Minimally doubled chiral fermions

Michael Creutz

Brookhaven National Laboratory

Chiral symmetry crucial to our understanding of hadronic physics

- pions are waves on a background quark condensate $\langle \overline{\psi}\psi
 angle$
- chiral extrapolations essential to practical lattice calculations

Anomaly removes classical U(1) chiral symmetry

- $SU(N_f) \times SU(N_f) \times U_B(1)$
- non trivial symmetry requires $N_f \ge 2$

On the lattice ignoring the anomaly gives doublers

- naive fermions: 16 species, exact $U(4)_L \times U(4)_R$ symmetry
- staggered fermions: 4 species (tastes), one exact chiral symmetry
- Wilson fermions: one light species
 - all chiral symmetries broken by doubler mass term
- overlap, domain wall, perfect actions: N_f arbitrary but
 - not ultra-local: computationally intensive
 - anomaly hidden, $\gamma_5 \neq \hat{\gamma}_5$, $\text{Tr}\hat{\gamma}_5 = 2\nu \neq 0$

Minimally doubled chiral fermion actions have just 2 species

- Karsten 1981
- Wilczek 1987
- recent revival: MC, Borici, Bedaque Buchoff Tiburzi Walker-Loud

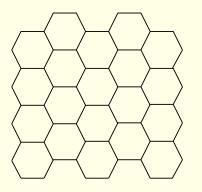
Motivations

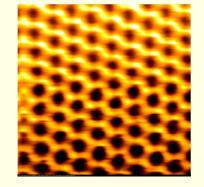
- failure of rooting for staggered
- lack of chiral symmetry for Wilson
- computational demands of overlap, domain-wall approaches

Elegant connection to the electronic structure of graphene

• vanishing mass protected by topological considerations

Graphene: two dimensional hexagonal lattice of carbon atoms





- http://online.kitp.ucsb.edu/online/bblunch/castroneto/
- A. H. Castro Neto et al., arXiv:0709.1163

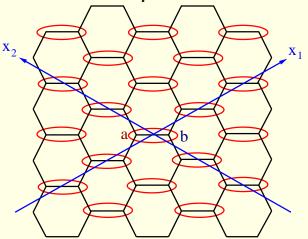
Held together by strong "sigma" bonds, ${\it sp}^2$

One "pi" electron per site can hop around

Consider only nearest neighbor hopping in the pi system

• tight binding approximation

Fortuitous choice of coordinates helps solve



Form horizontal bonds into "sites" involving two types of atom

- "a" on the left end of a horizontal bond
- "b" on the right end
- all hoppings are between type *a* and type *b* atoms

Label sites by non-orthogonal coordinates x_1 and x_2

• axes at 30 degrees from horizontal

Hamiltonian

$$H = K \sum_{x_1, x_2} a^{\dagger}_{x_1, x_2} b_{x_1, x_2} + b^{\dagger}_{x_1, x_2} a_{x_1, x_2}$$
$$+ a^{\dagger}_{x_1 + 1, x_2} b_{x_1, x_2} + b^{\dagger}_{x_1 - 1, x_2} a_{x_1, x_2}$$
$$+ a^{\dagger}_{x_1, x_2 - 1} b_{x_1, x_2} + b^{\dagger}_{x_1, x_2 + 1} a_{x_1, x_2}$$

• hops always between *a* and *b* sites

Go to momentum (reciprocal) space

•
$$a_{x_1,x_2} = \int_{-\pi}^{\pi} \frac{dp_1}{2\pi} \frac{dp_2}{2\pi} e^{ip_1x_1} e^{ip_2x_2} \tilde{a}_{p_1,p_2}.$$

•
$$-\pi < p_{\mu} \leq \pi$$

Hamiltonian breaks into two by two blocks

$$H = K \int_{-\pi}^{\pi} \frac{dp_1}{2\pi} \frac{dp_2}{2\pi} \left(\begin{array}{cc} \tilde{a}_{p_1, p_2}^{\dagger} & \tilde{b}_{p_1, p_2}^{\dagger} \end{array} \right) \begin{pmatrix} 0 & z \\ z^* & 0 \end{pmatrix} \begin{pmatrix} \tilde{a}_{p_1, p_2} \\ \tilde{b}_{p_1, p_2} \end{pmatrix}$$

• where
$$z = 1 + e^{-ip_1} + e^{+ip_2}$$

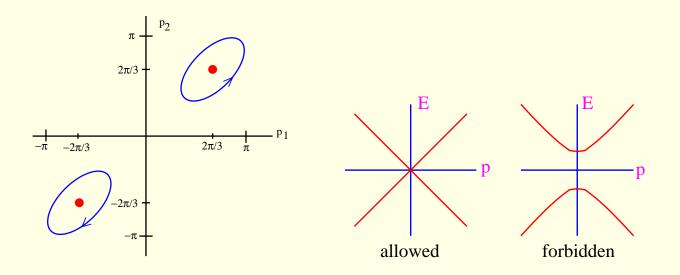
$$\tilde{H}(p_1, p_2) = K \begin{pmatrix} 0 & z \\ z^* & 0 \end{pmatrix}$$

Fermion energy levels at $E(p_1, p_2) = \pm K|z|$

- energy vanishes only when |z| does
- exactly two points $p_1 = p_2 = \pm 2\pi/3$

Topological stability

- contour of constant energy near a zero point
- phase of *z* wraps around unit circle
- cannot collapse contour without going to |z| = 0



No band gap allowed

• Graphite is black and a conductor

No-go theorem Nielsen and Ninomiya

- periodicity of Brillouin zone
- wrapping around one zero must unwrap elsewhere
- two zeros is the minimum possible

Connection with chiral symmetry

• $b \rightarrow -b$ changes sign of H

•
$$\tilde{H}(p_1, p_2) = K \begin{pmatrix} 0 & z \\ z^* & 0 \end{pmatrix}$$
 anticommutes with $\sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

• $\sigma_3 \rightarrow \gamma_5$ in four dimensions

Four dimensions

Want Dirac operator D to put into path integral action $\overline{\psi}D\psi$

- require " γ_5 Hermiticity"
 - $\gamma_5 D \gamma_5 = D^{\dagger}$
- work with Hermitean "Hamiltonian" $H = \gamma_5 D$
 - not the Hamiltonian of the 3D Minkowski theory

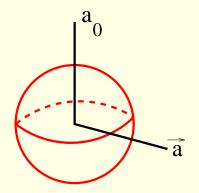
Require same form as the two dimensional case

$$\tilde{H}(p_{\mu}) = K \begin{pmatrix} 0 & z \\ z^* & 0 \end{pmatrix}$$

• four component momentum, (p_1, p_2, p_3, p_4)

To keep topological argument

- extend *z* to quaternions
- $z = a_0 + i\vec{a}\cdot\vec{\sigma}$
 - $|z|^2 = \sum_{\mu} a_{\mu}^2$



$\tilde{H}(p_{\mu})$ now a four by four matrix

- "energy" eigenvalues still $E(p_{\mu}) = \pm K|z|$
- constant energy surface topologically an S_3
 - surrounding a zero should give non-trivial mapping

Implementation

- not unique
- here I follow Borici's construction

Start with naive fermions

- forward hop between sites $\gamma_{\mu}U$
- backward hop between sites $-\gamma_{\mu}U^{\dagger}$
 - μ is the direction of the hop
 - *U* is the usual gauge field matrix
- Dirac operator D anticommutes with γ_5
 - an exact chiral symmetry
 - part of an exact $SU(4) \times SU(4)$ chiral algebra

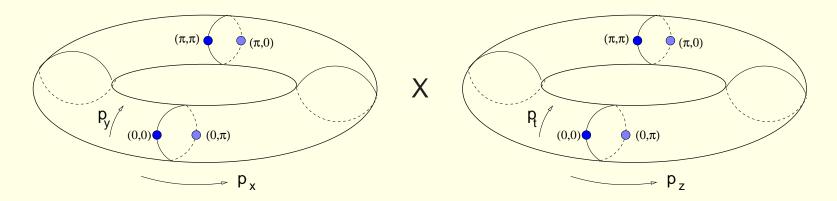
 $\gamma_{\mu} U$ unit hopping parameter for convenience

Karsten and Smit

In the free limit, solution in momentum space

$$D(p) = 2i \sum_{\mu} \gamma_{\mu} \sin(p_{\mu})$$

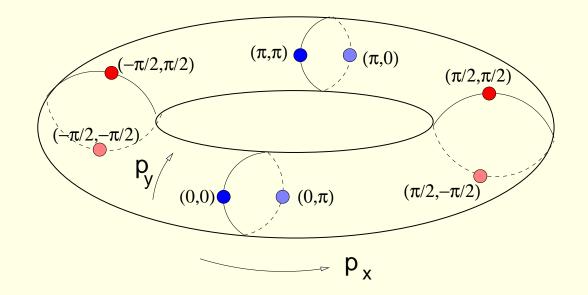
- for small momenta reduces to Dirac equation
- 15 extra Dirac equations for components of momenta near 0 or π



16 "Fermi points"

• "doublers"

Consider momenta maximally distant from the zeros: $p_{\mu} = \pm \pi/2$



Select one of these points, i.e. $p_{\mu} = +\pi/2$ for every μ

- $D(p_{\mu} = \pi/2) = 2i \sum_{\mu} \gamma_{\mu} \equiv 4i\Gamma$
- $\Gamma \equiv \frac{1}{2}(\gamma_1 + \gamma_2 + \gamma_3 + \gamma_4)$
 - unitary, Hermitean, traceless 4 by 4 matrix

Now consider a unitary transformation

• $\psi'(x) = e^{-i\pi(x_1+x_2+x_3+x_4)/2} \Gamma \psi(x)$

•
$$\overline{\psi}'(x) = e^{i\pi(x_1 + x_2 + x_3 + x_4)/2} \overline{\psi}(x) \Gamma$$

- phases move Fermi points from $p_{\mu} \in \{0, \pi\}$ to $p_{\mu} \in \{\pm \pi/2\}$
- ψ' uses new gamma matrices $\gamma'_{\mu} = \Gamma \gamma_{\mu} \Gamma$

•
$$\Gamma = \frac{1}{2}(\gamma_1 + \gamma_2 + \gamma_3 + \gamma_4) = \Gamma'$$

• new free action: $\overline{D}(p) = 2i \sum_{\mu} \gamma'_{\mu} \sin(\pi/2 - p_{\mu})$

D and \overline{D} physically equivalent

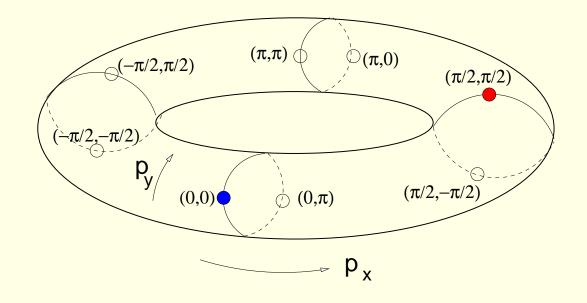
Complimentarity:
$$D(p_{\mu} = \pi/2) = \overline{D}(p_{\mu} = 0) = 4i\Gamma$$

Combine the naive actions

$$\mathcal{D} = D + \overline{D} - 4i\Gamma$$

Free theory

- $\mathcal{D}(p) = 2i \sum_{\mu} \left(\gamma_{\mu} \sin(p_{\mu}) + \gamma'_{\mu} \sin(\pi/2 p_{\mu}) \right) 4i\Gamma$
- at $p_{\mu} \sim 0$ the $4i\Gamma$ term cancels \overline{D} , leaving $\mathcal{D}(p) \sim \gamma_{\mu} p_{\mu}$
- at $p_{\mu} \sim \pi/2$ the $4i\Gamma$ term cancels D, leaving $\mathcal{D}(\pi/2 p) \sim \gamma'_{\mu} p_{\mu}$
 - Only these two zeros of $\mathcal{D}(p)$ remain!



THEOREM: these are the only zeros of $\mathcal{D}(p)$

- at other zeros of D, $\overline{D} 4i\Gamma$ is large
- at other zeros of \overline{D} , $D 4i\Gamma$ is large

Chiral symmetry remains exact

•
$$\gamma_5 \mathcal{D} = -\mathcal{D} \gamma_5$$

•
$$e^{i\theta\gamma_5}\mathcal{D}e^{i\theta\gamma_5}=\mathcal{D}$$

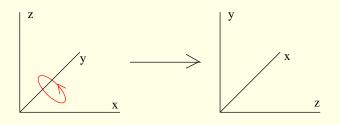
But

•
$$\gamma_5' = \Gamma \gamma_5 \Gamma = -\gamma_5$$

- two species rotate oppositely
- symmetry is flavor non-singlet

Space time symmetries

- usual discrete translation symmetry
- $\Gamma = \frac{1}{2} \sum_{\mu} \gamma_{\mu}$ treats primary hypercube diagonal specially
- action symmetric under subgroup of the hypercubic group
 - leaving this diagonal invariant
- includes Z_3 rotations amongst any three positive directions
 - $V = \exp((i\pi/3)(\sigma_{12} + \sigma_{23} + \sigma_{31})/\sqrt{3})$ $[\gamma_{\mu}, \gamma_{\nu}] = 2i\sigma_{\mu\nu}$
 - cyclicly permutes x_1, x_2, x_3 axes
 - physical rotation by $2\pi/3$



• $V^3 = -1$: we are dealing with fermions

Repeating with other axes generates the 12 element tetrahedral group

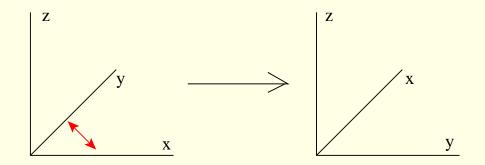
• subgroup of the full hypercubic group

Odd-parity transformations double the symmetry group to 24 elements

•
$$V = \frac{1}{2\sqrt{2}}(1+i\sigma_{15})(1+i\sigma_{21})(1+i\sigma_{52})$$
 $[V,\Gamma] = 0$

• permutes x_1, x_2 axes

•
$$\gamma_5 \rightarrow V^{\dagger} \gamma_5 V = -\gamma_5$$



Natural time axis along main diagonal $e_1 + e_2 + e_3 + e_4$

- *T* exchanges the two Fermi points
- increases symmetry group to 48 elements

Karsten and Wilczek actions

• e_4 as the special direction

Charge conjugation: equivalent to particle hole symmetry

• \mathcal{D} and $\mathcal{H} = \gamma_5 \mathcal{D}$ have eigenvalues in opposite sign pairs

Special treatment of main diagonal

- interactions can induce lattice distortions along this direction
 - $\frac{1}{a}(\cos(ap)-1)\overline{\psi}\Gamma\psi = O(a)$
 - symmetry restored in continuum limit
- at finite lattice spacing can tune
 - coefficient of $i\overline{\psi}\Gamma\psi$

Bedaque Buchoff Tiburzi Walker-Loud

dimension 3 operator

- 6 link plaquettes orthogonal to this diagonal
- zeros topologically robust under such distortions
 - Nielsen Ninomiya, MC

Issues and questions

Requires a multiple of two flavors

• can split degeneracies with Wilson terms

Only one exact chiral symmetry

- not the full $SU(2) \otimes SU(2)$
 - enough to protect mass
 - π^0 a Goldstone boson
 - π^{\pm} only approximate

Not unique

- only need z(p) with two zeros
- above: Borici's variation with orthogonal coordinates
 - alternatives: Karsten, Wilczek, MC

Comparison with staggered

- both have one exact chiral symmetry
- both have only approximate zero modes from topology
- four component versus one component fermion field
- two versus four flavors
 - no uncontrolled extrapolation to two physical light flavors

Summary

- A strictly local lattice fermion action $\mathcal{D}(A)$
 - with one exact chiral symmetry $\gamma_5 D = -D\gamma_5$
 - describing two flavors; minimum required for chiral symmetry
 - a linear combination of two "naive" fermion actions (Borici)
- Space-time symmetries
 - translations plus 48 element subgroup of hypercubic rotations
 - includes odd parity transformations
 - renormalization can induce anisotropy at finite *a*