Shear Viscosities of Strongly Coupled Anisotropic Plasmas

Dominik Steineder

Institute for Theoretical Physics Vienna University of Technology

work done in collaboration with Anton Rebhan, arXiv:1110.6825

November 27, 2011

INSTITUTE for THEORETICAL PHYSICS Vienna University of Technology

(日) (同) (三) (三)

Dominik Steineder

8th Vienna Central European Seminar

November 27, 2011 1 / 13

Elliptic flow and the quark-gluon plasma

$$v_n = \frac{\int \frac{dN}{d^3p} e^{in(\phi - \phi_R)} d^3p}{\int \frac{dN}{d^3p} d^3p}$$

・ロト ・回ト ・ヨト ・ヨト

elliptic flow \rightarrow n=2 ϕ_R ... orientation of reaction plane

■ ◆ ■ ▶ ■ ∽ Q (~ November 27, 2011 2 / 13

Elliptic flow and the quark-gluon plasma

$$v_n = \frac{\int \frac{dN}{d^3p} e^{in(\phi - \phi_R)} d^3p}{\int \frac{dN}{d^3p} d^3p}$$

・ロト ・回ト ・ヨト ・ヨト

elliptic flow \rightarrow n=2 ϕ_R ... orientation of reaction plane

November 27, 2011 2 / 13

Hydrodynamics and experimental data

Luzum, Romatschke '08

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Hydrodynamics and experimental data

Luzum, Romatschke '08

"RHIC serves the perfect fluid" (2005)

イロト イポト イヨト イヨ

large $v_2 \Rightarrow$ small $\eta/s!$

 η/s is a measure for the interaction strength!

 η/s is a measure for the interaction strength!

Perturbative QCD

 \bullet well justified for highest energy densities \rightarrow small couplings (asymptotic freedom)

 η/s is a measure for the interaction strength!

Perturbative QCD

- \bullet well justified for highest energy densities \rightarrow small couplings (asymptotic freedom)
- leading result for shear viscosity

$$\frac{\eta}{s} = \frac{\#}{g^4 \log(\#/g)}$$

 η/s is a measure for the interaction strength!

Perturbative QCD

- \bullet well justified for highest energy densities \rightarrow small couplings (asymptotic freedom)
- leading result for shear viscosity

$$\frac{\eta}{s} = \frac{\#}{g^4 \log(\#/g)}$$

• $\eta/s\sim 5$ for gauge coupling $g\sim 1\Rightarrow$ magnitudes too large! [Huot, Jeon, Moore '06]

 η/s is a measure for the interaction strength!

Perturbative QCD

- \bullet well justified for highest energy densities \rightarrow small couplings (asymptotic freedom)
- leading result for shear viscosity

$$\frac{\eta}{s} = \frac{\#}{g^4 \log(\#/g)}$$

• $\eta/s \sim 5$ for gauge coupling $g \sim 1 \Rightarrow$ magnitudes too large! [Huot, Jeon, Moore '06]

 $\eta/s \lesssim O(1) \Rightarrow$ Strong coupling effect!

Dominik Steineder

The challenge of strong coupling

• Lattice QCD

- powerful non-perturbative tool
- not suited for real time phenomena (transport coefficients) (see however [Meyer '09])

The challenge of strong coupling

Lattice QCD

- powerful non-perturbative tool
- not suited for real time phenomena (transport coefficients) (see however [Meyer '09])

• Gauge/gravity duality

- string theory inspired method to study large N gauge theories at strong coupling
- not (yet ?) established for QCD

 \Rightarrow Need to study "wrong" theory!

• $\mathcal{N} = 4$ SU(N) SYM plasma has [Policastro, Son, Starinets '01]

$$\frac{\eta}{s} = \frac{\hbar}{4\pi}$$

・ロト ・回ト ・ヨト ・ヨト

• $\mathcal{N} = 4$ SU(N) SYM plasma has [Policastro, Son, Starinets '01]

$$\frac{\eta}{s} = \frac{\hbar}{4\pi}$$

• universal for two derivative Einstein gravity duals

[Kovtun, Son, Starinets '03; Buchel, Liu '03] \Rightarrow conjectured lower (quantum) bound for any fluid in nature

• $\mathcal{N} = 4$ SU(N) SYM plasma has [Policastro, Son, Starinets '01]

$$\frac{\eta}{s} = \frac{\hbar}{4\pi}$$

- universal for two derivative Einstein gravity duals
 [Kovtun, Son, Starinets '03; Buchel, Liu '03]
 ⇒ conjectured lower (quantum) bound for any fluid in nature
 [Kovtun, Son, Starinets '04]
- finite coupling corrections increase η/s [Buchel, Liu '05]

• $\mathcal{N} = 4$ SU(N) SYM plasma has [Policastro, Son, Starinets '01]

$$\frac{\eta}{s} = \frac{\hbar}{4\pi}$$

- universal for two derivative Einstein gravity duals
 [Kovtun, Son, Starinets '03; Buchel, Liu '03]
 ⇒ conjectured lower (quantum) bound for any fluid in nature
 [Kovtun, Son, Starinets '04]
- finite coupling corrections increase η/s [Buchel, Liu '05]
- exotic theories with **higher derivative** gravity duals **can violate the bound** [Kats, Petrov '07; Buchel, Myers, Sinha '08]

• $\mathcal{N}=4$ SU(N) SYM plasma has [Policastro, Son, Starinets '01]

$$\frac{\eta}{s} = \frac{\hbar}{4\pi}$$

- universal for two derivative Einstein gravity duals
 [Kovtun, Son, Starinets '03; Buchel, Liu '03]
 ⇒ conjectured lower (quantum) bound for any fluid in nature
 [Kovtun, Son, Starinets '04]
- finite coupling corrections increase η/s [Buchel, Liu '05]
- exotic theories with higher derivative gravity duals can violate the bound [Kats, Petrov '07; Buchel, Myers, Sinha '08]
- non-commutative $\mathcal{N}=4$ SYM plasma satisfies the bound [Landsteiner, Mas '07]

• $\mathcal{N} = 4$ SU(N) SYM plasma has [Policastro, Son, Starinets '01]

$$\frac{\eta}{s} = \frac{\hbar}{4\pi}$$

- universal for two derivative Einstein gravity duals
 [Kovtun, Son, Starinets '03; Buchel, Liu '03]
 ⇒ conjectured lower (quantum) bound for any fluid in nature
 [Kovtun, Son, Starinets '04]
- finite coupling corrections increase η/s [Buchel, Liu '05]
- exotic theories with higher derivative gravity duals can violate the bound [Kats, Petrov '07; Buchel, Myers, Sinha '08]
- $\bullet\,$ non-commutative $\mathcal{N}=4$ SYM plasma satisfies the bound $_{[Landsteiner,\;Mas\;'07]}$
- anisotropic p-wave superfluids have non-universal shear viscosity above the bound [Erdmenger, Kerner, Zeller '10]

• $\mathcal{N}=4$ SU(N) SYM plasma has [Policastro, Son, Starinets '01]

$$\frac{\eta}{s} = \frac{\hbar}{4\pi}$$

- universal for two derivative Einstein gravity duals
 [Kovtun, Son, Starinets '03; Buchel, Liu '03]
 ⇒ conjectured lower (quantum) bound for any fluid in nature
 [Kovtun, Son, Starinets '04]
- finite coupling corrections increase η/s [Buchel, Liu '05]
- exotic theories with higher derivative gravity duals can violate the bound [Kats, Petrov '07; Buchel, Myers, Sinha '08]
- $\bullet\,$ non-commutative $\mathcal{N}=4$ SYM plasma satisfies the bound $_{[Landsteiner,\;Mas\;'07]}$
- anisotropic p-wave superfluids have non-universal shear viscosity above the bound [Erdmenger, Kerner, Zeller '10]
- and the story continues ...

Anisotropy and heavy ion collisions

Shock waves in AdS_5 [Chesler, Yaffe '10]

A D > A B > A B >

Anisotropy and heavy ion collisions

Shock waves in AdS₅ [Chesler, Yaffe '10]

start with something simpler: stationary anisotropic plasma

Boundary

$$S=S_{\mathcal{N}=4}+rac{1}{8\pi^2}\int heta(z){
m Tr}\;F\wedge F$$
 with $heta(z)=2\pi az$

= 900

a is the anisotropy parameter!

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

a is the anisotropy parameter!

 $\langle T^{\mu\nu} \rangle = \text{diag}(\epsilon, P_{\perp}, P_{\perp}, P_z)$ with conformal anomaly $\langle T^{\mu}_{\mu} \rangle \propto a^4$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

a is the anisotropy parameter!

 $\langle T^{\mu
u}
angle = {
m diag}ig(\epsilon, P_{\perp}, P_{\perp}, P_zig)$ with conformal anomaly $\langle T^{\mu}_{\mu}
angle \propto a^4$

$$ds^{2} = \frac{e^{-\frac{\phi}{2}}}{u^{2}} \left(-\mathcal{FB}dt^{2} + \frac{du^{2}}{\mathcal{F}} + dx^{2} + dy^{2} + \mathcal{H}dz^{2} \right)$$

November 27, 2011 8 / 13

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

a is the anisotropy parameter!

 $\langle T^{\mu\nu} \rangle = \text{diag}(\epsilon, P_{\perp}, P_{\perp}, P_z)$ with conformal anomaly $\langle T^{\mu}_{\mu} \rangle \propto a^4$

$$ds^{2} = \frac{e^{-\frac{\phi}{2}}}{u^{2}} \Big(-\mathcal{FB}dt^{2} + \frac{du^{2}}{\mathcal{F}} + dx^{2} + dy^{2} + \mathcal{H}dz^{2} \Big)$$

$$s = \frac{(\epsilon + P_{\perp})}{T}$$

$$s = \frac{A_h}{4GV_3}$$

$$\Box \Rightarrow \langle \Box \Rightarrow \langle \Xi \Rightarrow \langle \Xi \Rightarrow \rangle \langle \Xi \Rightarrow \rangle \langle \Box \rangle$$
Dominik Steineder 8th Vienna Central European Seminar November 27, 2011 8 / 13

Kubo formula

$$\eta_{ijkl} = -\lim_{\omega \to 0} \frac{1}{\omega} \operatorname{Im} G^{R}_{ij,kl}(\omega, 0)$$

with $G_{ij,kl}^{R}(\omega,0) = -i \int dt d\mathbf{x} e^{i\omega t} \theta(t) \langle [T_{ij}(t,\mathbf{x}), T_{kl}(0,\mathbf{0})] \rangle$

E ∽QQ

Kubo formula

$$\eta_{ijkl} = -\lim_{\omega \to 0} \frac{1}{\omega} \operatorname{Im} G^{R}_{ij,kl}(\omega, 0)$$

with $G_{ij,kl}^{R}(\omega,0) = -i \int dt d\mathbf{x} e^{i\omega t} \theta(t) \langle [T_{ij}(t,\mathbf{x}), T_{kl}(0,\mathbf{0})] \rangle$

Gauge/gravity duality

perturb metric by $\psi_a = h_j^i$ and expand action to second order in ψ_a \Rightarrow effective action for massless scalar ψ_a

$$G_a^R(q) = -\lim_{u \to 0} \frac{\prod_a(u, q)}{\psi_a(u, q)} \quad \text{with } \Pi_a = \frac{\partial \mathcal{L}^{(2)}}{\partial(\partial_u \psi_a)} \propto \partial_u \psi_a$$

retarded correlator \leftrightarrow

infalling boundary conditions at horizon

Kubo formula

$$\eta_{ijkl} = -\lim_{\omega \to 0} \frac{1}{\omega} \operatorname{Im} G^{R}_{ij,kl}(\omega, 0)$$

with $G_{ij,kl}^{R}(\omega,0) = -i \int dt d\mathbf{x} e^{i\omega t} \theta(t) \langle [T_{ij}(t,\mathbf{x}), T_{kl}(0,\mathbf{0})] \rangle$

Gauge/gravity duality

perturb metric by $\psi_a = h_j^i$ and expand action to second order in ψ_a \Rightarrow effective action for massless scalar ψ_a

$$G_a^R(q) = -\lim_{u \to 0} \frac{\prod_a(u,q)}{\psi_a(u,q)} \quad \text{with } \Pi_a = \frac{\partial \mathcal{L}^{(2)}}{\partial(\partial_u \psi_a)} \propto \partial_u \psi_a$$

retarded correlator ↔ infalling boundary conditions at horizon

Either solve numerically or simplify further ...

Dominik Steineder

8th Vienna Central European Seminar

Membrane paradigm [Iqbal, Liu '08]

generic transport coefficient of boundary theory

Membrane paradigm [Iqbal, Liu '08]

generic transport coefficient of boundary theory

geometric quantities evaluated at horizon

(日) (同) (日) (日)

 \Rightarrow

Membrane paradigm [Iqbal, Liu '08]

generic transport coefficient of	_	geometric quantities evaluated at
boundary theory	\rightarrow	horizon

at the horizon

$$\psi_{a}(t, u, \mathbf{x}) = \psi_{a}(v, \mathbf{x})$$
 where $dv = dt - \sqrt{\frac{g_{uu}}{-g_{tt}}} du$

Membrane paradigm [Iqbal, Liu '08]

at the horizon

$$\psi_{a}(t, u, \mathbf{x}) = \psi_{a}(v, \mathbf{x})$$
 where $dv = dt - \sqrt{\frac{g_{uu}}{-g_{tt}}} du$

shear viscosity

$$\eta_a = rac{\prod_a (u_h, q)}{i\omega\psi_a(u_h, q)}$$
 with $\prod_a (u_h, q) \propto i\omega\psi_a$

and check whether $\partial_u \eta_a = 0$.

(日) (同) (三) (三)

In anisotropic plasma we find 2 shear viscosities:

• purely transverse $\psi_\perp = \mathbf{h}_y^{\mathsf{x}}$

$$\eta_{\perp} = \frac{s}{4\pi}$$

E 990

In anisotropic plasma we find 2 shear viscosities:

• purely transverse
$$\psi_{\perp} = h_y^x$$

$$\eta_{\perp} = \frac{s}{4\pi}$$

• longitudinal
$$\psi_{\parallel} = h_z^x$$

$$\eta_{\parallel} = \eta_{\perp} rac{g_{ imes imes}(u_h)}{g_{zz}(u_h)} = rac{s}{4\pi \mathcal{H}(u_h)}$$

In anisotropic plasma we find 2 shear viscosities:

イロト 不得下 イヨト イヨト

In anisotropic plasma we find 2 shear viscosities:

Violation of the viscosity bound!

D		<u><u> </u></u>	
1 lon	ainik	Steine	dor
001		Steme	uci

November 27, 2011 12 / 13

・ロト ・回ト ・ヨト ・

large a/T,

November 27, 2011 12 / 13

イロト イヨト イヨト イヨ

large a/T, small a/T

November 27, 2011 12 / 13

・ロト ・回ト ・ヨト ・ヨ

large a/T, small a/T

 \Rightarrow numerically $a/T \gtrapprox 1.3$

November 27, 2011 12 / 13

large a/T, small a/T

$$\Rightarrow$$
 numerically $\mathit{a}/\mathit{T} \gtrapprox 1.3$

Dominik Steineder

8th Vienna Central European Seminar

November 27, 2011 12 / 13

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

I have talked about ...

・ロト ・回ト ・ヨト ・ヨト

I have talked about ...

 $\bullet ~\eta/s$ as a phenomenologically interesting quantity

・ロト ・回ト ・ヨト ・ヨト

I have talked about ...

- $\bullet ~\eta/s$ as a phenomenologically interesting quantity
- $\bullet~\eta/s$ as a conjectured lower bound for realistic fluids

I have talked about ...

- $\bullet ~\eta/s$ as a phenomenologically interesting quantity
- $\bullet~\eta/s$ as a conjectured lower bound for realistic fluids
- holographic model for stationary anisotropic plasmas

I have talked about ...

- $\bullet ~\eta/s$ as a phenomenologically interesting quantity
- $\bullet~\eta/s$ as a conjectured lower bound for realistic fluids
- holographic model for stationary anisotropic plasmas
- anisotropy can lead to violation of viscosity bound

I have talked about ...

- η/s as a phenomenologically interesting quantity
- $\bullet~\eta/s$ as a conjectured lower bound for realistic fluids
- holographic model for stationary anisotropic plasmas
- anisotropy can lead to violation of viscosity bound

I could have talked about ...

- conductivities in anisotropic plasmas
- charge and momentum diffusion

(日) (同) (三) (三)

I have talked about ...

- η/s as a phenomenologically interesting quantity
- $\bullet~\eta/s$ as a conjectured lower bound for realistic fluids
- holographic model for stationary anisotropic plasmas
- anisotropy can lead to violation of viscosity bound

I could have talked about ...

- conductivities in anisotropic plasmas
- charge and momentum diffusion

I would like to talk about ...

- full study of all hydrodynamic modes (in progress)
- implications of the different shear viscosities for heavy ion collisions

(日) (同) (三) (三)