Weak Annihilator over Extension Rings

1LUNQUN OUYANG and 2GARY F. BIRKENMEIER

1Department of Mathematics, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
2Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA 70504-1010 USA
1ouyanglqtxy@163.com, 2gfb1127@louisiana.edu

Abstract. Let R be a ring and $\text{nil}(R)$ the set of all nilpotent elements of R. For a subset X of a ring R, we define $N_R(X) = \{a \in R \mid xa \in \text{nil}(R) \text{ for all } x \in X\}$, which is called the weak annihilator of X in R. In this paper we mainly investigate the properties of the weak annihilator over extension rings.

2010 Mathematics Subject Classification: Primary: 13B25; Secondary: 16N60

Keywords and phrases: Weak annihilator, nilpotent associated prime, nilpotent good polynomial.

1. Introduction

Throughout this paper R denotes an associative ring with unity, $\alpha : R \rightarrow R$ is an endomorphism, and δ an α-derivation of R, that is, δ is an additive map such that $\delta(ab) = \delta(a)b + \alpha(a)\delta(b)$, for $a, b \in R$. We denote by $R[x; \alpha, \delta]$ the Ore extension whose elements are the polynomials over R, the addition is defined as usual and the multiplication subject to the relation $xa = \alpha(a)x + \delta(a)$ for any $a \in R$. We use $P(R)$ and $\text{nil}(R)$ to represent the prime radical and the set of all nilpotent elements of R respectively. Due to Birkenmeier et al. [3], a ring R is called 2-primal if $P(R) = \text{nil}(R)$. Every reduced ring (i.e. nil$(R) = 0$) is obviously a 2-primal ring. Other examples and properties of 2-primal rings can be founded in [4, 5, 6]. Let α be an endomorphism and δ an α-derivation of a ring R. Following E. Hashemi and A. Moussavi [11], a ring R is said to be α-compatible if for each $a, b \in R, ab = 0 \iff a\alpha(b) = 0$. Moreover, R is called to be δ-compatible if for each $a, b \in R, ab = 0 \Rightarrow a\delta(b) = 0$. If R is both α-compatible and δ-compatible, then R is said to be (α, δ)-compatible.

For a subset X of a ring R, $r_R(X) = \{a \in R \mid Xa = 0\}$ and $l_R(X) = \{a \in R \mid aX = 0\}$ will stand for the right and left annihilator of X in R, respectively. Properties of the right (left) annihilator of a subset in a ring R are studied by many authors (see [2, 8, 9, 14, 15]). As a generalization of the right (left) annihilator, in this paper we introduce the notion of a weak
annihilator of a subset in a ring, and investigate the weak annihilator properties over the Ore extension ring \(R[x; \alpha, \delta] \).

In this paper all subsets are nonempty. Let \(f(x) = a_0 + a_1 x + \cdots + a_n x^n \in R[x; \alpha, \delta] \). We say that \(f(x) \in \text{nil}(R[x; \alpha, \delta]) \) if and only if \(a_i \in \text{nil}(R) \) for all \(0 \leq i \leq n \). Let \(I \) be a subset of \(R \), \(I[x; \alpha, \delta] \) means \(\{ u_0 + u_1 x + \cdots + u_n x^n \in R[x; \alpha, \delta] \mid u_i \in I \} \), that is, for any skew polynomial \(f(x) = a_0 + a_1 x + \cdots + a_n x^n \in R[x; \alpha, \delta] \), \(f(x) \in I[x; \alpha, \delta] \) if and only if \(a_i \in I \) for all \(0 \leq i \leq n \). If \(f(x) \in R[x; \alpha, \delta] \) is a nilpotent element of \(R[x; \alpha, \delta] \), then we say that \(f(x) \in \text{nil}(R[x; \alpha, \delta]) \). For \(f(x) = a_0 + a_1 x + \cdots + a_n x^n \in R[x; \alpha, \delta] \), we denote by \(\{ a_0, a_1, \ldots, a_n \} \) or \(C_f \) the set comprised of the coefficients of \(f(x) \), and for a subset \(U \subseteq R[x; \alpha, \delta] \), \(C_U \) = \(\bigcup_{f \in U} C_f \).

2. Weak annihilator

Definition 2.1. Let \(R \) be a ring. For a subset \(X \) of a ring \(R \), we define \(N_R(X) = \{ a \in R \mid xa \in \text{nil}(R) \text{ for all } x \in X \} \), which is called the weak annihilator of \(X \) in \(R \). If \(X \) is singleton, say \(X = \{ r \} \), we use \(N_R(r) \) in place of \(N_R(\{ r \}) \).

Obviously, for any subset \(X \) of a ring \(R \), \(N_R(X) = \{ a \in R \mid xa \in \text{nil}(R) \text{ for all } x \in X \} = \{ b \in R \mid bx \in \text{nil}(R) \text{ for all } x \in X \} \), and \(r_R(X) \subseteq N_R(X) \) and \(I_R(X) \subseteq N_R(X) \). If \(R \) is reduced, then \(r_R(X) = N_R(X) = I_R(X) \) for any subset \(X \) of \(R \). It is easy to see that for any subset \(X \subseteq R, N_R(X) \) is an ideal of \(R \) in case \(\text{nil}(R) \) is an ideal.

Example 2.1. Let \(Z \) be the ring of integers and \(T_2(Z) \) the \(2 \times 2 \) upper triangular matrix ring over \(Z \). We consider the subset \(X = \{ \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix} \} \). Clearly, \(r_{T_2(Z)}(X) = 0 \), and \(N_{T_2(Z)}(X) = \{ \begin{pmatrix} 0 & m \\ 0 & 0 \end{pmatrix} \mid m \in Z \} \). Thus \(r_{T_2(Z)}(X) \neq N_{T_2(Z)}(X) \). Hence a weak annihilator is not a trivial generalization of an annihilator.

Proposition 2.1. Let \(X, Y \) be subsets of \(R \). Then we have the following:

1. \(X \subseteq Y \) implies \(N_R(X) \supseteq N_R(Y) \).
2. \(X \subseteq N_R(N_R(X)) \).
3. \(N_R(X) = N_R(N_R(N_R(X))) \).

Proof. (1) and (2) are really easy.

(3) Applying (2) to \(N_R(X) \), we obtain \(N_R(X) \subseteq N_R(N_R(N_R(X))) \). Since \(X \subseteq N_R(N_R(X)) \), we have \(N_R(X) \supseteq N_R(N_R(N_R(X))) \) by (1). Therefore we have \(N_R(X) = N_R(N_R(N_R(X))) \).

Let \(\delta \) be an \(\alpha \)-derivation of \(R \). For integers \(i, j \) with \(0 \leq i \leq j, f^i_j \in \text{End}(R, +) \) will denote the map which is the sum of all possible words in \(\alpha, \delta \) built with \(i \) letters \(\alpha \) and \(j - i \) letters \(\delta \). For instance, \(f^0_1 = 1, f^1_1 = \alpha, f^2_1 = \delta^j \) and \(f^3_1 = \alpha^{i-1} \delta + \alpha^{i-2} \delta \alpha + \cdots + \delta \alpha^{j-1} \). The next Lemma appears in [12, Lemma 4.1].

Lemma 2.1. For any positive integer \(n \) and \(r \in R \), we have \(x^n r = \sum_{i=0}^{n} f^i_n(r) x^i \) in the ring \(R[x; \alpha, \delta] \).

For the proof of the next lemma, see [11].

Lemma 2.2. Let \(R \) be an \((\alpha, \delta) \)-compatible ring. Then we have the following:

1. If \(ab = 0 \), then \(\alpha^m(b) = \alpha^n(a)b = 0 \) for all positive integers \(n \).
2. If \(\alpha^k(a)b = 0 \) for some positive integer \(k \), then \(ab = 0 \).
3. If \(ab = 0 \), then \(\alpha^n(a) \delta^m(b) = 0 = \delta^m(a) \alpha^n(b) \) for all positive integers \(m, n \).
Lemma 2.3. Let δ be an α-derivation of R. If R is (α, δ)-compatible, then $abc = 0$ implies $abf^j_i(c) = 0$ and $af^j_i(b)c = 0$ for all $0 \leq i < j$ and $a, b, c \in R$.

Proof. Let $abc = 0$ for $a, b, c \in R$. Then $ab\alpha(c) = ab\delta(c) = 0$ since R is (α, δ)-compatible. Thus $abf^j_i(c) = 0$ is clear. To see $af^j_i(b)c = 0$, it suffices to show that if $abc = 0$, then $a\alpha(b)c = 0$ and $a\delta(b)c = 0$. Take $a, b, c \in R$ such that $abc = 0$. Then because R is (α, δ)-compatible,

$$abc = 0 \Rightarrow a\alpha(bc) = a\alpha(b)\alpha(c) = 0 \Rightarrow a\alpha(b)c = 0,$$

and

$$a\alpha(b)c = 0 \Rightarrow a\alpha(b)\delta(c) = 0.$$

Moreover,

$$abc = 0 \Rightarrow a\delta(bc) = a\alpha(b)\delta(c) + a\delta(b)c = 0 \Rightarrow a\delta(b)c = 0.$$

Therefore we obtain $af^j_i(b)c = 0$.

Corollary 2.1. Let R be an (α, δ)-compatible ring. Then $a_1a_2\cdots a_n = 0$ implies

$$f_{i_1}^1(a_1)f_{i_2}^2(a_2)\cdots f_{i_n}^n(a_n) = 0$$

for all $i_j \geq s_j \geq 0$ and $a_i \in R$, $i = 1, 2, \ldots, n$.

Proof. It follows from Lemma 2.3.

Lemma 2.4. Let δ be an α-derivation of R. If R is (α, δ)-compatible, then $ab \in \text{nil}(R)$ implies $af^j_i(b) \in \text{nil}(R)$ for all $j \geq i \geq 0$ and $a, b \in R$.

Proof. Since $ab \in \text{nil}(R)$, there exists some positive integer k such that $(ab)^k = abab\cdots ab = 0$. Then by Corollary 2.1, it is easy to see that $af^j_i(b) \in \text{nil}(R)$.

Lemma 2.5. Let R be an (α, δ)-compatible ring. If $a\alpha^n(b) \in \text{nil}(R)$ for $a, b \in R$, and m is a positive integer, then $ab \in \text{nil}(R)$.

Proof. Since $a\alpha^n(b) \in \text{nil}(R)$, there exists some positive integer n such that $(a\alpha^n(b))^n = 0$. In the following computations, we use freely the condition that R is (α, δ)-compatible:

$$(a\alpha^n(b))^n = a\alpha^n(b)a\alpha^n(b)\cdots a\alpha^n(b) = 0$$

$$\Rightarrow a\alpha^n(b)a\alpha^n(b)\cdots a\alpha^n(b)ab = 0$$

$$\Rightarrow a\alpha^n(b)a\alpha^n(b)\cdots a\alpha^n(b)a\alpha^m(ab) = 0$$

$$\Rightarrow a\alpha^n(b)a\alpha^n(b)\cdots a\alpha^n(b)a\alpha^m(bab) = 0$$

$$\Rightarrow a\alpha^n(b)a\alpha^n(b)\cdots a\alpha^n(b)abab = 0$$

$$\Rightarrow \cdots \Rightarrow ab \in \text{nil}(R).$$

Lemma 2.6. Let R be an (α, δ)-compatible 2-primal ring and $f(x) = a_0 + a_1x + \cdots + a_nx^n \in R[x, \alpha, \delta]$. Then $f(x) \in \text{nil}(R[x, \alpha, \delta])$ if and only if $a_i \in \text{nil}(R)$ for all $0 \leq i \leq n$.

Proof. (\Rightarrow) Suppose $f(x) \in \text{nil}(R[x, \alpha, \delta])$. There exists some positive integer k such that $f(x)^k = (a_0 + a_1x + \cdots + a_nx^n)^k = 0$. Then

$$0 = f(x)^k = \text{“lower terms”} + a_n\alpha^n(a_n)\alpha^{2n}(a_n)\cdots \alpha^{(k-1)n}(a_n)x^{nk}.$$
Hence \(a_n \alpha^n(a_n) \alpha^{2n}(a_n) \cdots \alpha^{(k-1)n}(a_n) = 0 \), and \(\alpha \)-compatibility of \(R \) gives \(a_n \in \text{nil}(R) \). So by Lemma 2.4, \(a_n \in 1 \cdot a_n \in \text{nil}(R) \) implies \(1 \cdot f_i^j(a_n) = f_i^j(a_n) \in \text{nil}(R) \) for all \(0 \leq i \leq j \). Let \(Q = a_0 + a_1 x + \cdots + a_{n-1} x^{n-1} \). Then we have

\[
0 = (Q + a_n x^n)^k \\
= (Q + a_n x^n)(Q + a_n x^n) \cdots (Q + a_n x^n) \\
= (Q^2 + Q \cdot a_n x^n + a_n x^n \cdot Q + a_n x^n \cdot a_n x^n)(Q + a_n x^n) \cdots (Q + a_n x^n) \\
= \cdots = Q^k + \Delta,
\]

where \(\Delta \in R[x; \alpha, \delta] \). Note that the coefficients of \(\Delta \) can be written as sums of monomials in \(a_i \) and \(f_u^v(a_j) \) where \(a_i, a_j \in \{a_0, a_1, \cdots, a_n\} \) and \(v \geq u \geq 0 \) are positive integers, and each monomial has \(a_i \) or \(f_u^v(a_j) \). Since \(\text{nil}(R) \) of a \(2\)-\(\text{primal} \) ring \(R \) is an ideal, we obtain that each monomial is in \(\text{nil}(R) \), and so \(\Delta \in \text{nil}(R)[x; \alpha, \delta] \). Thus we obtain

\[
(a_0 + a_1 x + \cdots + a_{n-1} x^{n-1})^k = "\text{lower terms}" + a_{n-1} \alpha^{n-1}(a_{n-1}) \cdots \alpha^{(n-1)(k-1)}(a_{n-1}) x^{(n-1)k} \in \text{nil}(R)[x; \alpha, \delta]
\]

since \(\text{nil}(R) \) is an ideal of \(R \). Hence

\[
a_{n-1} \alpha^{n-1}(a_{n-1}) \cdots \alpha^{(k-1)(n-1)}(a_{n-1}) \in \text{nil}(R)
\]

and so \(a_{n-1} \in \text{nil}(R) \) by Lemma 2.5. Using induction on \(n \) we obtain \(a_i \in \text{nil}(R) \) for all \(0 \leq i \leq n \).

(\(\iff \)) Consider the finite subset \(S = \{a_0, a_1, \cdots, a_n\} \subseteq \text{nil}(R) \). Since \(R \) is a \(2\)-\(\text{primal} \) ring, there exists an integer \(k \) such that any product of \(k \) elements \(a_i a_j \cdots a_k \) from \(\{a_0, a_1, \cdots, a_n\} \) is zero. Then by Corollary 2.1, we obtain

\[
a_{i_1} f_{j_2}^{i_2}(a_{j_2}) f_{j_3}^{i_3}(a_{j_3}) \cdots f_{j_k}^{i_k}(a_{j_k}) = 0.
\]

Now we claim that

\[
f(x)^k = (a_0 + a_1 x + \cdots + a_n x^n)^k = 0.
\]

From

\[
\left(\sum_{i=0}^n a_i x^i \right)^2 = \sum_{k=0}^{2n} \left(\sum_{s+t=k} \left(\sum_{i=s}^n a_i f_s^i(a_i) \right) \right) x^k,
\]

it is easy to check that the coefficients of \(\left(\sum_{i=0}^n a_i x^i \right)^k \) can be written as sums of monomials of length \(k \) in \(a_i \) and \(f_u^v(a_j) \), where \(a_i, a_j \in \{a_0, a_1, \cdots, a_n\} \) and \(v \geq u \geq 0 \) are positive integers. Since each monomial \(a_{i_1} f_{j_2}^{i_2}(a_{j_2}) \cdots f_{j_k}^{i_k}(a_{j_k}) = 0 \), where \(a_{i_1}, a_{j_2}, \cdots, a_{j_k} \in \{a_0, a_1, \cdots, a_n\} \) and \(s_{ip}, t_{ip} \) are nonnegative integers for all \(2 \leq p \leq k \). We obtain \(f(x)^k = 0 \). Hence \(f(x) \) is a nilpotent element of \(R[x; \alpha, \delta] \).

Corollary 2.2. Let \(R \) be an \((\alpha, \delta) \)-compatible \(2\)-\(\text{primal} \). Then we have the following:

1. \(\text{nil}(R[x; \alpha, \delta]) \) is an ideal.
2. \(\text{nil}(R[x; \alpha, \delta]) = \text{nil}(R)[x; \alpha, \delta] \).

In particular, if \(R \) is an \(\alpha \)-compatible ring, then \(\text{nil}(R[x; \alpha]) \) is an ideal and \(\text{nil}(R[x; \alpha]) = \text{nil}(R)[x; \alpha] \).

Theorem 2.1. Let \(R \) be an \((\alpha, \delta) \)-compatible \(2\)-\(\text{primal} \). If for each subset \(X \not\subseteq \text{nil}(R) \), \(N_R(X) \) is generated as an ideal by a nilpotent element, then for each subset \(U \not\subseteq \text{nil}(R[x; \alpha, \delta]) \), \(N_{R[x; \alpha, \delta]}(U) \) is generated as an ideal by a nilpotent element.
Proof. Let U be a subset of $R[x; \alpha, \delta]$ with $U \not\subseteq \text{nil}(R[x; \alpha, \delta])$. Then by Corollary 2.2, we have $C_U \not\subseteq \text{nil}(R)$. So there exists $c \in \text{nil}(R)$ such that $N_R(C_U) = c \cdot R$. Now we show that $N_{R[x; \alpha, \delta]}(U) = c \cdot R[x; \alpha, \delta]$. For any $d(x) = d_0 + d_1x + \cdots + d_{u}x^u \in U$ and $h(x) = h_0 + h_1x + \cdots + h_vx^v \in R[x; \alpha, \delta]$, we have

$$d(x) \cdot ch(x) = \sum_{k=0}^{u+v} \left(\sum_{s+t=k}^{u} \left(\sum_{i=s}^{u} d_i f_s^i(ch_i) \right) \right) x^k.$$

Since $c \in \text{nil}(R)$ and $\text{nil}(R)$ of a 2-primal ring is an ideal, we obtain $d_i ch_i \in \text{nil}(R)$, and so $d_i f_s^i(ch_i) \in \text{nil}(R)$ by Lemma 2.4. Hence $\sum_{i+s=t}^{u} \left(\sum_{i=s}^{u} d_i f_s^i(ch_i) \right) \in \text{nil}(R)$, and so $d(x) \cdot ch(x) \in \text{nil}(R[x; \alpha, \delta])$ by Lemma 2.6, and so $N_{R[x; \alpha, \delta]}(U) \supseteq c \cdot R[x; \alpha, \delta]$. Let $g(x) = b_0 + b_1x + \cdots + b_{n}x^{n} \in N_{R[x; \alpha, \delta]}(U)$, then $f(x)g(x) \in \text{nil}(R[x; \alpha, \delta])$ for any $f(x) = a_0 + a_1x + \cdots + a_{m}x^{m} \in U$. Then

$$f(x)g(x) = \sum_{k=0}^{m+n} \left(\sum_{s+t=k}^{m} \left(\sum_{i=s}^{m} a_i f_s^i(b_i) \right) \right) x^k = \sum_{k=0}^{m+n} \Delta_k x^k \in \text{nil}(R[x; \alpha, \delta]).$$

Then we have the following equations by Lemma 2.6:

\begin{align*}
(2.1) & \quad \Delta_{m+n} = a_m \alpha^m(b_n), \\
(2.2) & \quad \Delta_{m+n-1} = a_m \alpha^m(b_{n-1}) + a_{m-1} \alpha^{m-1}(b_n) + a_m f_{m-1}^m(b_n), \\
(2.3) & \quad \Delta_{m+n-2} = a_m \alpha^m(b_{n-2}) + \sum_{i=m-1}^{m} a_i f_{m-1}^i(b_{n-1}) + \sum_{i=m-2}^{m} a_i f_{m-2}^i(b_{n}), \\
& \quad \vdots \\
(2.4) & \quad \Delta_k = \sum_{s+t=k}^{m} \left(\sum_{i=s}^{m} a_i f_s^i(b_i) \right),
\end{align*}

with $\Delta_i \in \text{nil}(R)$ for all $0 \leq i \leq m + n$. From Lemma 2.5 and Equation (2.1), we obtain $a_m b_n \in \text{nil}(R)$, and so $b_n a_m \in \text{nil}(R)$. Now we show that $a_i b_n \in \text{nil}(R)$ for all $0 \leq i \leq m$. If we multiply Equation (2.2) on the left side by b_n, then $b_n a_{m-1} \alpha^{m-1}(b_n) = b_n \Delta_{m+n-1} = b_n a_m \alpha^m(b_{n-1}) + b_n a_m f_{m-1}^m(b_n) \in \text{nil}(R)$ since the nil(R) of a 2-primal ring is an ideal. Thus by Lemma 2.5, we obtain $b_n a_{m-1} b_n \in \text{nil}(R)$, and so $b_n a_{m-1} b_n \in \text{nil}(R)$. If we multiply Equation (2.3) on the left side by b_n, then we obtain $b_n a_{m-2} f_{m-2}^{m-2}(b_n) = b_n \Delta_{m+n-2} = b_n a_m \alpha^m(b_{n-2}) - b_n a_{m-1} f_{m-1}^{m-1}(b_{n-1}) - b_n a_m f_{m-1}^m(b_{n-1}) - b_n a_{m-2} f_{m-2}^{m-2}(b_n) = b_n \Delta_{m+n-2} = b_n a_m \alpha^m(b_{n-2}) - b_n a_{m-1} f_{m-1}^{m-1}(b_{n-1}) - b_n a_{m-2} f_{m-2}^{m-2}(b_n) \in \text{nil}(R) \text{ since nil}(R) \text{ is an ideal of } R. \text{ Thus we obtain } a_{m-2} b_n \in \text{nil}(R) \text{ and } b_n a_{m-2} \in \text{nil}(R). \text{ Continuing this procedure yields that } a_i b_n \in \text{nil}(R) \text{ for all } 0 \leq i \leq m, \text{ and so } a_i f_s^i(b_n) \in \text{nil}(R) \text{ for any } t \geq s \geq 0 \text{ and } 0 \leq i \leq m \text{ by Lemma 2.4. Thus it is easy to verify that } (\sum_{i=0}^{m} a_i x^i)(\sum_{j=0}^{n} b_j x^j) \in \text{nil}(R)[x; \alpha, \delta].$

Applying the preceding method repeatedly, we obtain $a_i b_j \in \text{nil}(R)$ for all $0 \leq i \leq m$ and $0 \leq j \leq n$. Thus $b_j \in N_R(C_U) = c \cdot R$ for all $0 \leq j \leq n$. Thus there exists $r_j \in R$ such that $b_j = cr_j$. Hence $g(x) = b_0 + b_1x + \cdots + b_{n}x^{n} = c(r_0 + r_1x + \cdots + r_n x^n) \in c \cdot R[x; \alpha, \delta]$. Therefore $N_{R[x; \alpha, \delta]}(U) = c \cdot R[x; \alpha, \delta]$ where $c \in \text{nil}(R[x; \alpha, \delta])$. \hfill \qed

Corollary 2.3. Let R be an (α, δ)-compatible 2-primal ring, and $f(x) = \sum_{i=0}^{m} a_i x^i$, $g(x) = \sum_{j=0}^{n} b_j x^j \in R[x; \alpha, \delta]$. Then $f(x)g(x) \in \text{nil}(R[x; \alpha, \delta])$ if and only if $a_i b_j \in \text{nil}(R)$ for all i, j. \hfill \qed
Proof. (⇐) Suppose \(a_ib_j \in \text{nil}(R) \) for all \(i, j \). Then \(a_if_s^i(b_j) \in \text{nil}(R) \) for all \(i, j \) and all positive integer \(i \geq s \geq 0 \) by Lemma 2.4. Thus
\[
\sum_{s+i=k} \left(\sum_{i=s}^{m} a_if_s^i(b_i) \right) \in \text{nil}(R), k = 0, 1, 2, \ldots, m+n.
\]
Hence \(f(x)g(x) = \sum_{k=0}^{m+n} \left(\sum_{s+i=k} \left(\sum_{i=s}^{m} a_if_s^i(b_i) \right) x^k \right) \in \text{nil}(R[x; \alpha, \delta]) \) by Lemma 2.6.

(⇒) By analogy with the proof of Theorem 2.1, we complete the proof. □

Theorem 2.2. Let \(R \) be an \(\alpha \)-compatibe 2-primal ring. Then the following statements are equivalent:

1. For each subset \(X \not\subseteq \text{nil}(R) \), \(N_R(X) \) is generated as an ideal by a nilpotent element.
2. For each subset \(U \not\subseteq \text{nil}(R[x; \alpha]) \), \(N_{R[x; \alpha]}(U) \) is generated as an ideal by a nilpotent element.

Proof. By Theorem 2.1, it suffices to show (2) ⇒ (1). Let \(X \) be a subset of \(R \) with \(X \not\subseteq \text{nil}(R) \). Then \(X \not\subseteq \text{nil}(R[x; \alpha]) \). So there exists \(f(x) = a_0 + a_1x + \cdots + a_mx^m \in \text{nil}(R[x; \alpha]) \) such that \(N_{R[x; \alpha]}(X) = f(x) \cdot R[x; \alpha] \). Note that \(f(x) = a_0 + a_1x + \cdots + a_mx^m \in \text{nil}(R[x; \alpha]) \), we have \(a_i \in \text{nil}(R) \) for all \(0 \leq i \leq m \) by Corollary 2.2. Clearly, we may assume that \(a_0 \neq 0 \). Now we show that \(N_{R}(X) = a_0R \). Since \(a_0 \in \text{nil}(R) \) and \(\text{nil}(R) \) is an ideal of \(R \), we obtain \(p \cdot a_0R \subseteq \text{nil}(R) \) for each \(p \in X \). So \(N_R(X) \supseteq a_0R \). If \(m \in N_R(X) \), then \(m \in N_{R[x; \alpha]}(X) \). Thus there exists \(h(x) = h_0 + h_1x + \cdots + h_qx^q \in R[x; \alpha] \) such that
\[
m = f(x)h(x) = \sum_{s=0}^{m+q} \left(\sum_{i+j=s} a_i\alpha^i(h_j) \right) x^s.
\]
Thus we have \(m = a_0h_0 \in a_0R \), and so \(N_R(X) \subseteq a_0R \). Hence \(N_R(X) = a_0R \) where \(a_0 \in \text{nil}(R) \).

For any \(p \in R \), we denote by \(p \cdot R \) the principal right ideal of \(R \) generated by \(p \). Then we have the following results. □

Theorem 2.3. Let \(R \) be an \((\alpha, \delta) \)-compatible 2-primal ring. If for each principal right ideal \(p \cdot R \not\subseteq \text{nil}(R) \), \(N_R(p \cdot R) \) is generated as an ideal by a nilpotent element, then for each principal right ideal \(f(x) \cdot R[x; \alpha, \delta] \not\subseteq \text{nil}(R[x; \alpha, \delta]) \), \(N_{R[x; \alpha, \delta]}(f(x) \cdot R[x; \alpha, \delta]) \) is generated as an ideal by a nilpotent element.

Proof. Let \(f(x) = a_0 + a_1x + \cdots + a_mx^m \in R[x; \alpha, \delta] \) with \(f(x) \cdot R[x; \alpha, \delta] \not\subseteq \text{nil}(R[x; \alpha, \delta]) \). We show that \(N_{R[x; \alpha, \delta]}(f(x) \cdot R[x; \alpha, \delta]) \) is generated as an ideal by a nilpotent element. If \(a_iR \subseteq \text{nil}(R) \) for all \(0 \leq i \leq m \), then by Corollary 2.2, it is easy to see that \(f(x) \cdot R[x; \alpha, \delta] \subseteq \text{nil}(R[x; \alpha, \delta]) \), a contradiction. So there exists \(0 \leq i \leq m \) such that \(a_iR \not\subseteq \text{nil}(R) \). Thus there exists \(c \in \text{nil}(R) \) such that \(N_R(a_iR) = c \cdot R \). Now we show that \(N_{R[x; \alpha, \delta]}(f(x) \cdot R[x; \alpha, \delta]) = c \cdot R[x; \alpha, \delta]) \). For any \(u(x) = u_0 + u_1x + \cdots + u_fx^f \in R[x; \alpha, \delta] \) and \(v(x) = v_0 + v_1x + \cdots + v_qx^q \in R[x; \alpha, \delta] \), we have \(a_iu_jcv_k \in \text{nil}(R) \) for each \(i, j, k \), since \(c \in \text{nil}(R) \) and \(\text{nil}(R) \) is an ideal of \(R \). Thus \(a_if_s^i(u_j)cv_k \in \text{nil}(R) \) for all \(i, j, k \) and \(s \leq i \) by Lemma 2.4, and so it is easy to see that \((f(x)u(x)) \cdot cv \in \text{nil}(R[x; \alpha, \delta]) \) for all \(u(x) \in R[x; \alpha, \delta] \) and \(v(x) \in R[x; \alpha, \delta] \) by Corollary 2.3. Hence \(cv(x) \in N_{R[x; \alpha, \delta]}(f(x) \cdot R[x; \alpha, \delta]) \) and so \(N_{R[x; \alpha, \delta]}(f(x) \cdot R[x; \alpha, \delta]) \supseteq c \cdot R[x; \alpha, \delta]) \). On the other hand, assume that \(p(x) = p_0 + p_1x + \cdots + p_xx^x \in N_{R[x; \alpha, \delta]}(f(x) \cdot R[x; \alpha, \delta]) \). Then \(f(x) \cdot R[x; \alpha, \delta] \cdot p(x) \subseteq \text{nil}(R[x; \alpha, \delta]) \) and so \(f(x) \cdot R \cdot
\(p(x) \subseteq \text{nil}(R[x; \alpha, \delta]). \) Thus we obtain \(a R \cdot p_j \subseteq \text{nil}(R) \) for all \(0 \leq j \leq s. \) So \(p_j \in N_R(a_i R) = c R. \) Thus there exists \(r_j \in R \) such that \(p_j = c r_j \) for all \(0 \leq j \leq s. \) Hence \(p(x) = p_0 + p_1 x + \cdots + p_s x^s = c(r_0 + r_1 x + \cdots + r_s x^s) \in c \cdot R[x; \alpha, \delta]. \) Hence \(N_{R[x; \alpha, \delta]}(f(x) \cdot R[x; \alpha, \delta]) \subseteq c \cdot R[x; \alpha, \delta]. \) Therefore \(N_{R[x; \alpha, \delta]}(f(x) \cdot R[x; \alpha, \delta]) = c \cdot R[x; \alpha, \delta]. \)

Theorem 2.4. Let \(R \) be an \(\alpha \)-compatible 2-primal ring. Then the following statements are equivalent:

1. For each principal right ideal \(p \cdot R \nsubseteq \text{nil}(R), N_R(p \cdot R) \) is generated as an ideal by a nilpotent element.
2. For each principal right ideal \(f(x) \cdot R[x; \alpha] \nsubseteq \text{nil}(R[x; \alpha]), N_{R[x; \alpha]}(f(x) \cdot R[x; \alpha]) \) is generated as an ideal by a nilpotent element.

Proof. It follows by the same method of proof as in Theorem 2.2.

Using the same way as above, we also obtain the next two theorems:

Theorem 2.5. Let \(R \) be an \((\alpha, \delta)\)-compatible 2-primal ring. If for each \(p \nsubseteq \text{nil}(R), N_R(p) \) is generated as an ideal by a nilpotent element, then for each \(f(x) \nsubseteq \text{nil}(R[x; \alpha, \delta]), N_{R[x; \alpha, \delta]}(f(x)) \) is generated as an ideal by a nilpotent element.

Theorem 2.6. Let \(R \) be an \(\alpha \)-compatible 2-primal ring. Then the following statements are equivalent:

1. For each \(p \nsubseteq \text{nil}(R), N_R(p) \) is generated as an ideal by a nilpotent element.
2. For each skew polynomial \(f(x) \nsubseteq \text{nil}(R[x; \alpha]), N_{R[x; \alpha]}(f(x)) \) is generated as an ideal by a nilpotent element.

Example 2.2. Let \(R \) be a domain and let

\[
R_3 = \left\{ \begin{pmatrix} a_1 & a_2 & a_3 \\ 0 & a_1 & a_2 \\ 0 & 0 & a_1 \end{pmatrix} \mid a_i \in R \right\}
\]

be the subring of \(3 \times 3 \) upper triangular matrix ring. Let \(X \) be any subset of \(R_3 \) with \(X \nsubseteq \text{nil}(R_3). \) We show that \(N_{R_3}(X) \) is generated as a ideal by a nilpotent element. Let

\[
U = \left\{ x \in R \mid \begin{pmatrix} x & y & z \\ 0 & x & y \\ 0 & 0 & x \end{pmatrix} \in X \right\}.
\]

If \(U = \{0\}, \) then \(X \nsubseteq \text{nil}(R_3). \) This is contrary to the fact that \(X \nsubseteq \text{nil}(R_3). \) Thus we have \(U \neq \{0\}. \) In this case, we have

\[
N_{R_3}(X) = \left\{ \begin{pmatrix} 0 & u & v \\ 0 & 0 & u \\ 0 & 0 & 0 \end{pmatrix} \mid u, v \in R \right\} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \cdot R_3,
\]

where \(\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \in \text{nil}(R_3) \) by a routine computations. Therefore \(N_{R_3}(X) \) is generated as an ideal by a nilpotent element.

Example 2.3. Let \(Z \) be the ring of integers, and \(T(Z, Z) = \left\{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \mid a, b \in Z \right\} \) the trivial extension of \(Z \) by \(Z. \) Let \(p = \begin{pmatrix} a & m \\ 0 & a \end{pmatrix} \in T(Z, Z). \) If \(a = 0, \) then we have \(p \cdot T(Z, Z) \subseteq \text{nil}(T(Z, Z)). \) So we assume that \(a \neq 0. \) By a routine computations, we obtain

\[
N_{T(Z,Z)}(p \cdot T(Z, Z)) = \left\{ \begin{pmatrix} 0 & m \\ 0 & 0 \end{pmatrix} \mid m \in Z \right\} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \cdot T(Z, Z),
\]

\[
\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \in \text{nil}(T(Z, Z))
\]
where \(\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \) is a nilpotent element.

3. Nilpotent associated primes

Given a right \(R \)-module \(N_R \), the right annihilator of \(N_R \) is denoted by \(r_R(N_R) = \{ a \in R \mid Na = 0 \} \). We say that \(N_R \) is prime if \(N_R \neq 0 \), and \(r_R(N_R) = r_R(N'_R) \) for every nonzero submodule \(N'_R \subseteq N_R \) (see [1]). Let \(M_R \) be a right \(R \)-module, an ideal \(\wp \) of \(R \) is called an associated prime of \(M_R \) if there exists a prime submodule \(N_R \subseteq M_R \) such that \(\wp = r_R(N_R) \). The set of associated primes of \(M_R \) is denoted by \(\text{Ass}(M_R) \) (see [1]). Associated primes are well-known in commutative algebra for their important role in the primary decomposition, and has attracted a lot of attention in recent years. In [7], Brewer and Heinzer used localization theory to prove that, over a commutative ring \(R \), the associated primes of the polynomial ring \(R[x] \) (viewed as a module over itself) are all extended: that is, every \(\wp \in \text{Ass}(R[x]) \) may be expressed as \(\wp = \wp_0[x] \), where \(\wp_0 = \wp \cap R \in \text{Ass}(R) \). Using results of Shock in [13] on good polynomials, C. Faith has provided a new proof in [10] of the same result which does not rely on localization or other tools from commutative algebra. In [1], Scott Annin showed that Brewer and Heinzer’s result still holds in the more general setting of a polynomial module \(M[x] \) over a skew polynomial ring \(R[x; \alpha, \delta] \), with possibly noncommutative base \(R \). So the properties of associated primes over a commutative ring can be profitably generalized to noncommutative setting as well.

Motivated by the results in [1], [7], [10], in this section, we continue the study of nilpotent associated primes over Ore extension rings. We first introduce the notion of nilpotent associated primes, which are a generalization of associated primes. We next describe all nilpotent associated primes of the Ore extension ring \(R[x; \alpha, \delta] \) in terms of the nilpotent associated primes of the ring \(R \).

Definition 3.1

Let \(I \) be a right ideal of a nonzero ring \(R \). We say that \(I \) is a right quasi-prime ideal if \(I \not\subseteq \text{nil}(R) \) and \(N_R(I) = N_R(I') \) for every right ideal \(I' \subseteq I \) and \(I' \not\subseteq \text{nil}(R) \).

Let \(R \) be a domain and Let

\[
R_n = \left\{ \begin{pmatrix} a & a_{12} & \cdots & a_{1n} \\ 0 & a & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a \end{pmatrix} \mid a, a_{ij} \in R \right\}
\]

be the subring of \(n \times n \) upper triangular matrix ring. Then \(\text{nil}(R_n) \) is an ideal of \(R_n \) and

\[
\text{nil}(R_n) = \left\{ \begin{pmatrix} 0 & x_{12} & \cdots & x_{1n} \\ 0 & 0 & \cdots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix} \mid x_{ij} \in R \right\}.
\]

By a routine computations, we know that each right ideal \(I \not\subseteq \text{nil}(R_n) \) is a right quasi-prime ideal.

Definition 3.2

Let \(\text{nil}(R) \) be an ideal of a ring \(R \). An ideal \(\wp \) of \(R \) is called a nilpotent associated prime of \(R \) if there exists a right quasi-prime ideal \(I \) such that \(\wp = N_R(I) \). The set of nilpotent associated primes of \(R \) is denoted by \(\text{NAss}(R) \).
Recall that an ideal \mathcal{R} in a ring R is said to be a prime ideal if $\mathcal{R} \neq R$, and for $a, b \in R$, $aRb \subseteq \mathcal{R}$ implies that $a \in \mathcal{R}$ or $b \in \mathcal{R}$. Suppose nil(R) is an ideal. Then it is easy to see that if I is a right quasi-prime ideal, then $\mathcal{R} = N_R(I)$ is a prime ideal of R.

Example 3.1. We now provide the following examples:

(a) Let

$$R_n = \left\{ \begin{pmatrix} a & a_{12} & \cdots & a_{1n} \\ 0 & a & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a \end{pmatrix} \mid a, a_{ij} \in R \right\}$$

be the subring of $n \times n$ upper triangular matrix ring. Then it is easy to see that NAss$(R_n) = \{\text{nil}(R_n)\}$.

(b) Let k be any field, and consider the ring $R = \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix}$ of 2×2 lower triangular matrices over k. One easily checks that $\begin{pmatrix} k & 0 \\ k & 0 \end{pmatrix} \supseteq \begin{pmatrix} k & 0 \\ 0 & 0 \end{pmatrix} \supseteq \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ is a composition series for R_R. In particular, R_R has finite length.

Next we shall determine the set Ass(R). By an easy ad hoc calculation, we can write down all of the proper nonzero ideals of R:

$$\left\{ m_1 = \begin{pmatrix} 0 & 0 \\ k & k \end{pmatrix}, m_2 = \begin{pmatrix} k & 0 \\ k & 0 \end{pmatrix}, \alpha = \begin{pmatrix} 0 & 0 \\ k & 0 \end{pmatrix} \right\}.$$

Now since $\alpha^2 = 0$, 0 is not a prime ideal. Moreover, since $m_1Rm_2 \subseteq \alpha$, α is not a prime ideal. So the only candidates for the associated primes of R are the maximal ideals m_1 and m_2.

We claim that $m_2 \not\subseteq \text{Ass}(R)$. Otherwise, there would exists a right ideal $I \supseteq 0$ of R with $m_2 = r_R(I)$. So $I \cdot m_2 = 0$. Now, given $\begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \in I$, we have $0 = \begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} a & 0 \\ b & c \end{pmatrix}$, so $a = b = 0$. Also, $0 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ implies that $c = 0$. Thus $I = 0$, a contradiction. Hence $m_2 \not\subseteq \text{Ass}(R)$.

By virtue of R_R being noetherian, we know that $\text{Ass}(R) \neq 0$. Hence $\text{Ass}(R) = \{m_1\}$.

Finally, we should determine the set of NAss(R). Clearly, nil$(R) = \alpha$. Thus nil(R) is an ideal. Now we show that $m_1 = N_R(m_2)$ and m_2 is a right quasi-prime ideal. Clearly, $m_1 \subseteq N_R(m_2)$ since $m_2m_1 = 0$. Given $\begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \in N_R(m_2)$, we have $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a & 0 \\ b & c \end{pmatrix} = \begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \in \text{nil}(R)$. Then $a = 0$ and so $\begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \in m_1$. Hence $m_1 = N_R(m_2)$. Next we see that m_2 is a right quasi-prime ideal. Let $n \not\subseteq \text{nil}(R)$ and $n \subseteq m_2$. Since $N_R(n) \supseteq N_R(m_2)$ is clear, we now assume that $\begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \in N_R(n)$, and find $\begin{pmatrix} h & 0 \\ k & 0 \end{pmatrix} \in n$ with $h \neq 0$. Then we have $\begin{pmatrix} h & 0 \\ k & 0 \end{pmatrix} \begin{pmatrix} a & 0 \\ b & c \end{pmatrix} = \begin{pmatrix} ha & 0 \\ ka & 0 \end{pmatrix} \in \text{nil}(R)$. Thus $a = 0$ and so $\begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \in N_R(m_2)$. Hence we obtain $N_R(n) = N_R(m_2)$ and so m_2 is a right quasi-prime ideal. Thus we obtain $m_1 \in \text{NAss}(R)$. Similarly, we have $m_2 \in \text{NAss}(R)$. Therefore NAss$(R) = \{m_1, m_2\} \neq \text{Ass}(R)$.

If R is reduced, then \mathcal{R} is a nilpotent associated prime of R if and only if \mathcal{R} is an associated prime of R. So NAss$(R) = \text{Ass}(R)$ in case R is reduced.

Given a polynomial $f(x) \in R[x]$. If the polynomial $f(x)$ has the property that each nonzero coefficient has the same right annihilator in R, then we say that such a polynomial is a good polynomial. Shock showed in [13] that, given any nonzero polynomial $f(x) \in R[x]$, one can find $r \in R$ such that $f(x)r$ is good. In order to prove the main result of this section, we will need a generalized version of Shock’s result which applies in our skew polynomial setting.
Let $m(x) = m_0 + m_1 x + \cdots + m_k x^k + \cdots + m_n x^n \not\in \text{nil}(R)[x; \alpha, \delta]$. If $m_k \not\in \text{nil}(R)$, and $m_i \in \text{nil}(R)$ for all $i > k$, then we say that the nilpotent degree of $m(x)$ is k. To simplify notations, we write $\text{Ndeg}(m(x))$ for the nilpotent degree of $m(x)$. If $m(x) \in \text{nil}(R)[x; \alpha, \delta]$, then we define $\text{Ndeg}(m(x)) = -1$.

Definition 3.3. Let $m(x) = m_0 + m_1 x + \cdots + m_k x^k + \cdots + m_n x^n \not\in \text{nil}(R)[x; \alpha, \delta]$ and the nilpotent degree of $m(x)$ be k. If $N_R(m_k) \subseteq N_R(m_i)$ for all $i \leq k$, then we say that $m(x)$ is a nilpotent good polynomial.

Lemma 3.1. Let R be an (α, δ)-compatible 2-primal ring. For any $m(x) = m_0 + m_1 x + \cdots + m_k x^k + \cdots + m_n x^n \not\in \text{nil}(R)[x; \alpha, \delta]$, there exists $r \in R$ such that $m(x)r$ is a nilpotent good polynomial.

Proof. Assume the result is false, and let $m(x) = m_0 + m_1 x + \cdots + m_k x^k + \cdots + m_n x^n \not\in \text{nil}(R)[x; \alpha, \delta]$ be a counterexample of minimal nilpotent degree $\text{Ndeg}(m(x)) = k \geq 1$. In particular, $m(x)$ is not a nilpotent good polynomial. Hence there exists $i < k$ such that $N_R(m_k) \not\subseteq N_R(m_i)$. So we can find $b \in R$ with $m_i b \not\in \text{nil}(R)$, and $m_k b \in \text{nil}(R)$. Note that the degree k coefficient of $m(x)b$ is $m_k \alpha^k(b) + \sum_{i=k+1}^{n} m_i f_i^k(b)$ and $m_k \alpha^k(b) \in \text{nil}(R)$ due to the (α, δ)-compatibility of R. On the other hand, we have $\text{Ndeg}(m(x)) = k$, so $m_i \in \text{nil}(R)$ for all $i > k$. Since $\text{nil}(R)$ of a 2-primal ring is an ideal, $m_i f_i^k(b) \in \text{nil}(R)$ for all $i > k$. Hence it is easy to see that $m(x)b$ has nilpotent degree at most $k - 1$. Since $m_k b \not\in \text{nil}(R)$, by Corollary 2.3, we have $m(x)b \not\in \text{nil}(R)[x; \alpha, \delta]$. By the minimality of k, we know that there exists $c \in R$ with $m(x)bc$ nilpotent good. But this contradicts the fact that $m(x)$ is a counterexample to the statement.

Theorem 3.1. Let R be an (α, δ)-compatible 2-primal ring. Then

$$\text{NAss}(R[x; \alpha, \delta]) = \{ \varphi[x; \alpha, \delta] \mid \varphi \in \text{NAss}(R) \}.$$

Proof. We first prove \supseteq. Let $\varphi \in \text{NAss}(R)$. By definition, there exists a right ideal $I \not\subseteq \text{nil}(R)$ with I a right quasi-prime ideal of R and $\varphi = N_R(I)$. It suffices to prove

$$\varphi[x; \alpha, \delta] = N_{R[x; \alpha, \delta]}(I[x; \alpha, \delta])$$

and

$$I[x; \alpha, \delta] \text{ is quasi-prime.}$$

For Equation (3.1), let $f(x) = a_0 + a_1 x + \cdots + a_l x^l \in \varphi[x; \alpha, \delta]$, and let $i(x) = i_0 + i_1 x + \cdots + i_m x^m \in I[x; \alpha, \delta]$. Since $i_k a_j \in \text{nil}(R)$ for each k, j, applying Corollary 2.3 yields that $i(x)f(x) \in \text{nil}(R[x; \alpha, \delta])$. Hence $\varphi[x; \alpha, \delta] \subseteq N_{R[x; \alpha, \delta]}(I[x; \alpha, \delta])$.

Conversely, if $f(x) = a_0 + a_1 x + \cdots + a_l x^l \in N_{R[x; \alpha, \delta]}(I[x; \alpha, \delta])$, then $i(x)f(x) \in \text{nil}(R[x; \alpha, \delta])$ for all $i(x) = i_0 + i_1 x + \cdots + i_m x^m \in I[x; \alpha, \delta]$. Using Corollary 2.3 again, we obtain that $i_k a_j \in \text{nil}(R)$ for each k, j. Thus for all $0 \leq j \leq l$, $a_j \in N_R(I) = \varphi$, and so $f(x) \in \varphi[x; \alpha, \delta]$. Hence $N_{R[x; \alpha, \delta]}(I[x; \alpha, \delta]) \subseteq \varphi[x; \alpha, \delta]$. Therefore $\varphi[x; \alpha, \delta] = N_{R[x; \alpha, \delta]}(I[x; \alpha, \delta])$.

Note that the right ideal I is a right quasi-prime ideal. Then we have $I \not\subseteq \text{nil}(R)$. Thus

$$I[x; \alpha, \delta] \not\subseteq \text{nil}(R)[x; \alpha, \delta] = \text{nil}(R[x; \alpha, \delta]).$$

To see (3.2), we must show that if a right ideal $\mathfrak{q} \not\subseteq \text{nil}(R[x; \alpha, \delta])$ and $\mathfrak{q} \subseteq I[x; \alpha, \delta]$, then

$$N_{R[x; \alpha, \delta]}(\mathfrak{q}) = N_{R[x; \alpha, \delta]}(I[x; \alpha, \delta]).$$
To this end, let D be a subset of R consisting of all coefficients of elements of \mathcal{U}. Then let \mathfrak{a}_0 denote the right ideal of R generated by D. Since $\mathcal{U} \subseteq \text{nil}(R[x; \alpha, \delta]) = \text{nil}(R)[x; \alpha, \delta]$, $D \subseteq \text{nil}(R)$, and hence $\mathfrak{a}_0 \subseteq I$. So we have $N_R(\mathfrak{a}_0) = N_R(I) = \varnothing$ because I is a right quasi-prime ideal. Since $N_{R[x; \alpha, \delta]}(\mathcal{U}) \supseteq N_{R[x; \alpha, \delta]}(I[x; \alpha, \delta])$ is clear, we now assume that

$$h(x) = h_0 + h_1x + \ldots + h_dx^d \in N_{R[x; \alpha, \delta]}(\mathcal{U}),$$

and

$$s(x) = s_0 + s_1x + \ldots + s_ex^e \in \mathcal{U}.$$

Then we have $s(x)h(x) \in \text{nil}(R[x; \alpha, \delta])$. By Corollary 2.3, we obtain $s_jh_j \in \text{nil}(R)$ for all $0 \leq j \leq u$. Since $\text{nil}(R)$ of a 2-primal ring is an ideal, $s_jh_j \in \text{nil}(R)$ implies $h_js_i \in \text{nil}(R)$ and so $s_jRh_jRi = (s_jRh_j)^2 \subseteq \text{nil}(R)$. Hence $s_jRh_j \in \text{nil}(R)$. Thus we obtain

$$h_j \in N_R(\mathfrak{a}_0) = N_R(I) = \varnothing$$

for all $0 \leq j \leq u$. Let $i(x) = x_0 + i_1x + \ldots + i_px^p \in I[x; \alpha, \delta]$, we have $i_mh_j \in \text{nil}(R)$ for all $0 \leq m \leq p$, $0 \leq j \leq u$. Then $i(x)h(x) \in \text{nil}(R[x; \alpha, \delta])$ by Corollary 2.3. Hence $N_{R[x; \alpha, \delta]}(\mathcal{U}) \subseteq N_{R[x; \alpha, \delta]}(I[x; \alpha, \delta])$ is proved, and so is \subseteq in Theorem 3.1.

Now we turn our attention to proving \subseteq in Theorem 3.1. Let $I \in \text{NAss}(R[x; \alpha, \delta])$. By definition, we have a right quasi-prime ideal \mathcal{U} of $R[x; \alpha, \delta]$ with $I = N_{R[x; \alpha, \delta]}(\mathcal{U})$. Pick any $m(x) = m_0 + m_1x + \ldots + m_kx^k + \ldots + m_nx^n \notin \text{nil}(R)[x; \alpha, \delta]$ in \mathcal{U}. By $\mathcal{U} \subseteq \text{nil}(R[x; \alpha, \delta])$ and Lemma 3.1, we may assume that $m(x)$ is nilpotent good, and $\text{Ndeg}(m(x)) = k$. Set $\mathcal{U}_0 = m(x) \cdot R[x; \alpha, \delta]$. Note that $m(x) \notin \text{nil}(R)[x; \alpha, \delta]$, so we get

$$\mathcal{U}_0 = m(x)R[x; \alpha, \delta] \subseteq \text{nil}(R)[x; \alpha, \delta] = \text{nil}(R[x; \alpha, \delta]).$$

Then we have

$$N_{R[x; \alpha, \delta]}(\mathcal{U}) = N_{R[x; \alpha, \delta]}(\mathcal{U}_0) = N_{R[x; \alpha, \delta]}(m(x) \cdot R[x; \alpha, \delta]) = I$$

because \mathcal{U} is quasi-prime. Consider the right ideal m_kR, and assume that $U = N_R(m_kR)$. We wish to claim that $I = U[x; \alpha, \delta]$. Let

$$g(x) = b_0 + b_1x + \ldots + b_dx^d \in U[x; \alpha, \delta].$$

Then

$$m_kRb_j \in \text{nil}(R)$$

for all $0 \leq j \leq l$. Since $m(x)$ is nilpotent good, and $\text{Ndeg}(m(x)) = k$, $m_kRb_j \in \text{nil}(R)$ for all $0 \leq i \leq k$, and $0 \leq j \leq l$. On the other hand, for all $i > k$, $m_i \in \text{nil}(R)$. Thus we have $m_kRb_j \in \text{nil}(R)$ for all $0 \leq i \leq n$, $0 \leq j \leq l$. Choose any

$$h(x) = h_0 + h_1x + \ldots + h_px^p \in R[x; \alpha, \delta].$$

From $m_ih_db_j \in \text{nil}(R)$ for all $0 \leq i \leq n$, $0 \leq d \leq p$ and $0 \leq j \leq l$ and (α, δ)-compatibility of R, we obtain $m(x)h(x)g(x) \in \text{nil}(R[x; \alpha, \delta])$ by a routine computations. Hence $g(x) \in N_{R[x; \alpha, \delta]}(m(x)R[x; \alpha, \delta]) = I$, and so $U[x; \alpha, \delta] \subseteq I$. Conversely, let $g(x) = b_0 + b_1x + \ldots + b_dx^d \in I$. Then

$$m(x)Rg(x) \in \text{nil}(R[x; \alpha, \delta]).$$

By Corollary 2.3, we get $m_kRb_j \in \text{nil}(R)$ for all $0 \leq i \leq n$, and $0 \leq j \leq l$. Thus $b_j \in N_R(m_kR)$ for all $0 \leq j \leq l$, and so $g(x) \in U[x; \alpha, \delta]$. Hence $I \subseteq U[x; \alpha, \delta]$. Therefore $I = U[x; \alpha, \delta]$.
We are now to check that m_kR is quasi-prime. Since $m_k \not\in \text{nil}(R)$, $m_kR \not\subseteq \text{nil}(R)$. Assume that a right ideal $Q \subseteq m_kR$, and $Q \not\subseteq \text{nil}(R)$. Then $N_R(Q) \supseteq N_R(m_kR)$ is clear. Now we show that

$$N_R(Q) \subseteq N_R(m_kR).$$

Set $W = \{m(x)r \mid r \in Q\}$, and let $WR[x; \alpha, \delta]$ be the right ideal of $R[x; \alpha, \delta]$ generated by W. It is obvious that $WR[x; \alpha, \delta] \subseteq m(x)R[x; \alpha, \delta]$. Since $Q \not\subseteq \text{nil}(R)$, there exists $a \in R$ such that $m_k a \in Q$ and $m_k a \not\in \text{nil}(R)$. If $m_k a \in \text{nil}(R)$, then we have $m_k a \in \text{nil}(R)$. This contradicts the fact that $m_k a \not\in \text{nil}(R)$. Thus $m_k a \not\in \text{nil}(R)$ and so $m(x) \cdot m_k a \not\subseteq \text{nil}(R[x; \alpha, \delta])$ by Corollary 2.3, and this implies that $WR[x; \alpha, \delta] \not\subseteq \text{nil}(R[x; \alpha, \delta])$. Since x is quasi-prime, we obtain

$$N_R(Q) \subseteq N_R(m_kR).$$

Suppose $q \in N_R(Q)$. Then $rq \in \text{nil}(R)$ for each $r \in Q$. For any $m(x)rf(x) \in WR[x; \alpha, \delta]$ where $f(x) = a_0 + a_1 x + \cdots + a_l x^l \in R[x; \alpha, \delta]$. The typical term of $m(x)rf(x)$ is $m_x^l r_j a_j x^l$.

From $rq \in \text{nil}(R)$ and $\text{nil}(R)$ of a 2-primal ring is an ideal, we have

$$rq \in \text{nil}(R) \Rightarrow qr \in \text{nil}(R) \Rightarrow ra_j qa_j q \in \text{nil}(R) \Rightarrow ra_j q \in \text{nil}(R) \Rightarrow m_i ra_j q \in \text{nil}(R).$$

Thus $m_x^l r_j a_j x^l q \in \text{nil}(R[x; \alpha, \delta])$ due to the (α, δ)—compatibility of R, and so

$$m(x)rf(x)q \in \text{nil}(R[x; \alpha, \delta]) = \text{nil}(R[x; \alpha, \delta]).$$

Thus for any

$$\sum m(x)r_j f_i(x) \in WR[x; \alpha, \delta],$$

it is easy to see that

$$\left(\sum m(x)r_j f_i(x)\right) \in \text{nil}(R[x; \alpha, \delta]),$$

Hence $q \in N_R[\alpha, \delta](WR[x; \alpha, \delta]) = U[x; \alpha, \delta]$, and so $q \in U = N_R(m_kR)$. So $N_R(Q) \subseteq N_R(m_kR)$, and this implies that $N_R(Q) = N_R(m_kR)$. Thus m_kR is quasi-prime.

Assembling the above results, we finish the proof of Theorem 3.1.

Corollary 3.1. Let R be a 2-primal ring. Then $\text{NAss}(R[x]) = \{\varphi[x] \mid \varphi \in \text{NAss}(R)\}$.

Proof. Take $\alpha = id$ and $\delta = 0$ in Theorem 3.1.

Acknowledgement. The authors are indebted to the referees for their valuable comments and suggestions.

References

