Minimally doubled chiral fermions

Michael Creutz

Brookhaven National Laboratory

Chiral symmetry crucial to our understanding of hadronic physics

- pions are waves on a background quark condensate $\langle\bar{\psi} \psi\rangle$
- chiral extrapolations essential to practical lattice calculations

Anomaly removes classical $U(1)$ chiral symmetry

- $S U\left(N_{f}\right) \times S U\left(N_{f}\right) \times U_{B}(1)$
- non trivial symmetry requires $N_{f} \geq 2$

On the lattice ignoring the anomaly gives doublers

- naive fermions: 16 species, exact $U(4)_{L} \times U(4)_{R}$ symmetry
- staggered fermions: 4 species (tastes), one exact chiral symmetry
- Wilson fermions: one light species
- all chiral symmetries broken by doubler mass term
- overlap, domain wall, perfect actions: N_{f} arbitrary but
- not ultra-local: computationally intensive
- anomaly hidden, $\gamma_{5} \neq \hat{\gamma}_{5}, \operatorname{Tr} \hat{\gamma}_{5}=2 \nu \neq 0$

Minimally doubled chiral fermion actions have just 2 species

- Karsten 1981
- Wilczek 1987
- recent revival: MC, Borici, Bedaque Buchoff Tiburzi Walker-Loud

Motivations

- failure of rooting for staggered
- lack of chiral symmetry for Wilson
- computational demands of overlap, domain-wall approaches

Elegant connection to the electronic structure of graphene

- vanishing mass protected by topological considerations

Graphene: two dimensional hexagonal lattice of carbon atoms

- http://online.kitp.ucsb.edu/online/bblunch/castroneto/
- A. H. Castro Neto et al., arXiv:0709.1163

Held together by strong "sigma" bonds, $s p^{2}$
One "pi" electron per site can hop around
Consider only nearest neighbor hopping in the pi system

- tight binding approximation

Fortuitous choice of coordinates helps solve

Form horizontal bonds into "sites" involving two types of atom

- " a " on the left end of a horizontal bond
- " b " on the right end
- all hoppings are between type a and type b atoms

Label sites by non-orthogonal coordinates x_{1} and x_{2}

- axes at 30 degrees from horizontal

Hamiltonian

$$
\begin{aligned}
H=K \sum_{x_{1}, x_{2}} & a_{x_{1}, x_{2}}^{\dagger} b_{x_{1}, x_{2}}+b_{x_{1}, x_{2}}^{\dagger} a_{x_{1}, x_{2}} \\
& +a_{x_{1}+1, x_{2}}^{\dagger} b_{x_{1}, x_{2}}+b_{x_{1}-1, x_{2}}^{\dagger} a_{x_{1}, x_{2}} \\
& +a_{x_{1}, x_{2}-1}^{\dagger} b_{x_{1}, x_{2}}+b_{x_{1}, x_{2}+1}^{\dagger} a_{x_{1}, x_{2}}
\end{aligned}
$$

- hops always between a and b sites

Go to momentum (reciprocal) space

- $a_{x_{1}, x_{2}}=\int_{-\pi}^{\pi} \frac{d p_{1}}{2 \pi} \frac{d p_{2}}{2 \pi} e^{i p_{1} x_{1}} e^{i p_{2} x_{2}} \tilde{a}_{p_{1}, p_{2}}$.
- $-\pi<p_{\mu} \leq \pi$

Hamiltonian breaks into two by two blocks

$$
H=K \int_{-\pi}^{\pi} \frac{d p_{1}}{2 \pi} \frac{d p_{2}}{2 \pi}\left(\begin{array}{ll}
\tilde{a}_{p_{1}, p_{2}}^{\dagger} & \tilde{b}_{p_{1}, p_{2}}^{\dagger}
\end{array}\right)\left(\begin{array}{cc}
0 & z \\
z^{*} & 0
\end{array}\right)\binom{\tilde{a}_{p_{1}, p_{2}}}{\hat{b}_{p_{1}, p_{2}}}
$$

- where

$$
\begin{aligned}
z & =1+e^{-i p_{1}}+e^{+i p_{2}} \\
& \ddots
\end{aligned}
$$

$$
\tilde{H}\left(p_{1}, p_{2}\right)=K\left(\begin{array}{cc}
0 & z \\
z^{*} & 0
\end{array}\right)
$$

Fermion energy levels at $E\left(p_{1}, p_{2}\right)= \pm K|z|$

- energy vanishes only when $|z|$ does
- exactly two points

$$
p_{1}=p_{2}= \pm 2 \pi / 3
$$

Topological stability

- contour of constant energy near a zero point
- phase of z wraps around unit circle
- cannot collapse contour without going to $|z|=0$

allowed

No band gap allowed

- Graphite is black and a conductor

No-go theorem Nielsen and Ninomiya

- periodicity of Brillouin zone
- wrapping around one zero must unwrap elsewhere
- two zeros is the minimum possible

Connection with chiral symmetry

- $\quad b \rightarrow-b$ changes sign of H
- $\tilde{H}\left(p_{1}, p_{2}\right)=K\left(\begin{array}{cc}0 & z \\ z^{*} & 0\end{array}\right)$ anticommutes with $\sigma_{3}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
- $\sigma_{3} \rightarrow \gamma_{5}$ in four dimensions

Four dimensions

Want Dirac operator D to put into path integral action $\bar{\psi} D \psi$

- require " γ_{5} Hermiticity"
- $\gamma_{5} D \gamma_{5}=D^{\dagger}$
- work with Hermitean "Hamiltonian" $H=\gamma_{5} D$
- not the Hamiltonian of the 3D Minkowski theory

Require same form as the two dimensional case

$$
\tilde{H}\left(p_{\mu}\right)=K\left(\begin{array}{cc}
0 & z \\
z^{*} & 0
\end{array}\right)
$$

- four component momentum, $\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$

To keep topological argument

- extend z to quaternions
- $z=a_{0}+i \vec{a} \cdot \vec{\sigma}$
- $|z|^{2}=\sum_{\mu} a_{\mu}^{2}$

$\tilde{H}\left(p_{\mu}\right)$ now a four by four matrix
- "energy" eigenvalues still $E\left(p_{\mu}\right)= \pm K|z|$
- constant energy surface topologically an S_{3}
- surrounding a zero should give non-trivial mapping

Implementation

- not unique
- here I follow Borici's construction

Start with naive fermions

- forward hop between sites
$\gamma_{\mu} U$
unit hopping parameter for convenience
- backward hop between sites
$-\gamma_{\mu} U^{\dagger}$
- μ is the direction of the hop
- U is the usual gauge field matrix
- Dirac operator D anticommutes with γ_{5}
- an exact chiral symmetry
- part of an exact $S U(4) \times S U(4)$ chiral algebra

In the free limit, solution in momentum space

$$
D(p)=2 i \sum_{\mu} \gamma_{\mu} \sin \left(p_{\mu}\right)
$$

- for small momenta reduces to Dirac equation
- 15 extra Dirac equations for components of momenta near 0 or π

16 "Fermi points"

- "doublers"

Consider momenta maximally distant from the zeros: $p_{\mu}= \pm \pi / 2$

Select one of these points, i.e. $p_{\mu}=+\pi / 2$ for every μ

- $D\left(p_{\mu}=\pi / 2\right)=2 i \sum_{\mu} \gamma_{\mu} \equiv 4 i \Gamma$
- $\Gamma \equiv \frac{1}{2}\left(\gamma_{1}+\gamma_{2}+\gamma_{3}+\gamma_{4}\right)$
- unitary, Hermitean, traceless 4 by 4 matrix

Now consider a unitary transformation

- $\psi^{\prime}(x)=e^{-i \pi\left(x_{1}+x_{2}+x_{3}+x_{4}\right) / 2} \Gamma \psi(x)$
- $\bar{\psi}^{\prime}(x)=e^{i \pi\left(x_{1}+x_{2}+x_{3}+x_{4}\right) / 2} \bar{\psi}(x) \Gamma$
- phases move Fermi points from $p_{\mu} \in\{0, \pi\}$ to $p_{\mu} \in\{ \pm \pi / 2\}$
- ψ^{\prime} uses new gamma matrices $\gamma_{\mu}^{\prime}=\Gamma \gamma_{\mu} \Gamma$
- $\Gamma=\frac{1}{2}\left(\gamma_{1}+\gamma_{2}+\gamma_{3}+\gamma_{4}\right)=\Gamma^{\prime}$
- new free action: $\bar{D}(p)=2 i \sum_{\mu} \gamma_{\mu}^{\prime} \sin \left(\pi / 2-p_{\mu}\right)$
D and \bar{D} physically equivalent

Complimentarity: $\quad D\left(p_{\mu}=\pi / 2\right)=\bar{D}\left(p_{\mu}=0\right)=4 i \Gamma$

Combine the naive actions

$$
\mathcal{D}=D+\bar{D}-4 i \Gamma
$$

Free theory

- $\mathcal{D}(p)=2 i \sum_{\mu}\left(\gamma_{\mu} \sin \left(p_{\mu}\right)+\gamma_{\mu}^{\prime} \sin \left(\pi / 2-p_{\mu}\right)\right)-4 i \Gamma$
- at $p_{\mu} \sim 0$ the $4 i \Gamma$ term cancels \bar{D}, leaving $\mathcal{D}(p) \sim \gamma_{\mu} p_{\mu}$
- at $p_{\mu} \sim \pi / 2$ the $4 i \Gamma$ term cancels D, leaving $\mathcal{D}(\pi / 2-p) \sim \gamma_{\mu}^{\prime} p_{\mu}$
- Only these two zeros of $\mathcal{D}(p)$ remain!

THEOREM: these are the only zeros of $\mathcal{D}(p)$

- at other zeros of $D, \bar{D}-4 i \Gamma$ is large
- at other zeros of $\bar{D}, D-4 i \Gamma$ is large

Chiral symmetry remains exact

- $\gamma_{5} \mathcal{D}=-\mathcal{D} \gamma_{5}$
- $e^{i \theta \gamma_{5}} \mathcal{D} e^{i \theta \gamma_{5}}=\mathcal{D}$

But

- $\gamma_{5}^{\prime}=\Gamma \gamma_{5} \Gamma=-\gamma_{5}$
- two species rotate oppositely
- symmetry is flavor non-singlet

Space time symmetries

- usual discrete translation symmetry
- $\Gamma=\frac{1}{2} \sum_{\mu} \gamma_{\mu}$ treats primary hypercube diagonal specially
- action symmetric under subgroup of the hypercubic group
- leaving this diagonal invariant
- includes Z_{3} rotations amongst any three positive directions
- $V=\exp \left((i \pi / 3)\left(\sigma_{12}+\sigma_{23}+\sigma_{31}\right) / \sqrt{3}\right)$
- cyclicly permutes x_{1}, x_{2}, x_{3} axes

$$
\left[\gamma_{\mu}, \gamma_{\nu}\right]=2 i \sigma_{\mu \nu}
$$

- physical rotation by $2 \pi / 3$

- $V^{3}=-1$: we are dealing with fermions

Repeating with other axes generates the 12 element tetrahedral group

- subgroup of the full hypercubic group

Odd-parity transformations double the symmetry group to 24 elements

- $V=\frac{1}{2 \sqrt{2}}\left(1+i \sigma_{15}\right)\left(1+i \sigma_{21}\right)\left(1+i \sigma_{52}\right)$
$[V, \Gamma]=0$
- permutes x_{1}, x_{2} axes
- $\gamma_{5} \rightarrow V^{\dagger} \gamma_{5} V=-\gamma_{5}$

Natural time axis along main diagonal $e_{1}+e_{2}+e_{3}+e_{4}$

- T exchanges the two Fermi points
- increases symmetry group to 48 elements

Karsten and Wilczek actions

- e_{4} as the special direction

Charge conjugation: equivalent to particle hole symmetry

- \mathcal{D} and $\mathcal{H}=\gamma_{5} \mathcal{D}$ have eigenvalues in opposite sign pairs

Special treatment of main diagonal

- interactions can induce lattice distortions along this direction
- $\frac{1}{a}(\cos (a p)-1) \bar{\psi} \Gamma \psi=O(a)$
- symmetry restored in continuum limit
- at finite lattice spacing can tune
- coefficient of $i \bar{\psi} \Gamma \psi$
dimension 3 operator
- 6 link plaquettes orthogonal to this diagonal
- zeros topologically robust under such distortions
- Nielsen Ninomiya, MC

Issues and questions

Requires a multiple of two flavors

- can split degeneracies with Wilson terms

Only one exact chiral symmetry

- not the full $S U(2) \otimes S U(2)$
- enough to protect mass
- π^{0} a Goldstone boson
- $\pi^{ \pm}$only approximate

Not unique

- only need $z(p)$ with two zeros
- above: Borici's variation with orthogonal coordinates
- alternatives: Karsten, Wilczek, MC

Comparison with staggered

- both have one exact chiral symmetry
- both have only approximate zero modes from topology
- four component versus one component fermion field
- two versus four flavors
- no uncontrolled extrapolation to two physical light flavors

Summary

- A strictly local lattice fermion action $\mathcal{D}(A)$
- with one exact chiral symmetry $\gamma_{5} \mathcal{D}=-\mathcal{D} \gamma_{5}$
- describing two flavors; minimum required for chiral symmetry
- a linear combination of two "naive" fermion actions (Borici)
- Space-time symmetries
- translations plus 48 element subgroup of hypercubic rotations
- includes odd parity transformations
- renormalization can induce anisotropy at finite a

