions

• z = a0 + i~a · ~σ

• |z|2 =
∑

µ a
2
µ

0
a

a

H̃(pµ) now a four by four matrix

• ‘‘energy’’ eigenvalues still E(pµ) = ±K|z|

• constant energy surface topologically an S3

• surrounding a zero should give non-trivial mapping
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Implementation

• not unique

• here I follow Borici’s construction

Start with naive fermions

• forward hop between sites γµU unit hopping parameter for convenience

• backward hop between sites −γµU
†

• µ is the direction of the hop

• U is the usual gauge field matrix

• Dirac operator D anticommutes with γ5

• an exact chiral symmetry

• part of an exact SU(4) × SU(4) chiral algebra Karsten and Smit
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In the free limit, solution in momentum space

D(p) = 2i
∑

µ

γµ sin(pµ)

• for small momenta reduces to Dirac equation

• 15 extra Dirac equations for components of momenta near 0 or π

p x

p
y

(π,π) (π,0)

(0,0) (0,π)

X

p z

p
t

(π,π) (π,0)

(0,0) (0,π)

16 ‘‘Fermi points’’

• ‘‘doublers’’
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Consider momenta maximally distant from the zeros: pµ = ±π/2

p x

p
y

(π,π) (π,0)

(0,0) (0,π)

(π/2,π/2)

(π/2,−π/2)

(−π/2,−π/2)

(−π/2,π/2)

Select one of these points, i.e. pµ = +π/2 for every µ

• D(pµ = π/2) = 2i
∑

µ γµ ≡ 4iΓ

• Γ ≡ 1
2 (γ1 + γ2 + γ3 + γ4)

• unitary, Hermitean, traceless 4 by 4 matrix
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Now consider a unitary transformation

• ψ′(x) = e−iπ(x1+x2+x3+x4)/2 Γ ψ(x)

• ψ
′
(x) = eiπ(x1+x2+x3+x4)/2 ψ(x) Γ

• phases move Fermi points from pµ ∈ {0, π} to pµ ∈ {±π/2}

• ψ′ uses new gamma matrices γ′µ = ΓγµΓ

• Γ = 1
2 (γ1 + γ2 + γ3 + γ4) = Γ′

• new free action: D(p) = 2i
∑

µ γ
′
µ sin(π/2 − pµ)

D and D physically equivalent
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Complimentarity: D(pµ = π/2) = D(pµ = 0) = 4iΓ

Combine the naive actions

D = D +D − 4iΓ

Free theory

• D(p) = 2i
∑

µ

(

γµ sin(pµ) + γ′µ sin(π/2 − pµ)
)

− 4iΓ

• at pµ ∼ 0 the 4iΓ term cancels D, leaving D(p) ∼ γµpµ

• at pµ ∼ π/2 the 4iΓ term cancels D, leaving D(π/2 − p) ∼ γ′µpµ

• Only these two zeros of D(p) remain!
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p x

p
y

(π,π) (π,0)

(0,0) (0,π)

(π/2,π/2)

(π/2,−π/2)

(−π/2,−π/2)

(−π/2,π/2)

THEOREM: these are the only zeros of D(p)

• at other zeros of D, D − 4iΓ is large

• at other zeros of D, D − 4iΓ is large
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Chiral symmetry remains exact

• γ5D = −Dγ5

• eiθγ5Deiθγ5 = D

But

• γ′5 = Γγ5Γ = −γ5

• two species rotate oppositely

• symmetry is flavor non-singlet

Michael Creutz BNL 18



Space time symmetries

• usual discrete translation symmetry

• Γ = 1
2

∑

µ γµ treats primary hypercube diagonal specially

• action symmetric under subgroup of the hypercubic group

• leaving this diagonal invariant

• includes Z3 rotations amongst any three positive directions

• V = exp((iπ/3)(σ12 + σ23 + σ31)/
√

3) [γµ, γν ] = 2iσµν

• cyclicly permutes x1, x2, x3 axes [V,Γ] = 0

• physical rotation by 2π/3

z

y

x

x

z

y

• V 3 = −1: we are dealing with fermions
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Repeating with other axes generates the 12 element tetrahedral group

• subgroup of the full hypercubic group

Odd-parity transformations double the symmetry group to 24 elements

• V = 1
2
√

2
(1 + iσ15)(1 + iσ21)(1 + iσ52) [V,Γ] = 0

• permutes x1, x2 axes

• γ5 → V †γ5V = −γ5

z

y

x

z

y

x
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Natural time axis along main diagonal e1 + e2 + e3 + e4

• T exchanges the two Fermi points

• increases symmetry group to 48 elements

Karsten and Wilczek actions

• e4 as the special direction

Charge conjugation: equivalent to particle hole symmetry

• D and H = γ5D have eigenvalues in opposite sign pairs
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Special treatment of main diagonal

• interactions can induce lattice distortions along this direction

• 1
a (cos(ap) − 1)ψΓψ = O(a)

• symmetry restored in continuum limit

• at finite lattice spacing can tune Bedaque Buchoff Tiburzi Walker-Loud

• coefficient of iψΓψ dimension 3 operator

• 6 link plaquettes orthogonal to this diagonal

• zeros topologically robust under such distortions

• Nielsen Ninomiya, MC
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Issues and questions

Requires a multiple of two flavors

• can split degeneracies with Wilson terms

Only one exact chiral symmetry

• not the full SU(2) ⊗ SU(2)

• enough to protect mass

• π0 a Goldstone boson

• π± only approximate

Not unique

• only need z(p) with two zeros

• above: Borici’s variation with orthogonal coordinates

• alternatives: Karsten, Wilczek, MC

Michael Creutz BNL 23



Comparison with staggered

• both have one exact chiral symmetry

• both have only approximate zero modes from topology

• four component versus one component fermion field

• two versus four flavors

• no uncontrolled extrapolation to two physical light flavors
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Summary

• A strictly local lattice fermion action D(A)

• with one exact chiral symmetry γ5D = −Dγ5

• describing two flavors; minimum required for chiral symmetry

• a linear combination of two ‘‘naive’’ fermion actions (Borici)

• Space-time symmetries

• translations plus 48 element subgroup of hypercubic rotations

• includes odd parity transformations

• renormalization can induce anisotropy at finite a

Michael Creutz BNL 25


