Leading logarithmic corrections resummed

Lisa Carloni
Lund University

November 24, 2009

Project with Johan Bijnens

■ Use RGE \Rightarrow coefficients of the LL series

$$
\begin{equation*}
m_{\phi}^{2}=M_{0}^{2}\left[1+\sum_{n=1} c_{n}\left(M^{2} \log M^{2} / \mu^{2}\right)^{n}+\ldots\right]+\ldots \tag{1}
\end{equation*}
$$

which appear in an n-th loop calculation.

■ At each order LL are potentially the largest correction,
$■ \Rightarrow$ check perturbation series convergence.

■ Find algorithm to resum the series.

1. Leading Logs in a non-renormalizable theory

2 Alternative Proof
$3 O(N)$: Generic N
$4 O(N)$: Resumming LL in Large N limit

5 Conclusions

Renormalizable theory:

$$
\begin{aligned}
\mathcal{L}_{Q E D} & =\bar{\psi}\left(\not \partial-i e_{0} \mathcal{A}\right) \psi-m_{0} \bar{\psi} \psi+\frac{1}{4} F^{\mu \nu} F_{\mu \nu} \\
& +i \delta e_{0} \bar{\psi} \mathcal{A} \psi+\delta m_{0} \bar{\psi} \psi \\
& e_{\text {phys }}=e_{0}\left(1+\frac{e_{0}^{2}}{16 \pi^{2}} \log \frac{\Lambda^{2}}{\mu^{2}}+\ldots\right) \\
& m_{\text {phys }}=m_{0}\left(1+\frac{m_{0}^{2}}{16 \pi^{2}} \log \frac{\Lambda^{2}}{\mu^{2}}+\ldots\right)
\end{aligned}
$$

■ divergences are reabsorbed in the \mathcal{L}_{0} coupling constants
■ the counterterms have the same form as \mathcal{L}_{0} couplings

Renormalizable theory:

$$
\begin{aligned}
\mathcal{L}_{Q E D} & =\bar{\psi}\left(\not \partial-i e_{0} \mathcal{A}\right) \psi-m_{0} \bar{\psi} \psi+\frac{1}{4} F^{\mu \nu} F_{\mu \nu} \\
& +i \delta e_{0} \bar{\psi} A \mathcal{A} \psi+\delta m_{0} \bar{\psi} \psi \\
& e_{\text {phys }}=e_{0}\left(1+\frac{e_{0}^{2}}{16 \pi^{2}} \log \frac{\Lambda^{2}}{\mu^{2}}+\ldots\right) \\
& m_{\text {phys }}=m_{0}\left(1+\frac{m_{0}^{2}}{16 \pi^{2}} \log \frac{\Lambda^{2}}{\mu^{2}}+\ldots\right)
\end{aligned}
$$

■ the counter term coefficient δe_{0} cancels

- divergence
- μ dependence

Weinberg's power counting

Non-Renormalizable theory: expansion $p^{2} / \Lambda_{c u t}^{2}$

$$
\mathcal{L}_{\text {eff }}=\mathcal{L}_{0}+\mathcal{L}_{1}+\mathcal{L}_{2}+\mathcal{L}_{3}+\mathcal{L}_{4}+\ldots
$$

■ order $0 \quad \mathcal{L}_{0}^{\text {tree }}$

- order 1
$\mathcal{L}_{0}^{1 \text { loop }}+\mathcal{L}_{1}^{\text {tree }}$
$\rightarrow \log \left(M^{2} / \mu^{2}\right)$
- order 2
$\mathcal{L}_{0}^{2 \text { loops }}+\mathcal{L}_{1}^{1 \text { loop }}+\mathcal{L}_{2}^{\text {tree }}$
$\rightarrow\left[\log \left(M^{2} / \mu^{2}\right)\right]^{2}$

Weinberg's paper: [Physica A 96 (1979) 327]

$$
\Rightarrow c_{2}\left[\log \left(M^{2} / \mu^{2}\right)\right]^{2}
$$

■ c_{2} is completely determined by a 1 loop calculation,
■ c_{2} depends only on \mathcal{L}_{0} coefficients.

Büchler's-Colangelo paper: [arXiv:hep-ph/0309049]
$■$ Generalization of the results to all orders $\Rightarrow c_{n}\left[\log \left(M^{2} / \mu^{2}\right)\right]^{n}$

Alternative Proof:

■ How to get LL form 1 loop calculations:

$$
\mathcal{L}^{\text {bare }}=\sum_{n} \hbar^{n} \mathcal{L}_{n}^{\text {bare }}=\sum_{n} \frac{\hbar^{n}}{\mu^{\epsilon n}}\left[\mathcal{L}_{n}^{\text {ren }}+\mathcal{L}_{n}^{\text {div }}\right]
$$

- choose an operator basis

$$
\mathcal{L}_{n}^{\text {bare }}=\sum_{i} \frac{1}{\mu^{\epsilon n}}\left[c_{i}^{(n)}+\sum_{k} \frac{c_{i k}^{(n)}}{\epsilon^{k}}\right] \cdot \mathcal{O}_{i}^{(n)}
$$

■ require μ independence

$$
\frac{\partial \mathcal{L}^{\text {bare }}}{\partial \mu}=0 \Rightarrow \frac{\partial}{\partial \mu}\left[\mu^{-\epsilon n}\left(\sum_{k=1}^{n} \frac{c_{i k}^{(n)}}{\epsilon^{k}}+c_{i}^{(n)}\right)\right]=0 \forall \hbar^{n}
$$

$■ \Rightarrow$ set of equations for every \hbar^{n}, solved recursively
example: $\mathcal{M}^{(2)}$
■ pick a complete enough $\left\{O_{i}\right\}$ to describe it at this order

$$
\rightarrow \mathcal{L}^{\text {bare }}=\sum_{n \leq 2} \frac{\hbar^{n}}{\mu^{\epsilon n}}\left[c_{i}^{(n)}(\mu)+\sum_{k} \frac{c_{i k}^{(n)}}{\epsilon^{k}}\right] \cdot \mathcal{O}_{i}^{(n)}
$$

■ check which divergences can come from having ℓ-loops

$$
\sim \frac{1}{\epsilon^{2}}
$$

$$
\rightarrow \mathcal{M}_{\ell}^{(2)}=\sum_{k=0}^{\ell \leq 2} \frac{\mathcal{M}_{\ell k}^{(2)}}{\epsilon^{k}}
$$

■ check which divergences can come from having diverging vertices

$$
c_{11}^{1} \sim \frac{1}{\epsilon} \quad \rightarrow \mathcal{M}_{\ell k}^{(2)}\left(\{c\}_{k j}^{(m<2)}\right)
$$

■ expand $\mu^{-\epsilon} \simeq 1-\epsilon \log \mu$ and solve recursively:

$$
\hbar^{1}: \mathcal{L}^{\text {bare }}=\mathcal{L}_{0}^{\text {bare }}+\hbar^{1} \mathcal{L}_{1}^{\text {bare }}
$$

- c_{11}^{1} is the coefficient of the LL
- completely determined by 1 loop calculation.
bottom line:
$■ \operatorname{LL}$ coefficient $c_{n}\left[\log \left(M^{2} / \mu^{2}\right)\right]^{n} \Leftrightarrow c_{n n}^{n}$,
- $c_{n n}^{n} \Leftarrow 1$ loop calculations,

■ substitute each vertex by corresponding $c_{m m}^{m}$.

Generic N

■ Apply this method to $m_{\phi}, F_{\phi}, \mathcal{A}_{\phi \phi \rightarrow \phi \phi}$, and form factors

■ The Model: massive $O(N+1) / O(N)$ non-linear σ-model

$$
\begin{aligned}
\mathcal{L}_{0}^{N+1}=\frac{F^{2}}{2} \partial_{\mu} \Phi \partial^{\mu} \Phi+\underbrace{\text { explicit } O(N+1)} \\
F^{2} \chi^{T} \Phi \\
\text { symmetry breaking } \\
\chi^{T}=\left(M^{2}, 0, \ldots, 0\right)
\end{aligned}
$$

■ spontaneously broken down by $\left\langle\Phi^{T}\right\rangle=(1,0, \ldots, 0)$

$$
\Phi=\frac{1}{\sqrt{1+\frac{\phi \cdot \phi}{F^{2}}}}\left(\begin{array}{c}
1 \\
\frac{\phi_{1}}{F} \\
\vdots \\
\frac{\phi_{N}}{F}
\end{array}\right) \quad \begin{aligned}
& \text { if } M^{2}=0 \Rightarrow N \quad \mathrm{~GB} \\
& \phi_{1}, \ldots, \phi_{N} \\
& \\
& \\
& \text { if } M^{2} \neq 0 \Rightarrow N \quad \mathrm{PGB} \\
& m_{\phi}^{2} \neq 0 .
\end{aligned}
$$

- When you expand the square root $\sqrt{1+\frac{\phi \phi}{F^{2}}}=1+\frac{1}{2} \frac{\phi \phi}{F^{2}}+\ldots$

$\sim \frac{1}{\mathrm{~F}^{4}}$

- to find the LL

Results:

■ $m_{\phi}^{2}=M^{2}\left(1+a_{1} L_{M}+a_{2} L_{M}^{2}+a_{3} L_{M}^{3}+\ldots\right)$

i	a_{i} for $N=3$	a_{i} for general N
1	$-1 / 2$	$1-\frac{N}{2}$
2	$17 / 8$	$\frac{7}{4}-\frac{7 N}{4}+\frac{5 N^{2}}{8}$
3	$-103 / 24$	$\frac{37}{12}-\frac{113 N}{24}+\frac{15 N^{2}}{4}-N^{3}$
4	$24367 / 1152$	$\frac{839}{144}-\frac{1601 N}{144}+\frac{695 N^{2}}{48}-\frac{135 N^{3}}{16}+\frac{231 N^{4}}{128}$
5	$-8821 / 144$	$\frac{33661}{2400}-\frac{1151407 N}{43200}+\frac{197587 N^{2}}{4320}-\frac{12709 N^{3}}{300}+\frac{6271 N^{4}}{320}-\frac{7 N^{5}}{2}$

■ $F_{\phi}=F\left(1+b_{1} L_{M}+b_{2} L_{M}^{2}+b_{3} L_{M}^{3}+\ldots\right)$

i	b_{i} for $N=3$	b_{i} for general N
1	1	$\frac{N}{2}-\frac{1}{2}$
2	$-\frac{5}{4}$	$-\frac{1}{2}+\frac{7 N}{8}-\frac{3 N^{2}}{8}$
3	$\frac{83}{24}$	$-\frac{7}{24}+\frac{21 N}{16}-\frac{73 N^{2}}{48}+\frac{1 N^{3}}{2}$
4	$-\frac{3013}{288}$	$\frac{47}{576}+\frac{135 N}{864}-\frac{14077 N^{2}}{3456}+\frac{625 N^{3}}{192}-\frac{105 N^{4}}{128}$
5	$\frac{2060147}{51840}$	$-\frac{23087}{64800}+\frac{459413 N}{172800}-\frac{189875 N^{2}}{20736}+\frac{546941 N^{3}}{43200}-\frac{1169 N^{4}}{160}+\frac{3 N^{5}}{2}$

- convergence is much better for

$$
M^{2}=m_{\phi}^{2}\left(1+b_{1} L_{m_{\phi}}+b_{2} L_{m_{\phi}}^{2}+b_{3} L_{m_{\phi}}^{3}+\ldots\right)
$$

$$
\mu=1 \mathrm{GeV}
$$

Large N limit: resumming LL

■ Power counting

- pick \mathcal{L} extensive in $N \quad \Rightarrow F^{2} \sim N$
- a vertex with $2 n$ legs
$\Leftrightarrow F^{2-2 n} \sim \frac{1}{N^{n-1}}$
- each loop $\Leftrightarrow N$
- 1PI diagrams

$$
\left.\begin{array}{l}
N_{L}=N_{I}-\sum_{n} N_{2 n}+1 \\
2 N_{I}+N_{E}=\sum_{n} 2 n N_{2 n}
\end{array}\right\} \Rightarrow N_{L}=\sum_{n}(n-1) N_{2 n}-\frac{1}{2} N_{E}+1
$$

- diagram suppression factor

$$
N^{N_{L}-N_{E} / 2+1}
$$

- diagrams with shared lines are suppressed

- in the large N limit only "cactus" diagrams survive:

■ these diagrams can all be generated recursively via Gap equation

■ \Rightarrow resum the series

$$
M^{2}=m_{\phi}^{2} \sqrt{1+\frac{N}{F^{2}} \mathcal{A}\left(m_{\phi}^{2}\right)}
$$

■ LL come from $\mathcal{A}\left(m_{\phi}^{2}\right)=\frac{m^{2} \phi}{16 \pi^{2}} \log \frac{\mu^{2}}{m_{\phi}^{2}}$.

- analogously for the decay constant F_{ϕ}

- we can resum the series

$$
F_{\phi}=F \sqrt{1+\frac{N}{F^{2}} \mathcal{A}\left(m_{\phi}^{2}\right)}
$$

■ again LL come from $\mathcal{A}\left(m_{\phi}^{2}\right)=\frac{m^{2} \phi}{16 \pi^{2}} \log \frac{\mu^{2}}{m_{\phi}^{2}}$.

- The LL series

$$
\begin{aligned}
& m_{\phi}^{2}=M^{2}\left(1+\frac{-1}{2} N L_{M}+\frac{5}{8} N^{2} L_{M}^{2}-N^{3} L_{M}^{3}+\frac{231}{128} N^{4} L_{M}^{4}+\frac{-7}{2} N^{5} L_{M}^{5}+\ldots\right) \\
& M^{2}=m_{\phi}^{2}\left(1+\frac{1}{2} N L_{m_{\phi}}+\frac{-1}{8} N^{2} L_{m_{\phi}}^{2}+\frac{1}{16} N^{3} L_{m_{\phi}}^{3}+\frac{-5}{128} N^{4} L_{m_{\phi}}^{4}+\ldots\right)
\end{aligned}
$$

■ unfortunately the large N approximation does not work too well. compare with the generic N results:

$$
\text { 5-loop coeff.: } \quad \ldots+6271 / 320 N^{4}-7 / 2 N^{5}
$$

to be negligible (10% correction) $N \sim 20$.

1 Alternative, more intuitive proof that you can get LL coefficients from 1 loop calculations
$\sqrt{2} m_{\phi}^{2}$ and F_{ϕ} up to $n=5$, work in progress for $\mathcal{A}_{\phi \phi \rightarrow \phi \phi}$ and form factors.

33 We can resum the whole series in the large N limit.

1 Alternative, more intuitive proof that you can get LL coefficients from 1 loop calculations
$2 m_{\phi}^{2}$ and F_{ϕ} up to $n=5$, work in progress for $\mathcal{A}_{\phi \phi \rightarrow \phi \phi}$ and form factors.

3 We can resum the whole series in the large N limit.

1 Alternative, more intuitive proof that you can get LL coefficients from 1 loop calculations
$2 m_{\phi}^{2}$ and F_{ϕ} up to $n=5$, work in progress for $\mathcal{A}_{\phi \phi \rightarrow \phi \phi}$ and form factors.

3 We can resum the whole series in the large N limit.

