First, we trace the genesis of the canonical form of Heun’s biconfluent equation. Second, we present a method which allows us to find an integral expression as a solution to our equation, and finally, using the properties of Meijer G-functions, we give an integral representation of a fundamental system of solutions to the biconfluent equation.

1. Preliminaries

Heun’s differential equation and its confluent forms are used to build up new classes of solvable potentials. The Schrödinger equation formed with those potentials can be reduced to Heun’s biconfluent differential equation. We list some examples:

(i) radial Schrödinger equation for the harmonic oscillator [15];
(ii) radial Schrödinger equation for the doubly anharmonic oscillator [4, 5, 10];
(iii) radial Schrödinger equation of a three-dimensional anharmonic oscillator [7, 8, 10];
(iv) radial Schrödinger equation of a class of confinement potentials [10, 16].

For other kinds of potentials, see [11, 12].

Recently, a very interesting and valuable monography was dedicated to Heun’s equations [17]. Arscott [1] conjectures that solutions of Heun’s equations are not expressible in terms of definite or contour integrals involving simpler functions. One should mention the work of Sleeman who gave a solution in the form of factorial series, which leads to Barnes-type contour integrals [18]. In the sequel, we will see that it is possible to give integral representations in terms of Mellin’s kernel of solutions to biconfluent Heun’s equation.

We start with the canonical form of a second-order differential equation with p ($p \geq 2$) elementary singular points ($p - 1$ finite singularities and the ∞):

$$y'' + \sum_{r=1}^{p-1} \frac{2/p}{x - a_r} y' + \sum_{k=1}^{p-3} \frac{A_k x^{p-3-k}}{\prod_{r=1}^{p-1} (x - a_r)} y = 0. \quad (1.1)$$
Many differential equations which occur in a large variety of problems arising from pure or applied mathematics or mathematical physics, often after appropriate algebraic or transcendental changes of variable, can be derived by the confluences of the singularities from (1.1). The classes of these equations are characterized by the Klein-Bôcher-Ince symbol \((\ell, q, r_1, r_2, \ldots, r_s)\) with

\[
p = \ell + 2q + \sum_{k=1}^{s} (k + 2)r_k,
\]

where \(\ell\) is the number of elementary singular points, \(q\) is the number of nonelementary regular singular points, and \(r_k\) is the number of irregular singular points of kind \(k\). For the terminology, see [9].

If we set \(p = 8\) by means of confluence process and after parametric reduction, we mention hereby some remarkable equations.

(1) Heun’s equation \((0, 4, 0)\). The confluence of \(a_7, a_6 \to 0, a_5, a_4 \to a, a_3, a_2 \to 1,\) and \(a_1 \to \infty\) leads to

\[
y''(x) + \left(\frac{\alpha}{x} + \frac{\beta}{x-1} + \frac{\gamma}{x-a} \right)y'(x) + \frac{\delta \eta(x-\lambda)}{x(x-1)(x-a)} y(x) = 0,
\]

where \(\alpha, \beta, \gamma, \delta, \lambda,\) and \(a\) are six independent parameters and \(\eta = \alpha + \beta + \gamma - \delta - 1\).

(2) Confluent Heun’s equation \((0, 2, 1_2)\). The confluence of \(a_7, a_6, a_5 \to \infty, a_4, a_3 \to 1,\) and \(a_2, a_1 \to 0\) leads to

\[
y''(x) + \left(\alpha + \frac{\beta + 1}{x} + \frac{\gamma + 1}{x-1} \right)y'(x)
+ \frac{\delta \eta(x-\lambda)}{x(x-1)} y(x) = 0,
\]

with five independent parameters: \(\alpha, \beta, \gamma, \delta,\) and \(\eta\).

(3) Biconfluent of Heun’s equation \((0, 1, 1_4)\). The confluence of \(a_7, a_6, a_5, a_4, a_3 \to \infty\) and \(a_2, a_1 \to 0\) leads to

\[
x y''(x) + (1 + \alpha - \beta x - 2x^2)y'(x)
+ \left[(\gamma - \alpha - 2)x - \frac{1}{2}(\delta + \alpha \beta) \right] y(x) = 0,
\]

with four independent parameters: \(\alpha, \beta, \gamma,\) and \(\delta\).

(4) Double confluent of Heun’s equation \((0, 0, 2_2)\). The confluence of \(a_7, a_6, a_5 \to \infty\) and \(a_4, a_3, a_2, a_1 \to 0\) leads to

\[
x^2 y''(x) + \left[1 + \alpha \left(x + \frac{1}{x} \right) \right] xy'(x)
+ \left[(\beta - \frac{\alpha}{2}) x + \frac{\delta \alpha^2}{2} - \frac{1}{4} + (\gamma + \frac{\alpha}{2}) x \right] y(x) = 0,
\]

with four independent parameters: \(\alpha, \beta, \gamma,\) and \(\delta\).
Triconfluent of Heun’s equation \((0,0,1_6)\). The confluence of \(a_7, a_6, a_5, a_4, a_3, a_2, a_1 \to \infty\) leads to
\[y''(x) + (y + 3x^2)y'(x) + [\alpha + (\beta - 3)x]y(x) = 0,\]
with three independent parameters: \(\alpha, \beta,\) and \(y\).

2. The statement of the problem

Let \(\mathcal{L}_x\) be a three-term differential operator \([2, 3, 9]\)
\[\mathcal{L}_x = \frac{P_1(\theta)}{x} + P_0(\theta) + xR_1(\theta),\]
(2.1)
where \(P_1(\theta), P_0(\theta),\) and \(R_1(\theta)\) are polynomials and \(\theta = x(d/dx)\).

We are looking for a solution to
\[\mathcal{L}_x[y] = 0\]
(2.2)
as
\[y(x) = \int_C K(x,t)Z(t)dt,\]
(2.3)
where
\[K(x,t) = \frac{K_1(xt)}{x} + K_0(xt) + xL_1(xt).\]
(2.4)
The path of integration \(C\) and the function \(Z(t)\) will be defined in the sequel. We respectively introduce an auxiliary kernel and a companion differential operator:
\[\tilde{K}(x,t) = t\tilde{K}_1(xt) + \tilde{K}_0(xt) + \frac{\tilde{L}_1(xt)}{t},\]
\[\mathcal{M}_t = t\tilde{P}_1(\theta) + \tilde{P}_0(\theta) + \frac{\tilde{R}_1(\theta)}{t}.\]
(2.5)
In this last equation \(\theta\) symbolizes the operator \(t(d/dt)\). We have the following assumption:
\[\mathcal{L}_x[K(x,t)] = \mathcal{M}_t[\tilde{K}(x,t)].\]
(2.6)
We denote by \(\tilde{\mathcal{M}}_t\) and \(A(\tilde{K}, Z)\), respectively, the formal adjoint of \(\mathcal{M}_t\) and the concomitant (a bilinear functional of \(\tilde{K}, Z\) and their derivatives).

If
\[\tilde{\mathcal{M}}_t[Z(t)] = 0,\]
(2.7)
and \(A(\tilde{K}, Z)|_C = 0\), then (2.3) is a solution to (2.2).
Setting $\zeta = xt$, (2.6) may be translated into the following system:

\[P_1(\theta - 1)[K_1(\zeta)] = \zeta^2 \tilde{P}_1(\theta + 1)[\tilde{K}_1(\zeta)], \]
\[P_1(\theta)[K_0(\zeta)] + P_0(\theta - 1)[K_1(\zeta)] = \zeta [\tilde{P}_1(\theta)[\tilde{K}_0(\zeta)] + \tilde{P}_0(\theta + 1)[\tilde{K}_1(\zeta)]], \]
\[P_1(\theta + 1)[L_1(\zeta)] + P_0(\theta)[K_0(\zeta)] + R_1(\theta - 1)[K_1(\zeta)] \]
\[= \tilde{P}_1(\theta - 1)[\tilde{L}_1(\zeta)] + \tilde{P}_0(\theta)[\tilde{K}_0(\zeta)] + \tilde{R}_1(\theta + 1)[\tilde{K}_1(\zeta)], \]
\[\zeta [P_0(\theta + 1)[L_1(\zeta)] + R_1(\theta)[K_0(\zeta)] - \tilde{P}_0(\theta - 1)[\tilde{L}_1(\zeta)] - \tilde{R}_1(\theta)[\tilde{K}_0(\zeta)]], \]
\[\zeta^2 R_1(\theta + 1)[L_1(\zeta)] = \tilde{R}_1(\theta - 1)[\tilde{L}_1(\zeta)]. \]

According to the study in [2, 3], the previous system may be reduced to

\[P_1(\theta)[K_0(\zeta)] = \zeta \tilde{P}_0(\theta + 1)[\tilde{K}_1(\zeta)], \]
\[P_0(\theta)[K_0(\zeta)] = \tilde{P}_0(\theta)[\tilde{K}_0(\zeta)], \]
\[\zeta R_1(\theta)[K_0(\zeta)] = \tilde{P}_1(\theta - 1)[\tilde{L}_1(\zeta)]. \]

In the last system, we have three equations for four unknowns. To solve this system, we have to choose two basic equations and an interdependency relation between the components of the auxiliary kernel. Our choice will be guided by the kind of solution we are looking for.

3. Heun’s biconfluent equation

The canonical form of an equation of class \((0,1,1_4)\) reads (see [6, 14])

\[xy''(x) + (1 + \alpha - \beta x - 2x^2) y'(x) + \left\{ (y - \alpha - 2)x - \frac{1}{2}[\delta + (1 + \alpha)\beta] \right\} y(x) = 0. \]

Using the operator $\theta = x(d/dx)$, we get that

\[\left\{ \frac{1}{x} \theta(\theta + \alpha) - \left(\beta \theta + \frac{1}{2}[\delta + (1 + \alpha)\beta] \right) + x(y - \alpha - 2 - 2\theta) \right\} [y] = 0. \]

We set

\[P_1(\theta) = \theta(\theta + \alpha), \]
\[P_0(\theta) = -\beta(\theta + a), \]
\[R_1(\theta) = -2(\theta + b), \]

where $a = (1/2)(\delta/\beta + \alpha + 1)$, with $\beta \neq 0$, and

\[b = (\alpha - \gamma + 2)/2. \]
According to the scheme described in Section 2, the companion operator reads

\[\mathcal{M}_t = \tilde{P}_0(\theta) = \theta + 1 + d, \]

(3.6)

where \(d \in \mathbb{C} \).

To solve the system defined by (2.9), (2.10), and (2.11), we will take the first two equations as basic equations; the interdependency relation is

\[\tilde{K}_1 = \lambda \tilde{K}_0, \]

(3.7)

with \(\lambda \in \mathbb{C}^* \). By elimination, we obtain

\[\{ \tilde{P}_0(\theta - 1)P_1(\theta) - \lambda \zeta P_0(\theta + 1 + \tilde{P}_0(\theta)) \} [K_0] = 0. \]

(3.8)

Taking into account (3.3), (3.4), and (3.5), we have

\[\{ \theta(\theta + \alpha)(\theta + d) + \beta \lambda \zeta (\theta + 2 + d)(\theta + a) \} [K_0] = 0. \]

(3.9)

If we take

\[\lambda = -\frac{1}{\beta}, \]

(3.10)

then \(K_0 \) satisfies

\[\{ \theta(\theta + \alpha)(\theta + d) - \zeta (\theta + 2 + d)(\theta + a) \} [K_0] = 0, \]

(3.11)

which is nothing but a generalized hypergeometric differential equation whose solutions may be expressed as

\[K_0(\zeta) = \, _2F_2 \left(\begin{array}{c} 2 + d, a \\ 1 + d, 1 + \alpha \end{array} \right | \zeta \right), \]

(3.12)

\[K_0(\zeta) = \zeta^{-a} \, _2F_2 \left(\begin{array}{c} 2 - \alpha + d, a - \alpha \\ 1 - \alpha + d, 1 - \alpha \end{array} \right | \zeta \right), \]

(3.13)

\[K_0(\zeta) = \zeta^{-d} \, _2F_2 \left(\begin{array}{c} 2, a - d \\ 1 - d, 1 + \alpha - d \end{array} \right | \zeta \right). \]

(3.14)

3.1. First integral representation. In this subsection, we will use the kernel given by (3.12). First, we will compute the components of the auxiliary kernel. From (2.10), we have

\[\tilde{K}_0(\zeta) = [\tilde{P}_0(\theta)]^{-1} [P_0(\theta)[K_0(\zeta)]]. \]

(3.15)

If we take into account (3.4), (3.6), and (3.12), then (3.15) becomes

\[\tilde{K}_0(\zeta) = -\beta(\theta + 1 + d)^{-1} [(\theta + a) \, _2F_2 \left(\begin{array}{c} 2 + d, a \\ 1 + d, 1 + \alpha \end{array} \right | \zeta \right). \]

(3.16)
Using the properties of the operator θ, we get that

$$
\tilde{K}_0(\zeta) = -\frac{a\beta\zeta}{1+d} \left\{ \frac{1}{1+\alpha} {}_1F_1 \left(\frac{1+a}{2+\alpha} \mid \zeta \right) + \zeta^{-1} {}_1F_1 \left(\frac{a}{1+\alpha} \mid \zeta \right) \right\},
$$

(3.17)

with $\Re(1+d) > 0$.

According to (3.5), (3.6), and (3.12), \tilde{L}_1 satisfies the following differential equation:

$$
\tilde{L}_1(\zeta) = -2\zeta(\theta + 1 + d)^{-1} \left[(\theta + b) \left\{ 2F_2 \left(\frac{2+d,a}{1+d,1+\alpha} \mid \zeta \right) \right\} \right].
$$

(3.18)

The solution to the previous equation is

$$
\tilde{L}_1(\zeta) = -\frac{2\zeta^2}{1+d} \left\{ \frac{a}{1+\alpha} {}_1F_1 \left(\frac{1+a}{1+\alpha} \mid \zeta \right) + b\zeta^{-1} {}_1F_1 \left(\frac{a}{1+\alpha} \mid \zeta \right) \right\},
$$

(3.19)

with $\Re(1+d) > 0$.

Thus, the auxiliary kernel reads

$$
\tilde{K}(x,t) = \frac{1}{1+d} \left\{ \frac{axt^2}{1+\alpha} \left[1 - \frac{2x+\beta}{t} \right] {}_1F_1 \left(\frac{1+a}{2+\alpha} \mid xt \right) \right. \\
\left. + t \left[a - \frac{2bx+ab}{t} \right] {}_1F_1 \left(\frac{a}{1+\alpha} \mid xt \right) \right\},
$$

(3.20)

with $\Re(1+d) > 0$.

Using (3.6), the solution to (2.7) takes the form

$$
Z(t) = t^d.
$$

(3.21)

The concomitant associated with (2.6) is given by

$$
A(\tilde{K},Z) = tZ(t)\tilde{K}(x,t).
$$

(3.22)

The conjunction of (3.20), (3.21), and (3.22) leads to

$$
A(\tilde{K},Z) = \frac{1}{1+d} \left\{ \frac{axt^{3+d}}{1+\alpha} \left[1 - \frac{2x+\beta}{t} \right] {}_1F_1 \left(\frac{1+a}{2+\alpha} \mid xt \right) \right. \\
\left. + t^{2+d} \left[a - \frac{2bx+ab}{t} \right] {}_1F_1 \left(\frac{a}{1+\alpha} \mid xt \right) \right\},
$$

(3.23)

with $\Re(1+d) > 0$.

Now it is time to seek for a path of integration along which the concomitant will vanish. With this end in view, we need asymptotic expansion of generalized hypergeometric function which is obtainable via G-functions.
Proposition 3.1 [13]. Recall that

\[_1F_1 \left(\frac{A}{B} \mid u \right) = \frac{\Gamma(B)}{\Gamma(A)} G^{1,1}_{1,2} \left(-u \mid 1-A \right), \]

(3.24)

where \(G^{1,1}_{1,2} \) is a Meijer G-function.

If \(a_1 \not\in \mathbb{N}, a_1 \in \mathbb{C}, \) and \(\delta_1 - \pi/2 \leq \text{Arg}(u) \leq \pi/2 + \delta_2, \delta_1, \delta_2 > 0, \) then

\[G^{1,1}_{1,2} \left(-u \mid \frac{a_1}{b_1, b_2} \right) = u^{a_1 - 1} \left\{ \sum_{k=0}^{N-1} M_k u^{-k} + O(u^{-N}) \right\}, \quad \|u\| \to \infty, \]

(3.25)

with

\[M_k = \frac{\Gamma(1+b_1-a_1)}{\Gamma(a_1-b_2)} \frac{(1+b_1-a_1,k)(1+b_2-a_1,k)}{k!}, \]

(3.26)

Corollary 3.2. If \(A \not\in \{1-n, n \in \mathbb{N}\}, \) and \(\delta_1 - \pi/2 \leq \text{Arg}(u) \leq \pi/2 + \delta_2, \delta_1, \delta_2 > 0, \) then

\[_1F_1 \left(\frac{A}{B} \mid u \right) = u^{a-A} \left\{ \sum_{k=0}^{N-1} \tilde{M}_k u^{-k} + O(u^{-N}) \right\}, \quad \|u\| \to \infty, \]

(3.27)

where \(\tilde{M}_k = (\Gamma(B)/\Gamma(A)) M_k. \)

Finally, we have

\[A(K, Z) = \frac{t^{2-a+d}}{1+d} \left\{ \left(1 - \frac{2x + \beta}{t} \right) \left[\sum_{k=0}^{N-1} \tilde{M}_{1,k} (xt)^{-k} + O((xt)^{-N}) \right] \right. \]

\[+ \left(a - \frac{2bx + a\beta}{t} \right) \left[\sum_{k=0}^{N-1} \tilde{M}_{2,k} (xt)^{-k} + O((xt)^{-N}) \right] \}, \]

(3.28)

with

(i) \[\tilde{M}_{1,k} = \frac{\Gamma(2+\alpha)}{\Gamma(1+\alpha-a)} \frac{(1+a,k)(a-\alpha,k)}{k!}, \]

(ii) \[a \not\in \{1-n, n \in \mathbb{N}\} \) and \(\Re(1+d) > 0, \)

(iii) \(\delta_1 + \pi/2 \leq \text{Arg}(xt) \leq 3\pi/2 + \delta_2, \delta_1, \delta_2 > 0. \)

In accordance with what we have already seen, we have the following theorem.
Theorem 3.3. If \(a \notin \{1 - n, n \in \mathbb{N}\}, \mathfrak{R}(a - \alpha) > \mathfrak{R}(1 + d) > 0, \delta_1 + \pi/2 \leq \text{Arg}(xt) \leq 3\pi/2 + \delta_2, \delta_1, \delta_2 > 0, \) and \(C \) is the path of integration running from \(\infty \) along the direction \(\text{Arg}(t) \), surrounding the origin and going back to \(\infty \) following the same direction, then

\[
y(x) = \int_C \,_{2}F_{1}\left(\begin{array}{c}2 + d, a \\ 1 + d, 1 + \alpha \end{array}\bigg|x t\right) t^d \, dt
\]

is a solution of Heun's biconfluent equation.

3.2. The second integral representation. Now we will work with the kernel given by (3.13), that is,

\[
K_0(\zeta) = \zeta^{-a} \,_{2}F_{1}\left(\begin{array}{c}2 - \alpha + d, a - \alpha \\ 1 - \alpha + d, 1 - \alpha \end{array}\bigg| \zeta\right).
\]

Using the same technique as above, we get that

\[
\tilde{K}(x, t) = \frac{1}{1 - \alpha + d} \left\{ \frac{a - \alpha}{1 - \alpha} \left(\frac{1 - 2x}{t} - \frac{1}{\beta}\right) \,_{1}F_{1}\left(\begin{array}{c}1 + a - \alpha \\ 2 - \alpha \end{array}\bigg|x t\right) + x^{-a} t^{-a} \frac{a - \alpha - 2(b - \alpha) x}{t} \,_{1}F_{1}\left(\begin{array}{c}a - \alpha \\ 1 - \alpha \end{array}\bigg|x t\right) \right\},
\]

with \(\mathfrak{R}(a - \alpha + d) > 0 \), and the concomitant takes the following expression:

\[
A(\tilde{K}, Z) = \frac{x^{1-a} t^{1-a+d}}{1 - \alpha + d} \left\{ \frac{a - \alpha}{1 - \alpha} \left(\frac{1 - 2x}{t} - \frac{1}{\beta}\right) \,_{1}F_{1}\left(\begin{array}{c}1 + a - \alpha \\ 2 - \alpha \end{array}\bigg|x t\right) + \frac{1}{xt} \left(\frac{a - \alpha - 2(b - \alpha) x}{t} - \frac{a - \alpha}{\beta}\right) \,_{1}F_{1}\left(\begin{array}{c}a - \alpha \\ 1 - \alpha \end{array}\bigg|x t\right) \right\}.
\]

Using the machinery of \(G \)-functions, we have the following proposition.

Proposition 3.4. If \(a - \alpha \notin \{1 - n, n \in \mathbb{N}\}, \mathfrak{R}(a) < \mathfrak{R}(1 + d) < \mathfrak{R}(a - 1), \delta_1 + \pi/2 \leq \text{Arg}(xt) \leq 3\pi/2 + \delta_2, \delta_1, \delta_2 > 0, \) and \(C \) is the path of integration running from \(\infty \) along the direction \(\text{Arg}(t) \), surrounding the origin and going back to \(\infty \) following the same direction, then

\[
A(\tilde{K}, Z)|_C = 0.
\]

Under the hypothesis of the previous proposition, we get the following theorem.

Theorem 3.5. Provided that the hypotheses of Proposition 3.4 are satisfied, then

\[
y(x) = \int_C (\frac{x}{x t})^{-\alpha} \,_{2}F_{1}\left(\begin{array}{c}2 - \alpha + d, a - \alpha \\ 1 - \alpha + d, 1 - \alpha \end{array}\bigg|x t\right) t^d \, dt
\]

is a solution of Heun's biconfluent equation.
The conjunction of Theorems 3.3 and 3.5 gives a fundamental system of solutions to Heun’s biconfluent equation.

Remarks. A similar study shows that

(i) the kernel \(K_0(\zeta) = \zeta^{-2} F_2 \left(\frac{2\alpha-d}{1-d,1+\alpha-d} \mid \zeta \right) \) does not lead to a solution;

(ii) the interdependency relations

\[
\tilde{K}_1 = y \tilde{L}_1, \quad \tilde{K}_0 = \mu \tilde{L}_1 \tag{3.36}
\]

do not allow to produce a solution to the biconfluent equation.

4. Case \(\beta = 0 \)
The Heun’s biconfluent equation reads

\[
xy''(x) + (1 + \alpha - 2x^2) y'(x) + \left\{ (y - \alpha - 2)x - \frac{\delta}{2} \right\} y(x) = 0 \tag{4.1}
\]
or

\[
\left\{ \frac{\theta_x(\theta_x + \alpha)}{x} - \frac{\delta}{2} - 2x \left(\theta_x + \frac{2 + \alpha - y}{2} \right) \right\} [y(x)] = 0. \tag{4.2}
\]

This situation gives rise to two subcases

4.1. Case \(\delta = 0 \). Heun’s biconfluent equation becomes a simple hypergeometric equation, that is,

\[
xy''(x) + (1 + \alpha - 2x^2) y'(x) + (y - \alpha - 2)xy(x) = 0, \tag{4.3}
\]

which has

\[
y_1(x) = _1F_1 \left(\frac{2 + \alpha - y}{4} \left| \frac{1 + \alpha}{2} \right| x^2 \right), \tag{4.4}
\]

\[
y_2(x) = x^{-\alpha} _1F_1 \left(\frac{2 - \alpha - y}{4} \left| \frac{1 - \alpha}{2} \right| x^2 \right)
\]
as a fundamental system of solutions that admits an integral representation of Mellin’s type (see [2]).

4.2. Case \(\delta \neq 0 \). In this case, (3.8) becomes

\[
\left\{ \theta_x(\theta_x + \alpha)(\theta_x + d) + \frac{\lambda \delta}{2} \xi(\theta_x + 2 + d) \right\} [K_0(\xi)] = 0. \tag{4.5}
\]
Choosing $\lambda = -\frac{2}{\delta}$, the previous equation takes the following form:

\[\theta \zeta (\theta \zeta + \alpha) (\theta \zeta + d) - \zeta (\theta \zeta + 2 + d) \{ K_0(\zeta) \} = 0. \] (4.6)

Hence

\[K_0(\zeta) = _1 F_2 \left(\frac{2 + d}{1 + d, 1 + \alpha} \middle| \zeta \right), \] (4.7)

\[K_0(\zeta) = \zeta^{-\alpha} _1 F_2 \left(\frac{2 - \alpha + d}{1 - \alpha + d, 1 - \alpha} \middle| \zeta \right), \] (4.8)

\[K_0(\zeta) = \zeta^{-d} _1 F_2 \left(\frac{2}{1 - d, 1 + \alpha - d} \middle| \zeta \right). \] (4.9)

Proceeding as in Section 3, we get the following proposition.

Proposition 4.1. The pairs of auxiliary kernel and the concomitant associated with (2.6) are given by

\[K(x,t) = \frac{t}{1 + d} \left\{ \left[\frac{2 - \delta}{2} - (2 + \alpha - \gamma) \frac{x}{t} \right]_0 F_1 \left(1 + \alpha \middle| xt \right) \right. \]
\[\left. - \frac{2x}{1 + \alpha} _0 F_1 \left(2 + \alpha \middle| xt \right) \right\}, \] (4.10)

\[A(\bar{K},Z) = \frac{t^{2 + d}}{1 + d} \left\{ \left[\frac{2 - \delta}{2} - (2 + \alpha - \gamma) \frac{x}{t} \right]_0 F_1 \left(1 + \alpha \middle| xt \right) \right. \]
\[\left. - \frac{2x}{1 + \alpha} _0 F_1 \left(2 + \alpha \middle| xt \right) \right\}, \]

\[K(x,t) = \frac{x^{-\alpha} t^{1 - \alpha}}{1 - \alpha + d} \left\{ \left[1 - \delta + 2x(2 - \alpha - \gamma) \right]_0 F_1 \left(1 - \alpha \middle| xt \right) \right. \]
\[\left. - \frac{2x^2}{1 - \alpha} _0 F_1 \left(2 - \alpha \middle| xt \right) \right\}, \] (4.11)

\[A(\bar{K},Z) = \frac{x^{-\alpha} t^{2 + d - \alpha}}{1 + d - \alpha} \left\{ \left[1 - \delta + 2x(2 - \alpha - \gamma) \right]_0 F_1 \left(1 - \alpha \middle| xt \right) \right. \]
\[\left. - \frac{2x^2}{1 - \alpha} _0 F_1 \left(2 - \alpha \middle| xt \right) \right\}. \]

Remark 4.2. The kernel given by (4.9) does not lead to an integral representation of a solution.

Theorem 4.3. If $0 < \Re(\alpha) < \Re(1 + d) < (1/4)\Re(2\alpha - 3)$, $\mu \leq \text{Arg}(xt) \leq 2\pi - \mu$, $\mu > 0$, and C is the path of integration running from ∞ along the direction $\text{Arg}(t)$, surrounding the
origin and going back to ∞ following the same direction, then

\[
y_1(x) = \int_C F_2 \left(\begin{array}{c} 2 + d \\ 1 + d, 1 + \alpha \end{array} \right) t^d dt,
\]

\[
y_1(x) = \int_C (xt)^{-\alpha} F_2 \left(\begin{array}{c} 2 - \alpha + d \\ 1 - \alpha + d, 1 - \alpha \end{array} \right) t^d dt,
\]

is a fundamental system of solutions to the Heun’s biconfluent equation (4.1).

References

Heun’s biconfluent equation—integral representation

S. Belmehdi: UFR de Mathematiques Pures et Appliquées, Université des Sciences et Technologies de Lille, 59655 Villeneuve d’Ascq Cedex, France
E-mail address: belmehdi@athena.univ-lille1.fr

J.-P. Chehab: UFR de Mathematiques Pures et Appliquées, Université des Sciences et Technologies de Lille, 59655 Villeneuve d’Ascq Cedex, France
E-mail address: chehab@athena.univ-lille1.fr
Special Issue on
Singular Boundary Value Problems for Ordinary Differential Equations

Call for Papers

The purpose of this special issue is to study singular boundary value problems arising in differential equations and dynamical systems. Survey articles dealing with interactions between different fields, applications, and approaches of boundary value problems and singular problems are welcome.

This Special Issue will focus on any type of singularities that appear in the study of boundary value problems. It includes:

- Theory and methods
- Mathematical Models
- Engineering applications
- Biological applications
- Medical Applications
- Finance applications
- Numerical and simulation applications

Before submission authors should carefully read over the journal’s Author Guidelines, which are located at http://www.hindawi.com/journals/bvp/guidelines.html. Authors should follow the Boundary Value Problems manuscript format described at the journal site http://www.hindawi.com/journals/bvp/. Articles published in this Special Issue shall be subject to a reduced Article Processing Charge of €200 per article. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>May 1, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>August 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>November 1, 2009</td>
</tr>
</tbody>
</table>

Lead Guest Editor

Juan J. Nieto, Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad de Santiago de Compostela, Santiago de Compostela 15782, Spain; juanjose.nieto.roig@usc.es

Guest Editor

Donal O’Regan, Department of Mathematics, National University of Ireland, Galway, Ireland; donal.oregan@nuigalway.ie

Hindawi Publishing Corporation
http://www.hindawi.com