Exploring the QCD phase diagram on the lattice

Overview of lattice techniques for finite temperature and density

Summary of results: the confusion before clarity

Reviews: Eur.Phys.J.ST 152 (2007) 29; PoS LAT05:016 (2006)

Original work with Ph. de Forcrand (ETH/CERN): PoS LAT08:208; JHEP 0811:012

The conjectured QCD phase diagram

No first principles calculations before 2001: sign problem

Expectation based on models: NJL, NJL+Polyakov loop, linear sigma models, random matrix models, ...

The conjectured QCD phase diagram

■ 2001-2008: sign problem not cured, circumvented by approximate methods, need $\mu \lesssim T_c$ ($\mu = \mu_B/3$)

Upper region: density effects on eq. of state, screening masses, phase diagram

The 'sign problem' is a phase problem

$$Z = \int DU \left[\det M(\mu)\right]^f e^{-S_g[U]}$$

importance sampling requires positive weights

10

Dirac operator:
$$D(\mu)^{\dagger} = \gamma_5 D(-\mu^*) \gamma_5$$

 $\Rightarrow \operatorname{real positive for SU(2), } \mu \neq 0$
 $\Rightarrow \operatorname{real positive for SU(2), } \mu = i\mu_i$
 $\Rightarrow \operatorname{real positive for } \mu_u = -\mu_d$

N.B.: all expectation values real, imaginary parts cancel, but importance sampling config. by config. impossible!

Cut-off effects:
$$T = \frac{1}{aN_t}$$
 Continuum limit: $N_t \to \infty, a \to 0$

Phase diagram: mostly $N_t = 4 : a \sim 0.3 \text{ fm}, N_t = 6 : a \sim 0.2 \text{ fm}$

Generalization to two parameters (T, μ) : increase overlap along critical line Fodor, Katz 01

II. Taylor expansion

Measure derivatives w.r.t. chemical potential, zero density calculation

CP-symmetry: partition function even under $\mu \longrightarrow -\mu$

$$\mu$$
-independent O: $\langle O \rangle(\mu) = \langle O \rangle(0) + \sum_{k=1} c_k \left(\frac{\mu}{\pi T}\right)^{2k}$

- have to compute coeffs. one by one
- convergence?
- higher orders increasingly complex to calculate accurately: delicate cancellations

MILC; Bielefeld/Swansea; Gavai, Gupta....

III.Imaginary chemical potential + analytic continuation

Fermion determinant positive, no sign problem!

calculate at imag. chem. potential, fit to truncated polynomial

$$\langle O \rangle(\mu_i) = \sum_{n}^{N} c_n \left(\frac{\mu_i}{\pi T}\right)^{2n} \Rightarrow \mu_i \longrightarrow i\mu_i$$

de Forcrand, O.P. D'Elia, Lombardo Azcoiti et al....

- vary two parameters in MC ensemble
- explicit check for convergence in imag. direction
- problems: restricted to $\mu_B \lesssim 500$ MeV, convergence properties different in real direction (T,μ)

IV. Canonical ensemble

- calculate Z(B) by Fourier trafo from $Z(i\mu_i)$
- restricted to small volumes so far

Alford, Kapustin, Wilczek de Forcrand, Kratochvila Alexandru et al....

Comparing approaches: the critical line de Forcrand, Kratochvila LAT 05

 $N_t = 4, N_f = 4$; same actions (unimproved staggered), same mass

The (pseudo-) critical temperature

de Forcrand, O.P. 03; d'Elia Lombardo 03

smaller than freeze-out curve

 $t_2 \approx 2.05$

Cleymans et al.

but coarse lattices; slightly larger values on finer lattices

physical masses in progress, cf. Endrodi

$$\frac{T_c(\mu)}{T_c(\mu=0)} = 1 - \frac{c(N_f, m_q)}{(\pi T)^2} (\frac{\mu}{\pi T})^2 + \dots$$

 $c \approx 0.500(34), 0.602(9), 0.93(10)$ for light $N_f = 2, 3, 4$

cf. Toublan:($c \propto N_f/N_c$)

Wuppertal 07

Critical point from reweighting

Fodor, Katz JHEP 04

 $N_t = 4, N_f = 2 + 1$ physical quark masses, unimproved staggered fermions

Lee-Yang zero:

 $(\mu_E^q, T_E) = (120(13), 162(2)) \text{ MeV}$

abrupt change: physics or problem of the method?

Splittorff 05; Han, Stephanov 08

Critical point from Taylor expansion

$$\frac{p}{T^4} = \sum_{n=0}^{\infty} c_{2n}(T) \left(\frac{\mu}{T}\right)^{2n}$$
Singularity $(\mu_E, T_E) \Rightarrow \boxed{\frac{\mu_E}{T_E} = \lim_{n \to \infty} \sqrt{\left|\frac{c_{2n}}{c_{2n+2}}\right|}}$ Karsch et al.

• Need $n \to \infty$, not n = 1 or 2; $\sqrt{\left|\frac{c_2}{c_4}\right|}$ is not a lower or upper bound

• Other definitions just as good, eg. $\lim_{n \to \infty} \left| \frac{c_0}{c_{2n}} \right|^{\frac{1}{2n}}$

Attn, different definitions used in following:

Bielefeld-RBC-collab 08: $N_t = 4, N_f = 2 + 1$ improved staggered

Gavai/Gupta: $N_f=2, m/T_c=0.1$, standard KS, critical point at $\mu_B^c/T=1.1\pm0.2$

More general: p.t. as function of quark masses, zero density

N_f = 2, m = 0: $N_t = 4$, still not settled ax. U(1) anomaly DiGiacomo et al. 05; Kogut, Sinclair 06; Chandrasekharan, Mehta 07

- phys. point: crossover in continuum
- chiral critical line: $N_t = 4$ two points on $N_t = 6$

Aoki et al. 06

de Forcrand, O.P. 07 de Forcrand, O.P. 07; Endrodi et al. 07

The nature of the phase transition at the physical point

Fodor et al. 06

...in the staggered approximation...in the continuum...is a crossover!

$$\frac{m_c(\mu)}{m_c(0)} = 1 + \sum_{k=1}^{\infty} \mathbf{c_k} \left(\frac{\mu}{\pi T}\right)^{2k} \qquad \mathbf{c_1} > \mathbf{0} \qquad \mathbf{c_1} < \mathbf{0}$$

$$\frac{m_c(\mu)}{m_c(0)} = 1 + \sum_{k=1}^{\infty} \mathbf{c_k} \left(\frac{\mu}{\pi T}\right)^{2k} \qquad \mathbf{c_1} > \mathbf{0} \qquad \mathbf{c_1} < \mathbf{0}$$

$$\frac{m_c(\mu)}{m_c(0)} = 1 + \sum_{k=1}^{\infty} \mathbf{c_k} \left(\frac{\mu}{\pi T}\right)^{2k} \qquad \mathbf{c_1} > \mathbf{0} \qquad \mathbf{c_1} < \mathbf{0}$$

How to identify the critical surface: Binder cumulant

$$B_4(\bar{\psi}\psi) \equiv \frac{\langle (\delta\bar{\psi}\psi)^4 \rangle}{\langle (\delta\bar{\psi}\psi)^2 \rangle^2} \xrightarrow{V \to \infty} \begin{cases} 1.604 & \text{3d Ising} \\ 1 & \text{first-order} \\ 3 & \text{crossover} \end{cases}$$

$$\mu = 0$$
: $B_4(m,L) = 1.604 + bL^{1/\nu}(m - m_0^c), \quad \nu = 0.63$

 $\mu \neq 0$

Strategy: tune m_q for 2nd-order P.T. at $\mu = 0$, then turn on [imaginary] μ Does the transition become 1rst-order (left) or crossover (right)? $B_4(am, a\mu) = 1.604 + \sum_{k,l=1} b_{kl} (am - am_0^c)^k (a\mu)^{2l}$

 $\frac{d \, am^c}{d(a\mu)^2} = -\frac{\partial B_4}{\partial (a\mu)^2} / \frac{\partial B_4}{\partial am} = -b_{01}/b_{10}, \text{ hard / easy}$

Numerical results for $N_f = 3, N_t = 4$

unimproved staggered fermions, RHMC algorithm

I. imag. μ : $8^3 \times 4,42$ pairs $(am, a\mu_i) > 20$ million traj., I8 unconstrained dof's in fits II: deriv. at $\mu = 0: 8^3, 12^3 \times 4$ $m_{\pi}L \gtrsim 3, 4.5 > 5$ million, 0.5 million traj.

Non-degenerate fermion masses, $N_f = 2 + 1, N_t = 4$

de Forcrand, O.P., preliminary, thanks to CERN IT/ Grid

 $16^3 \times 4, am_s = 0.25, am_{u,d} = 0.005, m_{\pi}L \sim 3$

lighter than in nature 700k traj.

$$\frac{m_c(\mu)}{m_c(0)} = 1 - 24(11) \left(\frac{\mu}{\pi T}\right)^2 - \dots$$

Towards the continuum: $N_f =$

 $N_f = 3, N_t = 6, \mu = 0$

de Forcrand, Kim, O.P. (LAT07)

Endrodi et al. (LAT07)

$$\frac{m_\pi^c(N_t=4)}{m_\pi^c(N_t=6)} \approx 1.77 \approx \sqrt{3}$$

Distance between physical point and critical line grows as $a \longrightarrow 0$

Prospects for critical point at $\mu_B \lesssim 600 MeV$

A critical point at "small" μ (ie. $\mu/T \lesssim 1$) would require curvature to (*i*) change sign and (*ii*) become large as $a \to 0$

Recent model studies with similar results

K. Fukushima 08

Bowman, Kapusta 08

NJL-Polyakov loop model with vector-vector interaction

Linear sigma model with quarks

Qualitative behaviour as in exotic lattice scenario!

Conclusions

- $igodoldsymbol{\Theta}$ Working lattice methods available for $\ \mu \lesssim T_c$
- $\blacksquare T_c(\mu)$, EoS, screening masses under control at finite density
- Critical endpoint extremely quark mass sensitive
- For $N_f=3, N_t=4~$ no chiral critical point for $\mu \lesssim T_c$
- Beware of cut-off effects: a=0.2-0.3 fm, need finer lattices, other discretizations
- Picture not yet clear, but systematic errors will reduce!