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We look at numerical computations of the pluricomplex Green
function g with two poles of equal weight for the bidisk. The
results we obtain strongly suggest that Coman’s conjecture holds
in this setting, that is that g equals the Lempert function. We also
prove this in a special case.

Furthermore, we show that Coman’s conjecture fails in the
case of two poles of different weight in the unit ball of C

2.

1. INTRODUCTION

Plurisubharmonic functions play an important role in
the study of holomorphic functions of several variables
in much the same way the subharmonic functions do in
one complex variable. Recall that a function u defined
on some open set Ω in C

n is said to be plurisubharmonic
if u is upper semicontinuous and if for every z0 ∈ Ω and
every w ∈ C

n, the function C � ζ �→ u(z0 + ζw) is
subharmonic (where it is defined). PluriPotential The-
ory (PPT) is, loosely speaking, the study of plurisubhar-
monic functions, and has grown to become an indepen-
dent area of research. In many cases, one is interested in
finding out which concepts from Classical Potential The-
ory (CPT) carry over to the plurisubharmonic setting
and which do not. Often, there are strong similarities
between CPT and PPT, but in many cases the theorems
in pluripotential theory require new proofs, since many
of the techniques available in CPT are no longer there
for us to use in higher dimensions. The most notable
difference is perhaps that CPT focuses around proper-
ties of the Laplace operator, ∆, which of course is a very
well-studied and well-understood operator. The differ-
ential operator which lies at the heart of PPT is the
complex Monge-Ampère operator, MA, a fully nonlinear
second order differential operator. The nonlinearity of
MA makes things much more complicated—it is not even
possible to define MA(u) (in a reasonable way) for every
plurisubharmonic function u. This is in sharp contrast
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with CPT, since ∆ is a linear operator and therefore ∆u

makes sense for every distribution u.
If u is plurisubharmonic and C2, we define

MA(u) = 4nn! det
(

∂2u

∂zj∂z̄k

)
dV (1–1)

as (some constant times) the determinant of the complex
Hessian of u times the (2n-dimensional) Lebesgue mea-
sure. A considerable amount of work has been devoted
to extending this definition to a larger class of plurisub-
harmonic functions. It is reasonable to say that the ad-
vent of pluripotential theory was the very influential 1976
paper by Bedford and Taylor [Bedford and Taylor 76]
where they defined MA for locally bounded plurisubhar-
monic functions. Since then, a number of authors have
extended this definition to cover various classes of un-
bounded plurisubharmonic functions. In particular, we
want to mention the paper by Demailly [Demailly 87]
where it was shown that there is a natural extension of
Bedford and Taylor’s definition to allow for plurisubhar-
monic functions with (a finite number of) logarithmic
poles. We refer to the monograph by Klimek [Klimek 91]
and the more recent survey by B�locki [B�locki 99] for a
more complete picture.

In this paper, we will be concerned with the pluricom-
plex Green function. In many ways, this function be-
haves like the Green function for the Laplace operator,
but there are notable differences.

Definition 1.1. Let u be a plurisubharmonic function
defined on some neighborhood of w. Let ν > 0. We say
that u has a logarithmic pole of order at least ν at w if
there is a constant c such that u(z) ≤ ν log |z−w|+ c for
z sufficiently close to w. We define the Lelong number of
u at w, νu(w), as the supremum of all ν such that u has
a logarithmic pole of order at least ν at w.

Definition 1.2. Let Ω be a domain in C
n. If ν : Ω → R+

is a non-negative function on Ω such that supp ν is finite,
then we say that ν is admissible.

For simplicity of notation, if p ∈ Ω, we identify p with
the characteristic function of {p}. With these prelim-
inaries at hand, we can define the pluricomplex Green
function.

Definition 1.3. Let Ω be a domain in C
n, and let ν be

an admissible function on Ω. The pluricomplex Green
function with poles defined by ν, g(z; ν) is defined by

g(z; ν) = sup{u(z) : u ∈ PSH(Ω), u ≤ 0, νu ≥ ν}.

If we want to emphasize the dependence on Ω, we some-
times write gΩ.

If Ω is bounded, it is not difficult to check that
g(z; ν) is a member of its defining class, i.e.,that g(z; ν)
is negative plurisubharmonic and νg ≥ ν. In fact, we
even have that νg = ν. In a sense, g(·; ν) is a funda-
mental solution for MA—more precisely MA(g(·; ν)) =∑

w∈Ω(2πν(w))nδw (note that the sum is finite). This
definition of the pluricomplex Green function is due to
Lelong [Lelong 89], but in the singleton case, it goes back
to Klimek [Klimek 85]. For the basic properties of these
functions, such as continuity, we refer to [Demailly 87]
and [Lelong 89].

It is a remarkable fact that the single pole Green func-
tion in convex domains can be constructed by using “sim-
ple one-variable” techniques. More precisely, let Ω be a
bounded domain and let ν be an admissible function on
Ω. Consider the pluricomplex Green function gΩ(·) =
gΩ(·; ν) with poles defined by ν = ν1w1 + · · ·+ νpwp. Let
φ : D → Ω be an analytic disk in Ω, with φ(0) = z, and
φ(D) ⊃ supp ν. Assume that φ(ζj) = wj . Then u = gΩ◦φ
is a negative subharmonic function on the unit disk in C

and one can verify that νu(ζj) ≥ νg(φ(ζ)) = ν(wj). Thus,
if we define ν̃ : D → R+ by ν̃ = ν1ζ1+ · · ·+νpζp, then ν̃ is
an admissible function on D and gD(ζ; ν̃) ≥ u(ζ). Using
the linearity of the Laplace operator, one checks that

gD(ζ; ν̃) =
p∑

j=1

νj log
∣∣∣∣ ζ − ζj

1 − ζ̄jζ

∣∣∣∣ . (1–2)

In other words, we see that u(0) = gΩ(z; ν) ≤ gD(0; ν̃) =∑
νj log |ζj |. Motivated by this discussion, we make the

following definition.

Definition 1.4. Let Ω be a domain in C
n and let ν be an

admissible function on Ω. Let φ : D → Ω be an analytic
disk. We say that φ is ν-admissible if φ(D) ⊃ supp ν. If
φ is ν-admissible, we define

d(φ) =
∑

w∈supp ν

inf{ν(w) log |ζ| : ζ ∈ φ−1(w)}.

Finally, we define the Lempert function with pole defined
by ν by

δ(z; ν) = inf{d(φ) : φ(0) = z, φ is a ν-admissible disk}.
(1–3)

From the discussion preceding the definition of δ, we
see that if ν is admissible, then g(z; ν) ≤ δ(z; ν), and it
is straightforward to verify that g(·; ν) = δ(·; ν) if δ is
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plurisubharmonic. The main reason for introducing the
Lempert function is that in many ways, it is easier to
study δ than to study g, and using δ, we can at least get
an upper bound for g. Let us move on and define another
useful function that will give us a lower bound for g.

Definition 1.5. Let Ω be a domain in C
n and let ν be

an integer-valued admissible function on Ω. Define the
Carathéodory function with poles defined by ν as

δ∗(z; ν) = sup{log |f(z)| : f ∈ O(Ω, D), νlog |f | ≥ ν}.
(1–4)

The reason for restricting ourselves to integer-valued ad-
missible functions is that if f is holomorphic, then the
Lelong number of log |f | is integer-valued.

Clearly, δ∗(z; ν) ≤ g(z; ν), since the defining family for
δ∗ is a proper subset of the defining family for g. As in
the case of δ, the main reason for introducing δ∗ is that
in some cases, it is easier to estimate δ∗ than to estimate
g directly.

Furthermore, if ν = w, then δ(z;w) and δ∗(z;w) are
closely related to the Kobayashi and Carathéodory pseu-
dodistances, respectively. A deep and very influential
theorem by Lempert [Lempert 81] shows that these pseu-
dodistances coincide in convex domains, so we have the
following important result:

Theorem 1.6. (Lempert.) Let Ω be a convex domain,
and let w ∈ Ω. Then g(z;w) = δ(z;w) = δ∗(z;w).

As a consequence of this theorem, we see that
g(z;w) = g(w; z) for convex domains, something that
is not true in general. (Compare this with the Green
function for the Laplace operator which is always sym-
metric.)

Let us move on to the general case, where supp ν is
finite but not (necessarily) a singleton. Here, few results
are known. Coman [Coman 00] has computed g(z; ν) for
the unit ball B in C

n in the case when ν = w1 + w2.
In fact, Coman computed δ(z; ν) and showed that this
function is plurisubharmonic on B, and hence that δ = g

in this particular case. An independent computation by
Edigarian and Zwonek [Edigarian and Zwonek 98] used
a branched covering map from B to E(1/2, 1) = {(z, w) ∈
C

2 : |z|+ |w|2 < 1}, mapping both poles in B to the same
point in E(1/2, 1), to come up with the same result.

Seeing that g = δ, at least in the special case men-
tioned above, led Coman [Coman 00] to pose the follow-
ing conjecture.

Conjecture 1.7. Let Ω be a bounded convex domain in
C

n, and let ν be an admissible function on Ω. Then
δ(z; ν) = g(z; ν).

One other explicit example is for the bidisk D
2, when

ν = w1 + w2, and w1, w2 ∈ D × {0}. For this par-
ticular case, an explicit formula for g(z; ν) was given
by Carlehed [Carlehed 95]. (See also Edigarian and
Zwonek [Edigarian and Zwonek 98] for an alternative
proof.)

In both of the above cases, one can verify that δ =
g = δ∗ and one is tempted to pose a generalization
of Coman’s conjecture, i.e., that δ = g = δ∗ for con-
vex domains and integer-valued admissible functions.
Unfortunately, Coman’s conjecture is not true in gen-
eral. Recently, Carlehed and Wiegerinck [Carlehed and
Wiegerinck 03] extended the example in the bidisk to the
case w1, w2 ∈ D×{0} and ν(w1) 	= ν(w2) for which they
compute g and show that g 	= δ.

The question now is whether Coman’s conjecture is
true under some stronger assumptions, for example, that
all poles have the same weight, or if the two positive cases
known are purely coincidental. Both of these cases have
a high symmetry, and in fact, both of them can be ex-
plained by looking at branched covering maps, in case of
the bidisk, a double covering from D

2 to itself. In view
of this, it is natural to ask for a positive result in a less
symmetric position of the poles. It is possible to show
that for a generic position of two poles in the bidisk, there
is no branched covering map from D

2 to itself, mapping
both poles to the same point. In this paper, we study
the case of two poles of equal weight in the bidisk, when
there is no restriction on the placement of the poles. It
seems difficult to obtain an explicit formula for g (or δ or
δ∗) in this general setting, but we show how these func-
tions can be computed numerically. The results obtained
from the numerical calculations strongly suggest that
δ = g = δ∗ in the case of two poles of equal weight
in the bidisk.

In the final section of the paper, we show that Coman’s
conjecture fails in the unit ball of C

2. More precisely, if
ν = w + 2w′, where w = 0 and w′ = (1/2, 0), then δ(·; ν)
is not plurisubharmonic and hence g(·; ν) 	= δ(·; ν). This
counterexample is done using interval arithmetic.

During the preparation of this paper, I learned that
Pascal Thomas and Nguyen Van Trao [Thomas and Trao
03] have shown that if Ω = D

2 and ν = p + p′ + q + q′

where p = (a, 0); p′ = (a, ε), q = (−a, 0), and q′ = (−a, ε)
where a ∈ D; and |ε| is small enough, then δ(z; ν) 	=
g(z; ν).
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2. COMPUTING δ

Let p, q ∈ D
2 and ν = p+q. We want to compute δ(z; ν).

It is clear that δ is biholomorphically invariant, so we
may as well assume that z = 0. Take any ν-admissible
disk φ with φ(0) = 0, i.e., φ is an analytic disk with
φ(α) = p and φ(β) = q for some α and β in D. Write
φ = (φ1, φ2) for the components of φ. Then for each j

(j = 1, 2), we have a holomorphic function φj : D →
D such that φj(0) = 0, φj(α) = pj , and φj(β) = qj .
By the Nevanlinna-Pick interpolation theorem [Pick 16],
there exists φj with these properties if and only if the
Nevanlinna-Pick matrix

Pj =




1 1 1

1
1 − |pj |2
1 − |α2|

1 − pj q̄j

1 − αβ̄

1
1 − p̄jqj

1 − ᾱβ

1 − |qj |2
1 − |β|2




is positive semidefinite. Hence, δ(0; ν) = inf{log |α| +
log |β| : P1, P2 ≥ 0}. For ease of computation, let δ̃ =
exp δ = inf{|αβ| : P1, P2 ≥ 0}. Expanding the minors of
Pj , we see that P1 and P2 are positive semidefinite if and
only if

|α| ≥ max{|p1|, |p2|}, (2–1)

|β| ≥ max{|q1|, |q2|}, (2–2)

and∣∣∣∣ α − β

1 − αβ̄

∣∣∣∣ ≥ max
{∣∣∣∣p1β − q1α

αβ̄ − p1q̄1

∣∣∣∣ ,

∣∣∣∣p2β − q2α

αβ̄ − p2q̄2

∣∣∣∣
}

. (2–3)

In other words, we want to minimize |αβ| under the con-
ditions (2–1), (2–2), and (2–3). For a generic choice of
p and q, this turns out to be a very messy computation,
but let us attack the special case p = (p, 0), q = (0, q).

Proposition 2.1. Let p = (p, 0), q = (0, q), and ν = p + q.
Then

δ(0; ν) = log
|pq|

|p| + |q| − |pq| . (2–4)

Proof: Let φ : D → D
2 be a ν-admissible disk with φ(0) =

0, φ(α) = p, and φ(β) = q. Let us choose d ∈ R+

and θ ∈ R such that αβ̄ = deiθ. When p2 = q1 = 0,
Equations (2–1)–(2–3) reduce to

|α| ≥ |p|, (2–5)

|β| ≥ |q|, (2–6)∣∣∣∣ α − β

1 − αβ̄

∣∣∣∣ ≥ ∣∣∣ p

α

∣∣∣ , (2–7)

and ∣∣∣∣ α − β

1 − αβ̄

∣∣∣∣ ≥
∣∣∣∣ q

β

∣∣∣∣ . (2–8)

Squaring (2–7) and (2–8) and rearranging the results,
we obtain the following inequalities:

|p|2 (
1 − 2d cos θ + d2

) ≤ |α|2 (|α|2 + |β|2 − 2d cos θ
)

= |α|4 + d2 − 2d|α|2 cos θ, (2–9)

and

|q|2 (
1 − 2d cos θ + d2

) ≤ |β|2 (|α|2 + |β|2 − 2d cos θ
)

= d2 + |β|4 − 2d|β|2 cos θ,
(2–10)

respectively. Furthermore, from (2–5) and (2–6), using
that |αβ| = d, we have that

|p|2 ≤ |α|2 ≤ d2

|q|2 . (2–11)

Hence, we want to find the smallest value of d, such
that (2–9) and (2–10) are satisfied for some value of θ

with the additional constraint (2–11).
Rearranging (2–9) and (2–10) temporarily, we have

that

2d cos θ
(|α|2 − |p|2) ≤ |α|4 + d2 − |p|2 − |p|2d2

and

2d cos θ
(|β|2 − |q|2) ≤ |β|4 + d2 − |q|2 − |q|2d2.

From this, we note that if (2–9) and (2–10) are satisfied
for some (d, α, θ0), they are satisfied for every (d, α, θ),
such that cos θ ≤ cos θ0. Hence, we may as well assume
that θ = π. Using this observation, we rewrite (2–9)
and (2–10) once again, obtaining

|p|2(1 + d)2 ≤ (|α|2 + d
)2

(2–12)

and
|q|2(1 + d)2 ≤ (|β|2 + d

)2
. (2–13)

Taking square roots and rearranging yet again, we end
up with the two inequalities:

|p|(1 + d) − d ≤ |α|2, (2–14)

and
|q|(1 + d) − d ≤ |β|2. (2–15)

Now, since δ(z; p + q) ≤ min {δ(z; p), δ(z; q)} (see [Wik-
ström 99]), we may assume that d ≤ min{|p|, |q|}, and
hence that |p|(1 + d) − d ≥ |p|2 and |q|(1 + d) − d ≥
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|q|2. In particular, we may assume that the left-hand
sides of (2–14) and (2–15) are both positive. Multiply-
ing (2–14) and (2–15), we obtain

|p||q|(1 + d)2 + d2 − d(1 + d)(|p| + |q|) ≤ d2. (2–16)

Solving for d in (2–16) gives

d ≥ d0 :=
|pq|

|p| + |q| − |pq| . (2–17)

Conversely, by taking

α =
√

|p|(1 + d0) − d0 =
|p|√|p| + |q| − |pq|

and

β = −
√

|q|(1 + d0) − d0 = − |q|√|p| + |q| − |pq| ,

a routine calculation shows that conditions (2–5)
through (2–8) are satisfied. Hence,

δ(0; ν) = log
|pq|

|p| + |q| − |pq| , (2–18)

as claimed.

For p and q in general position, we will resort to nu-
merical computations.

3. COMPUTING δ∗

To compute δ∗, we are naturally led to study certain
interpolation problems for holomorphic functions. The
classical result for the unit disc in this direction is the
Nevanlinna-Pick theorem [Pick 16], which we already
used in Section 2..

Theorem 3.1. Let (w1, . . . , wn) ∈ D
n. Then there is a

function f ∈ H∞(D) with ‖f‖ ≤ 1, such that f(αj) = wj,
1 ≤ j ≤ n if and only if the matrix(

1 − wjw̄k

1 − αjᾱk

)n

i,j=1

is positive semidefinite.

Recently, Agler [Agler 98] gave a generalization of the
Nevanlinna-Pick interpolation theorem to the bidisk. For
a published proof of a more general result, see [Agler and
McCarthy 99].

Theorem 3.2. (Agler.) Let (w1, . . . , wn) ∈ D
n. Then

there is a f ∈ H∞(D2), with ‖f‖ ≤ 1 such that

f(λj
1, λ

j
2) = wj, 1 ≤ j ≤ n if and only if there are positive

semidefinite n × n-matrices A and B such that

1−wjw̄k = (1−λj
1λ̄

k
1)Ajk+(1−λj

2λ̄
k
2)Bjk, 1 ≤ j, k ≤ n.

(3–1)

To compute δ∗(0; ν), where ν = p + q, we look at
functions f ∈ O(D2, D) such that f(p) = f(q) = 0 and
|f(0)| is as large as possible. In other words, we want to
solve the following problem: Maximize |c| under the side
condition

1 − |c|2 1 1
1 1 1
1 1 1


 = P1 ⊗ A + P2 ⊗ B, (3–2)

where

Pj =


1 1 1

1 1 − |pj |2 1 − pj q̄j

1 1 − p̄jqj 1 − |qj |2


 , j = 1, 2

for some positive semidefinite matrices A and B. Here,
⊗ denotes the Schur-product, or element-wise product,
i.e., (ajk) ⊗ (bjk) = (ajkbjk).

In our setting, it can be proved that it is enough to
look for solutions to (3–2) where A and B both have
rank 1, but the proof of this is rather tedious and we
omit it. For our purposes, the computations below will
justify that we only look for rank one solutions.

Again, as for explicitly computing δ, it seems to be a
rather difficult task to compute δ∗, but we can solve the
same special case as we did for δ.

Proposition 3.3. Let p = (p, 0), q = (0, q) and let ν =
p + q. Then

δ∗(0; ν) = log
|pq|

|p| + |q| − |pq| . (3–3)

Proof: Since δ∗ is invariant under biholomorphic map-
pings of D

2, we may as well assume that p and q are posi-
tive real. Seeking real rank 1 solutions to Equation (3–2),
we write A = xTx and B = yTy, where x, y ∈ R

3. With
this approach, Equation (3–2) reduces to x2

1 +y2
1 = 1−c2

and 


x1x2 + y1y2 = 1
x1x3 + y1y3 = 1
x2x3 + y2y3 = 1
(1 − p2)x2

2 + y2
2 = 1

x2
3 + (1 − q2)y2

3 = 1.

(3–4)

It turns out that, with a little help from computer alge-
bra, one can solve (3–4) for x1, x2, x3, y1, and y2 in terms
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of y3. Now, maximizing c means minimizing x2
1 +y2

1 , and
if we write this expression in terms of y3 alone, this is just
an optimization problem for a function of one real vari-
able, which is easily solved, again with some help from
Maple. Omitting the details, the result of these compu-
tations is that

A = xTx =




q(1−p)(p+q)
(p+q−pq)2

q
p+q−pq

q(1−p)
p+q−pq

q
p+q−pq

q
(1−p)(p+q)

q
p+q

q(1−p)
p+q−pq

q
p+q

q(1−p)
p+q


 (3–5)

and

B = yTy =




p(1−q)(p+q)
(p+q−pq)2

p(1−q)
p+q−pq

p
p+q−pq

p(1−q)
p+q−pq

p(1−q)
p+q

p
p+q

p
p+q−pq

p
p+q

p
(1−q)(p+q)


 (3–6)

are solutions to Equation (3–2). Hence,

δ∗(0; ν) ≥ 1
2

log
(

1 − q(1 − p)(p + q)
(p + q − pq)2

− p(1 − q)(p + q)
(p + q − pq)2

)

=
1
2

log
(

p2q2

(p + q − pq)2

)
= log

(
pq

p + q − pq

)
.

(3–7)

Since δ∗ ≤ δ, the inequality in (3–7) must in fact be an
equality, and the proof is complete.

Corollary 3.4. Let p = (p, 0), q = (0, q) and let ν = p+ q.
Then

g(0; ν) = log
|pq|

|p| + |q| − |pq| . (3–8)

4. NUMERICAL COMPUTATIONS OF δ

Since the explicit computations of δ and δ∗ in the gen-
eral case seem difficult to carry out, we turn to numerical
computations. Recall that we want to minimize |αβ| un-
der the conditions

|α| ≥ max{|p1|, |p2|}, (4–1)

|β| ≥ max{|q1|, |q2|}, (4–2)

and∣∣∣∣ α − β

1 − αβ̄

∣∣∣∣ ≥ max
{∣∣∣∣p1β − q1α

αβ̄ − p1q̄1

∣∣∣∣ ,

∣∣∣∣p2β − q2α

αβ̄ − p2q̄2

∣∣∣∣
}

. (4–3)

After a rotation of D, we may assume that α is real and
positive. It turns out that the following simple-minded
approach to minimizing α|β| works well:

1. Let Θ = [0, 2π].

2. Choose θ1, . . . θn ∈ Θ equidistantly. (By default, n

is taken to be 25.)

3. For each θj , compute δj = min α|β| under the side
conditions (4–1)–(4–3) and the extra assumption
that β = beiθj , 0 < b < 1. This minimization, in
turn, is done in the following way:

(a) Let A = [max{|p1|, |p2|}, 1].

(b) Choose α1, . . . , αm ∈ A equidistantly. (By de-
fault, m is taken to be 20.)

(c) For each αk, compute dk = αkbk, where bk is
the smallest value of b such that (4–1)–(4–3)
are fulfilled with α = αk and β = beiθj . Note
that bk can be computed from (4–3) by solving
a quartic equation.

(d) Let A = [αk0−k′ , αk0+k′ ], where k0 is the index
such that dk0 = mink dk and k′ is a suitable
small integer. (By default, k′ = 3.)

(e) If the diameter of A is small enough (by de-
fault, less than 10−8), return dk0 , otherwise
goto Step 3(b).

4. Let Θ = [θj0−j′ , θj0+j′ ], where j0 is the index such
that δj0 = minj δj and j′ is a suitable small integer.
(By default, j′ = 3.)

5. If the diameter of Θ is small enough (by default, less
than 10−8), return δj0 , otherwise goto Step 2.

In practice, the simple algorithm described above
works surprisingly well. If p or q is very close to the
boundary, the result of the computation may be a non-
global minimum of α|β|, and in that case, the default
values of the parameters m, n, k′, and j′ in the method
may have to be changed.

5. NUMERICAL COMPUTATIONS OF δ∗

In this section, we look at the methods that were used
to compute δ∗ numerically. More precisely, let us take
p, q ∈ D

2 and try to compute δ∗(0; p + q).
As described in Section 3., we want to find the largest

possible value of c for which Equation (3–2) has a solution
with A and B positive semidefinite. It can be shown that
it is enough to consider the case where A and B both are
of rank 1. Fix the real number c > 0. Write A = āTa,
where a = (a1, a2, a3). Note that every rank-1 positive
semidefinite matrix can be written in this way, with a
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uniquely determined up to a common rotation of all three
components. We assume that a is chosen in a way so that
a1 ∈ R+. Write a2 = x+ iy and a3 = u+ iv. In a similar
way, we write B = b̄Tb, where b = (b1, b2, b3)

Looking at the first column in Equation (3–2), we get

a2
1 + |b1|2 = 1 − c2

a1a2 + b̄1b2 = 1

a1a3 + b̄1b3 = 1.

(5–1)

By choosing b1 > 0, we see that b is uniquely deter-
mined by a from (5–1). The remaining equations in (3–2)
then give

(1 − |p1|2)|a2|2 + (1 − |p2|2)|b2|2 = 1

(1 − p1q̄1)a2ā3 + (1 − p2q̄2)b2b̄3 = 1

(1 − |q1|2)|a3|2 + (1 − |q2|2)|b3|2 = 1.

(5–2)

By substituting the values for b1, b2, and b3 obtained
from Equation (5–1) into (5–2) and separating the real
and imaginary parts, we get a system of four equations in
the five real variables a1, x, y, u, v, say F (a1, x, y, u, v) =
0, where F = (F1, F2, F3, F4). The equation F = 0 is
then solved numerically in the following way:

1. Choose a starting value for a1, x, y, u, v.

2. Try to minimize the function ‖F‖2 using a number
of iterations with the steepest descent method com-
bined with a line-search. (Note that the derivatives
of F can be computed explicitly without too much
trouble.)

3. Fix the value of a1 obtained from Step 2 and solve
F = 0 for x, y, u, v using Newton’s method combined
with a line search.

This algorithm is repeated until a solution is found (in
the implementation, we require ‖F‖2 < 10−28 for a solu-
tion) or the maximum number of iterations is reached. If
a solution is found, we increase the value of c and start
over again. When p or q is very close to the boundary,
this method occasionally gives a less than optimal result.
In such cases, it was necessary to modify the method
described above slightly.

6. RESULTS OF THE NUMERICAL COMPUTATIONS

The methods described in Sections 4 and 5 were imple-
mented and tested. (Some minor additions to the algo-
rithms were made, for example, to look for degenerate
solutions to Agler’s equation where A = 0 or B = 0 and
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FIGURE 1. δ(z; p + q), where p = (0.6, 0), q = (0, 0.3),
and z ∈ D

2 ∩ R
2.

some tweaks to obtain better convergence when A or B

is “close” to 0.)
The program was run with 30,000 random choices of p

and q and it was found that exp δ and exp δ∗ differed by
less than 3 × 10−6 for all of these points. The program
was also rerun with some parameters adjusted to improve
the accuracy (sacrificing some computational speed, of
course) with 1,000 random choices of p and q. For all
of these points, exp δ and exp δ∗ differed by less than
3 × 10−9. These computations suggest that δ = δ∗ for
the bidisk with two poles of equal weight.

We also computed the values of δ and δ∗ along some
two-dimensional slices in order to draw some pictures.
Figure 1 shows δ(z; p + q) along a totally real two-
dimensional submanifold of D

2 passing through p and q.
Figure 2 shows δ(z; p+q) along an analytic disc through p.
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FIGURE 2. δ(z; p + q), where p = (0.6, 0), q = (0, 0.3),
and z ∈ D × {0}.
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7. A COUNTEREXAMPLE TO COMAN’S CONJECTURE

We have seen that δ∗, g, and δ have many properties
in common, but nevertheless it turns out that Coman’s
conjecture fails in general. The first example of this is
as mentioned in the introduction due to Carlehed and
Wiegerinck [Carlehed and Wiegerinck 03] and concerns
the case when Ω = D

2 and ν = w + νw′ with w,w′ ∈
D × {0} and ν 	= 1. We will see that something similar
is true when Ω = B is the unit ball in C

2, at least if the
poles are sufficiently close together.

Theorem 7.1. Let B be the unit ball in C
2 and let w = 0,

w′ = (1/2, 0). Then δ(·;w+2w′) is not plurisubharmonic
on B. In particular, g(z;w+2w′) < δ(z;w+2w′) for some
z ∈ B.

The proof of this theorem will be done by combining
some traditional methods with numerical computation
using interval arithmetic. Briefly put, interval arithmetic
is a method of handling computations with real numbers
on a computer in a way that gives stringent upper and
lower bounds for all of the calculated variables. Even
with the help of interval arithmetic, one can almost never
hope to prove that two real numbers are equal with the
help of a computer. On the other hand, by computing
things with sufficiently high precision, it is sometimes
possible to prove that two real numbers are not equal.
For a more comprehensive introduction to interval arith-
metic, we refer to [Moore 97].

Proof: Let z = (0, c). First of all, let us find necessary
and sufficient conditions on α and β such that there exists
an analytic disk φ : D → B with φ(0) = z, φ(α) = w, and
φ(β) = w′.

Assume that φ is such a disk. Write φ = (φ1, φ2).
Since φ1(α) = φ2(α) = 0, we can factor the components
of φ as

φ(ζ) = (φ1(ζ), φ2(ζ)) =
α − ζ

1 − ᾱζ
(ψ1(ζ), ψ2(ζ)) (7–1)

and it follows from the maximum principle that ψ =
(ψ1, ψ2) : D → B. Using that δ is decreasing under holo-
morphic mappings, we have the following necessary con-
ditions:

log |α| = δD(0, α) ≥ δB(φ(0), φ(α)) = δB(z;w), (7–2)

log |β| = δD(0, β) ≥ δB(φ(0), φ(β)) = δB(z;w′), (7–3)

and similarly from (7–1), we get

log |β| = δD(0, β) ≥ δB(ψ(0), ψ(β)) = δB

(
z

α
;
(1 − ᾱβ)w′

α − β

)
.

(7–4)
Conversely, if these conditions are satisfied, it is straight-
forward to see that such a disk φ exists.

Now, an explicit formula for δB(z;w) is of course well
known (we have that δB(z;w) = log |Tw(z)|, where Tw ∈
Aut(B) and Tw(w) = 0). Our choice of z, w, and w′

makes the resulting inequalities easier to handle than in
the general setting. Untangling (7–2)–(7–4), we end up
with

|α| ≥ |c| (7–5)

2|β| ≥
√

1 + 3|c|2 (7–6)

|β|2 ≥ 1 −
(

1 − 1
4

∣∣∣∣1 − ᾱβ

α − β

∣∣∣∣
2
)(

1 − |c|2
|α|2

)
. (7–7)

We are interested in computing δ(z;w+2w′), so we want
to minimize log |α|+2 log |β| under these side conditions.
To do this explicitly seems rather tricky, but using a nu-
merical approach, we can compute δ to any desired ac-
curacy and this will be enough to show that the function
c �→ δ((0, c);w+2w′) is not subharmonic on D. First note
that (after a rotation) we can assume that 0 < α < 1.
Also, the condition (7–6) only depends on |β| and one
can check that the right-hand side of (7–7) is (for a fixed
0 < α < 1 and |β|) smallest when β is negative real. So
we may as well assume that α = a and β = −b with
0 < a, b < 1. Furthermore, by biholomorphic invariance,
we may also assume that c is positive real. With these
assumption, condition (7–7) simplifies to

(a2b2 − c2)(a + b)2 − 1
4
(a2 − c2)(1 + ab)2 ≥ 0. (7–8)

The left-hand side of (7–8) is a quartic polynomial in a,
say p(a). Expanding this polynomial, we see that the
coefficients of a4 and a3 are positive and the coefficients
of a1 and a0 are negative. Hence, using Descarte’s Rule
of Signs, it follows that p has at most one positive real
zero. On the other hand, p(c) = c2(b2 − 1)(c + b)2 ≤ 0
and p(1) = (1+ b)2(b2 −1/4−3c2/4) ≥ 0, so for a fixed b

and c, p has exactly one zero in the interval [c, 1]. Hence,
there is a unique ã(b) ≥ c such that (7–8) holds for all
a ≥ ã(b). Consequently, we want to minimize ã(b)b2 over
all b ≤ 1 satisfying (7–6).

At this point, interval arithmetic comes in very handy.
For fixed c and b, it is easy to compute ã(b) with any de-
sired accuracy (for example, using interval bisection or
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by solving the quartic equation explicitly). To find the
minimum of f(b) = ã(b)b2, we can check (by implicit dif-
ferentiation) that f ∈ C1 so we only have to look for zeros
of f ′ (and check the endpoints). Since we can compute
ã(b) accurately, we can also compute f ′ accurately (ã′(b)
can be expressed in terms of ã(b) and b by differentiat-
ing the expression p(ã(b)) = 0). Using a so-called branch
and bound algorithm, we can find good estimates for the
zero(s) of f ′ and actually prove that f ′ has no other ze-
ros. Doing all this, one can compute δ(z;w + 2w′) with
any desired accuracy (let us stress the fact that the result
of this computation is rigorous upper and lower bounds
for δ).

How does this information help us prove that δ fails to
be plurisubharmonic? One approach could be to (numer-
ically) compute the Laplacian of c �→ δ((0, c);w + 2w′),
but this is very difficult to do with good error esti-
mates. A better way is to show that δ violates the sub-
meanvalue property, since integration is far easier to do
in a numerically rigorous way than differentiation. In
our particular case, it is easy to check that the func-
tion δ(r) = δ((0, r);w + 2w′) is increasing in r (when
0 < r < 1), since if φ = (φ1, φ2) is a disk in the defining
family for δ(r) and r′ < r, then φ̃ = (φ1, r

′r−1φ2) is a
member in the defining family for δ(r′) and d(φ) = d(φ̃).

This monotonicity of δ(r) makes things even better.
Let z0 = (0, c0) ∈ B and t = (0, 1) ∈ C

2. To give lower
and upper bounds for the integral

I =
1
2π

∫ 2π

0

δ(z0 + ε exp(iθ)t;w + 2w′) dθ

=
1
π

∫ π

0

δ(z0 + ε exp(iθ)t;w + 2w′) dθ,

we divide [0, π] into a suitable number of intervals, and
use the fact that the integrand is decreasing in θ. Hence,
if 0 = θ0 < θ1 < · · · < θn = π is a partition of [0, π], then

n∑
j=1

(θj − θj−1)δj < I <

n−1∑
j=0

(θj+1 − θj)δj ,

where [δj , δj ] is an enclosure for δ(z0 + ε exp(iθj)t;w +
2w′) obtained as described above. Performing these com-
putations (and paying attention to rounding issues) with
c0 = 0.3, ε = 0.08, and 128 subintervals of equal length,
we obtain

δ(z0;w + 2w′) > −1.29047 > −1.29377 > I,

which proves that δ(·;w + 2w′) is not plurisubharmonic.

Remark 7.2. Similar computations indicate that if ν > 1
and w′ = (r, 0), then δ(·; 0+νw′) is not plurisubharmonic
if r is sufficiently small. The results of these computa-
tions are shown in Table 1.

ν r c ε δ I

2.0 0.5 0.3 0.12 -1.29046 -1.29388
1.9 0.5 0.3 0.12 -1.26864 -1.27083
1.8 0.5 0.3 0.12 -1.24954 -1.25089
1.7 0.5 0.3 0.12 -1.23334 -1.23411
1.6 0.5 0.3 0.12 -1.22028 -1.22066
1.5 0.5 0.3 0.12 -1.21070 -1.21084

1.4 0.3 0.22 0.06 -1.57443 -1.57522
1.3 0.3 0.22 0.06 -1.54381 -1.54411
1.2 0.3 0.22 0.06 -1.52267 -1.52273

1.1 0.15 0.22 0.06 -1.53257 -1.52382
1.05 0.15 0.22 0.06 -1.51692 -1.51694

1.03 0.10 0.15 0.06 -1.899993 -1.90003
1.02 0.10 0.15 0.06 -1.897930 -1.897937

1.01 0.08 0.10 0.04 -2.302750 -2.302751

TABLE 1. Computational results. δ = δ((0, c); 0 + ν ·
(r, 0)). I = (2π)−1

∫ 2π

0
δ((c+ε exp(iθ), 0); 0+ν ·(r, 0)) dθ.

The values for δ were computed by the interval method
described above and are accurate to all digits given. The
values of I are numerically computed and should be ac-
curate to all digits given. Furthermore, in all of the cases
listed in the table except the last three, I was also com-
puted with rigorous bounds as described in the proof of
Theorem 7.1 to a sufficiently high accuracy to ensure that
the submeanvalue property was violated.
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