CRITICAL GROUPS OF CRITICAL POINTS PRODUCED
BY LOCAL LINKING WITH APPLICATIONS

KANISHKA PERERA

Abstract. We prove the existence of nontrivial critical points with nontrivial critical groups for functionals with a local linking at 0. Applications to elliptic boundary value problems are given.

1. Introduction

Let F be a real C^1 function defined on a Banach space X. We say that F has a local linking near the origin if X has a direct sum decomposition $X = X_1 \oplus X_2$ with $\dim X_1 < \infty$, $F(0) = 0$, and, for some $r > 0$,

$$
\begin{cases}
F(u) \leq 0 & \text{for } u \in X_1, \|u\| \leq r, \\
F(u) > 0 & \text{for } u \in X_2, 0 < \|u\| \leq r.
\end{cases}
$$

(1)

Then it is clear that 0 is a critical point of F.

The notion of local linking was introduced by Li and Liu [7], [8], who proved the existence of nontrivial critical points under various assumptions on the behavior of F at infinity. These results were recently generalized by Brézis and Nirenberg [3], Li and Willem [9], and several other authors.

In infinite dimensional Morse theory (see Chang [5] or Mawhin and Willem [11]), the local behavior of F near an isolated critical point u_0, $F(u_0) = c$, is described by the sequence of critical groups

$$
C_q(F, u_0) = H_q(F_c \cap U, (F_c \cap U) \setminus \{u_0\}) \quad q \in \mathbb{Z}
$$

where F_c is the sublevel set $\{u \in X : F(u) \leq c\}$, U is a neighborhood of u_0 such that u_0 is the only critical point of F in $F_c \cap U$, and $H_\ast(\cdot, \cdot)$ denote the singular relative homology groups.

1991 Mathematics Subject Classification. Primary 58E05.
Key words and phrases. Morse theory, critical groups, local linking.
Received: March 10, 1998.
It was proved in Liu [10] that if F has a local linking near the origin, $\dim X_1 = j$, and 0 is an isolated critical point of F, then $C_j(F,0) \neq 0$.

In the present paper we use this fact to obtain a nontrivial critical point u with either $C_{j+1}(F,u) \neq 0$ or $C_{j-1}(F,u) \neq 0$. When X is a Hilbert space and F is C^2, this yields Morse index estimates for u via the Shifting theorem.

When X is a Hilbert space and dF is Lipschitz in a neighborhood of the origin, we extend the result of Liu [10] to the case where F satisfies the “relaxed” local linking condition

$$\begin{cases}
F(u) \leq 0 \text{ for } u \in X_1, \|u\| \leq r, \\
F(u) \geq 0 \text{ for } u \in X_2, \|u\| \leq r
\end{cases}$$

(see Brézis and Nirenberg [3] and Li and Willem [9]), and thus obtain a nontrivial critical point with a nontrivial critical group in this case also.

We apply our abstract result to elliptic boundary value problems, including an equation asymptotically linear at $-\infty$ and superlinear at $+\infty$, and prove new multiplicity results.

2. Abstract Result

Throughout this section we assume that F satisfies the Palais-Smale compactness condition (PS) and has only isolated critical values, with each critical value corresponding to a finite number of critical points.

Theorem 2.1. Suppose that there is a critical point u_0 of F, $F(u_0) = c$, with $C_j(F,u_0) \neq 0$ for some $j \geq 0$ and regular values a, b of F, $a < c < b$, such that $H_j(F_a, F_b) = 0$. Then F has a critical point u with either

$c < F(u) < b$ and $C_{j+1}(F,u) \neq 0$, or

$a < F(u) < c$ and $C_{j-1}(F,u) \neq 0$.

Proof of Theorem 2.1 makes use of the following topological lemma:

Lemma 2.2. If $B' \subset B \subset A \subset A'$ are topological spaces such that $H_j(A,B) \neq 0$ and $H_j(A',B') = 0$, then either

$H_{j+1}(A', A) \neq 0$ or $H_{j-1}(B, B') \neq 0$.

Proof. Suppose that $H_{j+1}(A', A) = 0$. Since $H_j(A', B')$ is also trivial, it follows from the following portion of the exact sequence of the triple (A', A, B') that $H_j(A, B') = 0$:

$$H_{j+1}(A', A) \xrightarrow{\partial_*} H_j(A, B') \xrightarrow{i_*} H_j(A', B')$$

Since $H_j(A, B) \neq 0$, now it follows from the following portion of the exact sequence of the triple (A, B, B') that $H_{j-1}(B, B') \neq 0$:

$$H_j(A, B') \xrightarrow{j_*} H_j(A, B) \xrightarrow{\partial_*} H_{j-1}(B, B')$$
Proof of Theorem 2.1. Take \(\epsilon, 0 < \epsilon < \min\{c - a, b - c\} \) such that \(c \) is the only critical value of \(F \) in \([c - \epsilon, c + \epsilon] \). Then, since \(C_j(F, u_0) \neq 0 \), it follows from Chapter I, Theorem 4.2 of Chang [5] that \(H_j(F_{c+\epsilon}, F_{c-\epsilon}) \neq 0 \). Since \(H_j(F_b, F_a) = 0 \), by Lemma 2.2, either \(H_{j+1}(F_b, F_{c+\epsilon}) \neq 0 \) or \(H_{j-1}(F_{c-\epsilon}, F_a) \neq 0 \), and the conclusion follows from Chapter I, Theorem 4.3 and Corollary 4.1 of Chang [5].

As mentioned before, if \(F \) has a local linking near the origin, \(\dim X_1 = j \), then \(C_j(F, 0) \neq 0 \) (see Liu [10]), and hence the following corollary is immediate from Theorem 2.1:

Corollary 2.3. Suppose \(F \) has a local linking near the origin, \(\dim X_1 = j \). Assume also that there are regular values \(a, b \) of \(F \), \(a < 0 < b \), such that \(H_j(F_b, F_a) = 0 \). Then \(F \) has a critical point \(u \) with either

\[
0 < F(u) < b \quad \text{and} \quad C_{j+1}(F, u) \neq 0, \quad \text{or} \\
a < F(u) < 0 \quad \text{and} \quad C_{j-1}(F, u) \neq 0.
\]

If \(X \) is a Hilbert space, \(F \) is \(C^2 \), and \(u \) is a critical point of \(F \), we denote by \(m(u) \) the Morse index of \(u \) and by \(m^*(u) = m(u) + \dim \ker d^2F(u) \) the large Morse index of \(u \). We recall that if \(u \) is nondegenerate and \(C_q(F, u) \neq 0 \), then \(m(u) = q \) (see Chapter I, Theorem 4.1 of Chang [5]). Let us also recall that it follows from the Shifting theorem (Chapter I, Theorem 5.4 of Chang [5]) that if \(u \) is degenerate, 0 is an isolated point of the spectrum of \(d^2F(u) \), and \(C_q(F, u) \neq 0 \), then \(m(u) \leq q \leq m^*(u) \). Hence we have the following corollary:

Corollary 2.4. Let \(X \) be a Hilbert space and \(F \) be \(C^2 \) in Theorem 2.1. Assume that for every degenerate critical point \(u \) of \(F \), 0 is an isolated point of the spectrum of \(d^2F(u) \). Then \(F \) has a critical point \(u \) with either

\[
c < F(u) < b \quad \text{and} \quad m(u) \leq j + 1 \leq m^*(u), \quad \text{or} \\
a < F(u) < c \quad \text{and} \quad m(u) \leq j - 1 \leq m^*(u).
\]

Remark 2.5. In particular, Corollary 2.4 yields a critical point \(u \neq u_0 \) with \(m(u) \leq j + 1 \) and \(j - 1 \leq m^*(u) \). Benci and Fortunato [2] have proved this fact for the special case where \(u_0 \) is a nondegenerate critical point with Morse index \(j \), but without assuming that the critical points of \(F \) are isolated. Their proof is based on a generalized Morse theory due to Benci and Giannoni [1]. However, Corollary 2.4 says, in addition, that \(u \) is at a level different from \(F(u_0) \).

If \(X \) is a Hilbert space and \(dF \) is Lipschitz in a neighborhood of the origin, we can relax the local linking condition as in (2). This follows from the following extension of the result of Liu [10] (see also Theorem 5.6 of Kryszewski and Szulkin [6]):

Theorem 2.6. Let \(X \) be a Hilbert space and \(dF \) be Lipschitz in a neighborhood of the origin. Suppose that \(F \) satisfies the local linking condition (2), \(\dim X_1 = j \). Then \(C_j(F, 0) \neq 0 \).
Our proof of Theorem 2.6 uses the following “deformation” lemma:

Lemma 2.7. Under the assumptions of Theorem 2.6 there exist a closed ball B centered at the origin and a homeomorphism h of X onto X such that

1. 0 is the only critical point of F in $h(B)$,
2. $h|_{B \cap X_1} = id_{B \cap X_1}$,
3. $F(u) > 0$ for $u \in h(B \cap X_2 \setminus \{0\})$.

Proof. Take open balls B', B'' centered at the origin, with $\overline{B'} \subset B''$, such that 0 is the only critical point of F in B' and dF is Lipschitz in B'', and let $B \subset B'$ be a closed ball centered at the origin with radius $\leq r$ (in (2)). Since B and $(B')^c$ are disjoint closed sets there is a locally Lipschitz nonnegative function $g \leq 1$ satisfying

$$g = \begin{cases} 1 & \text{on } B \\ 0 & \text{outside } B' \end{cases}.$$

Consider the vector field

$$V(u) = g(u) \|P_u\| dF(u)$$

where P is the orthogonal projection onto X_2. Clearly V is locally Lipschitz and bounded on X. Consider the flow $\eta(t) = \eta(t, u)$ defined by

$$\frac{d\eta}{dt} = V(\eta), \quad \eta|_{t=0} = u.$$

Clearly, η is defined for $t \in [0, 1]$. Let $h = \eta(1, \cdot)$. Since $h|(B')^c = id_{(B')^c}$ and h is one-to-one, $h(B) \subset B'$ and 1 follows. For $u \in B \cap X_2 \setminus \{0\},$

$$F(h(u)) = F(u) + \int_0^1 g(\eta(t)) \|P\eta(t)\| \|dF(\eta(t))\|^2 dt > 0$$

since $F(u) \geq 0$ and $g(u) \|P(u)\| \|dF(u)\|^2 > 0$. \[Q.E.D.\]

Proof of Theorem 2.6. By 1 of Lemma 2.7, $C_j(F, 0) = H_j(F_0 \cap h(B), F_0 \cap h(B) \setminus \{0\})$.

By the local linking condition (2) and 2 and 3 of Lemma 2.7, $\partial B \cap X_1 \subset F_0 \cap h(B) \setminus \{0\} \subset h(B \cap X_2)$ and $B \cap X_1 \subset F_0 \cap h(B)$. Since $h|_{\partial B \cap X_1} = id_{\partial B \cap X_1}$, the inclusion $\partial B \cap X_1 \hookrightarrow h(B \cap X_2)$ can also be written as the composition of the inclusion $\partial B \cap X_1 \hookrightarrow B \cap X_2$ and the restriction of h to $B \cap X_2$. Hence we have the following commutative diagram induced by inclusions and h:

$$\begin{array}{ccc}
H_{j-1}(B \cap X_2) & \xrightarrow{i''_*} & H_{j-1}(\partial B \cap X_1) \\
| & u_* & | \\
H_{j-1}(h(B \cap X_2)) & \xrightarrow{i''_*} & H_{j-1}(F_0 \cap h(B) \setminus \{0\}) \\
| & i_* & | \\
H_{j-1}(h(B \cap X_2)) & \xrightarrow{i_*} & H_{j-1}(F_0 \cap h(B))
\end{array}$$

Since $\partial B \cap X_1$ is a strong deformation retract of $B \cap X_2$ and h is a homeomorphism, i''_* and u_* are isomorphisms and hence i'_* is a monomorphism.
Since \(\text{rank } H_{j-1}(B \cap X_1) < \text{rank } H_{j-1}(\partial B \cap X_1) \), then it follows that \(i_* \) is not a monomorphism.

Now it follows from the following portion of the exact sequence of the pair \((F_0 \cap h(B), F_0 \cap h(B) \setminus \{0\})\) that \(C_j(F,0) = H_j(F_0 \cap h(B), F_0 \cap h(B) \setminus \{0\}) \neq 0: \)
\[
\begin{align*}
C_j(F,0) &\xrightarrow{\partial_*} H_{j-1}(F_0 \cap h(B) \setminus \{0\}) \\
&\xrightarrow{i_*} H_{j-1}(F_0 \cap h(B))
\end{align*}
\]

3. **Elliptic Boundary Value Problems**

Consider the problem
\[
\begin{align*}
\{ -\Delta u &= g(u) \quad \text{in } \Omega, \\
u &= 0 \quad \text{on } \partial \Omega
\end{align*}
\]
where \(\Omega \) is a bounded domain in \(\mathbb{R}^n \) with smooth boundary \(\partial \Omega \) and \(g \in C^1(\mathbb{R}, \mathbb{R}) \) satisfies
\[
\begin{align*}
(g_1): |g(u)| &\leq C (1 + |u|^{p-1}) \quad \text{with } 2 < p < \frac{2n}{n-2}, \text{ for some } C > 0, \\
(g_2): g(0) = 0 &= g(a) \quad \text{for some } a > 0, \\
(g_3): \text{there are constants } \mu > 2 \text{ and } A > 0 \text{ such that } \quad 0 < \mu G(u) &\leq u g(u) \quad \text{for } |u| \geq A,
\end{align*}
\]
where \(G(u) := \int_0^u g(t) \, dt. \)

Let \(\lambda = g'(0) \) and let \(0 < \lambda_1 \leq \lambda_2 \leq \lambda_3 \leq \cdots \) be the eigenvalues of \(-\Delta\) with Dirichlet boundary condition.

Theorem 3.1. Assume that \(g \) satisfies \((g_1) - (g_3)\) and one of the following conditions:
\begin{enumerate}
\item \(\lambda_j < \lambda < \lambda_{j+1} \),
\item \(\lambda_j = \lambda < \lambda_{j+1} \) and, for some \(\delta > 0, \)
\[
G(u) \geq \frac{1}{2} \lambda u^2 \quad \text{for } |u| \leq \delta,
\]
\item \(\lambda_j < \lambda = \lambda_{j+1} \) and, for some \(\delta > 0, \)
\[
G(u) \leq \frac{1}{2} \lambda u^2 \quad \text{for } |u| \leq \delta.
\]
\end{enumerate}

If \(j \geq 3 \), problem (3) has at least four nontrivial solutions.

Proof. Solutions of (3) are the critical points of the \(C^2 \) functional
\[
F(u) = \int_{\Omega} \left(\frac{1}{2} |\nabla u|^2 - G(u) \right)
\]
defined on \(X = H_0^1(\Omega) \). It is well known that \(F \) satisfies (PS).

By a standard argument involving a cut-off technique and the strong maximum principle, \(F \) has a local minimizer \(u_0 \) with \(0 < u_0 < a, \)
\[
\text{rank } C_q(F, u_0) = \delta_{q0}.
\]
Since \(\lim_{t \to \infty} F(\pm t \phi_1) = -\infty \), where \(\phi_1 > 0 \) is the first Dirichlet eigenfunction of \(-\Delta\), then \(F \) also has two mountain pass points \(u_1^\pm \) with \(u_1^- < u_0 < u_1^+ \),

\[
\text{rank } C_q(F, u_1^\pm) = \delta_{q1}
\]
(see the proof of Theorem B in Chang, Li, and Liu [4]).

Let \(X_1 \) be the \(j \)-dimensional space spanned by the eigenfunctions corresponding to \(\lambda_1, \ldots, \lambda_j \) and let \(X_2 \) be its orthogonal complement in \(X \). Then \(F \) has a local linking near the origin with respect to the decomposition \(X = X_1 \oplus X_2 \) (see the proof of Theorem 4 in Li and Willem [9]) and hence

\[
C_j(F, 0) \neq 0.
\]

Also, for \(\alpha < 0 \) and \(|\alpha| \) sufficiently large,

\[
H_q(X, F_\alpha) = 0 \quad \forall q \in \mathbb{Z}
\]
(see Lemma 3.2 of Wang [13]). Therefore, by Theorem 2.1, \(F \) has a nontrivial critical point \(u_j \) with either

\[
C_{j+1}(F, u_j) \neq 0 \text{ or } C_{j-1}(F, u_j) \neq 0.
\]

Since \(j \geq 3 \), a comparison of the critical groups shows that \(u_0, u_1^\pm, u_j \) are distinct nontrivial critical points of \(F \).

Next we consider the following asymmetric problem of the Ambrosetti-Prodi type

\[
\begin{cases}
-\Delta u + a(x) u = g(x, u) & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega
\end{cases}
\]
where \(a \in L^\infty(\Omega) \) and \(g \in C^1(\overline{\Omega} \times \mathbb{R}, \mathbb{R}) \) satisfies

\begin{enumerate}
\item[(g1):] \(|g(x, u)| \leq C (1 + |u|^{p-1})\) with \(2 < p < \frac{2n}{n-2} \), for some \(C > 0 \),
\item[(g2):] \(g(x, 0) = g_u(x, 0) = 0 \),
\item[(g3):] \(\lim_{u \to -\infty} \frac{g(x, u)}{u} < \lambda_1 \), uniformly in \(\overline{\Omega} \),
\item[(g4):] \(\lim_{u \to -\infty} \left(G(x, u) - \frac{1}{2} u g(x, u) \right) < +\infty \), uniformly in \(\overline{\Omega} \),
\item[(g5):] there are \(\mu > 2 \) and \(A > 0 \) such that
\[
0 < \mu G(x, u) \leq u g(x, u) \quad \text{for } u \geq A,
\]
\end{enumerate}

where \(G(x, u) := \int_0^u g(x, t) \, dt \).

Here \(\lambda_1 < \lambda_2 \leq \lambda_3 \leq \cdots \) denote the eigenvalues of \(-\Delta + a\) with Dirichlet boundary condition.

\textbf{Theorem 3.2.} Assume that \(g \) satisfies \((g_1) - (g_5)\) and one of the following conditions:

1. \(\lambda_j < 0 < \lambda_{j+1} \),
2. \(\lambda_j = 0 < \lambda_{j+1} \) and, for some \(\delta > 0 \),
\[
G(x, u) \geq 0 \quad \text{for } |u| \leq \delta,
\]
3. \(\lambda_j < 0 = \lambda_{j+1} \) and, for some \(\delta > 0 \),
\[
G(x, u) \leq 0 \quad \text{for } |u| \leq \delta.
\]

If \(j \geq 3 \), problem (4) has at least three nontrivial solutions.
We seek critical points of

\[F(u) = \int_\Omega \frac{1}{2} (|\nabla u|^2 + a(x) u^2) - G(x, u) \]

on \(X = H^1_0(\Omega) \).

Lemma 3.3. If \(g \) satisfies \((g_1), (g_3) - (g_5)\), then, for \(\alpha < 0 \) and \(|\alpha| \) sufficiently large,

\[H_q(X, F_\alpha) = 0 \ \forall q \in \mathbb{Z}. \]

Proof. Let \(\tilde{X} = C^1_0(\overline{\Omega}) \) and \(\tilde{F} = F|_{\tilde{X}} \). By elliptic regularity, \(F \) and \(\tilde{F} \) have the same critical set. If \(F \) does not have any critical values in \((\alpha, \alpha')\), then \(F_\alpha \) (respectively \(\tilde{F}_\alpha \)) is a strong deformation retract of \(\{u \in X : F(u) < \alpha'\} \) (respectively \(\{u \in \tilde{X} : \tilde{F}(u) < \alpha'\} \)) (see Chapter I, Theorem 3.2 and Chapter III, Theorem 1.1 of Chang [5]). Since \(\tilde{X} \) is dense in \(X \), by a theorem of Palais [12],

\[H_q(X, \{F < \alpha'\}) \cong H_q(\tilde{X}, \{\tilde{F} < \alpha'\}). \]

Therefore it suffices to prove that, for \(\alpha < 0 \) and \(|\alpha| \) large,

\[H_q(\tilde{X}, \tilde{F}_\alpha) = 0 \ \forall q \in \mathbb{Z}. \]

Let \(S^\infty = \{u \in \tilde{X} : \|u\|_X = 1\} \) be the unit sphere in \(\tilde{X} \) and let \(S^\infty_+ = \{u \in S^\infty : u > 0 \text{ somewhere}\} \), which is a relatively open subset of \(S^\infty \), contractible to \(\{\phi_1\} \) via \((t, u) \mapsto \frac{(1-t) u + t \phi_1}{\|(1-t) u + t \phi_1\|} \ t \in [0, 1] \). We shall show that \(\tilde{F}_\alpha \) is homotopy equivalent to \(S^\infty_+ \) for \(\alpha < 0 \) and \(|\alpha| \) large.

By \((g_3)\) and \((g_5)\),

\[-C (1 + u^2) \leq G(x, u) \leq \frac{1}{2} \lambda_1 u^2 + C \ \text{for} \ u \leq A, \]

\[G(x, u) \geq C u^\mu \ \text{for} \ u \geq A, \]

where \(C \) denotes (possibly different) positive constants. Thus for \(u \in S^\infty_+ \),

\[\tilde{F}(tu) = \frac{1}{2} \left(1 + \int_\Omega a u^2 \right) t^2 - \int_\Omega G(x, tu) \]

\[\leq C \left(1 + t^2 - t^\mu \int_{tu \geq A} u^\mu \right) \]

and it follows that

\[\lim_{t \to \infty} \tilde{F}(tu) = -\infty. \]

On the other hand, in \(N = \{u \in \tilde{X} : u \leq 0 \text{ everywhere}\} \), the nonpositive cone in \(\tilde{X} \),

\[\tilde{F}(u) \leq \frac{1}{2} \int_\Omega \left(|\nabla u|^2 + a(x) u^2 - \lambda_1 u^2 \right) - C \geq -C. \]

By \((g_4)\) and \((g_5)\),

\[\gamma := \sup_{\Omega \times \mathbb{R}} \left(G(x, u) - \frac{1}{2} u g(x, u) \right) < +\infty. \]
Thus for \(u \in S_+^\infty \) and \(t > 0 \),
\[
\frac{d}{dt} \tilde{F}(tu) = \left(1 + \int_{\Omega} au^2 \right) t - \int_{\Omega} ug(x, tu) \\
= \frac{2}{t} \left\{ \tilde{F}(tu) + \int_{\Omega} G(x, tu) - \frac{1}{2} tu g(x, tu) \right\} \\
\leq \frac{2}{t} \left\{ \tilde{F}(tu) + \gamma |\Omega| \right\} < 0
\]
if \(\tilde{F}(tu) < -\gamma |\Omega| \).

Fix \(\alpha < \min \left\{ \inf_N \tilde{F}, -\gamma |\Omega|, \inf_{\|u\|<1} \tilde{F} \right\} \). Then it follows that for each \(u \in S_+^\infty \) there exists a unique \(T(u) \geq 1 \) such that
\[
\tilde{F}(tu) \begin{cases} > \alpha & \text{for } 0 \leq t < T(u) \\
= \alpha & \text{for } t = T(u) \\
< \alpha & \text{for } t > T(u)
\end{cases}
\]
and
\[
\tilde{F}_\alpha = \{ tu : u \in S_+^\infty, t \geq T(u) \}.
\]
By the implicit function theorem, \(T \in C(S_+^\infty, [1, \infty)) \). Hence
\[
\eta(s, tu) = \begin{cases} (1 - s) tu + s T(u) u & \text{if } 1 \leq t < T(u) \\
tu & \text{if } t \geq T(u)
\end{cases}
\]
defines a strong deformation retraction of \(\{ tu : u \in S_+^\infty, t \geq 1 \} \simeq S_+^\infty \) onto \(\tilde{F}_\alpha \).

Proof of Theorem 3.2. Since \(F(-t\phi_1) < 0 \) for \(t > 0 \) sufficiently small, by standard arguments, \(F \) has a local minimizer \(u_0 \) with \(u_0 < 0 \),
\[
\text{rank } C_q(F, u_0) = \delta_{q0}.
\]
Since \(\lim_{t \to \infty} F(t\phi_1) = -\infty \), then \(F \) also has a mountain pass point \(u_1 \),
\[
\text{rank } C_q(F, u_1) = \delta_{q1}.
\]

As in the proof of Theorem 3.1,
\[
C_j(F, 0) \neq 0,
\]
so, using Lemma 3.3, \(F \) also has a nontrivial critical point \(u_j \) with either
\[
C_{j+1}(F, u_j) \neq 0 \text{ or } C_{j-1}(F, u_j) \neq 0.
\]
Since \(j \geq 3, u_0, u_1, u_j \) are distinct nontrivial solutions of (4).

Finally we give an application of Theorem 2.1 to the problem
\[
\begin{cases}
-\Delta u + a(x) u = \lambda g(u) & \text{in } \Omega, \\
u = 0 & \text{on } \partial \Omega
\end{cases}
\tag{5}
\]
where \(a \in L^\infty(\Omega) \) and \(g \in C^1(\mathbb{R}, \mathbb{R}) \) satisfies
\[
(g_1) \colon \lim_{|u| \to \infty} \frac{g(u)}{u} < 0,
\]
\[
(g_2) \colon g(0) = g'(0) = 0.
\]
Theorem 3.4. Assume that g satisfies (g_1), (g_2), and one of the following conditions:

1. $\lambda_j < 0 < \lambda_{j+1}$,
2. $\lambda_j = 0 < \lambda_{j+1}$ and, for some $\delta > 0$,
 \[G(u) \geq 0 \text{ for } |u| \leq \delta, \]
3. $\lambda_j < 0 = \lambda_{j+1}$ and, for some $\delta > 0$,
 \[G(u) \leq 0 \text{ for } |u| \leq \delta. \]

If $j \geq 3$, problem (5) has at least four nontrivial solutions for every λ sufficiently large.

Example 3.5. $g(u) = \pm |u| u - u^3$

Remark 3.6. See Brézis and Nirenberg [3] and Li and Willem [9] for at least two nontrivial solutions.

Proof of Theorem 3.4. Since, for λ sufficiently large, there is an a priori estimate for the solutions of (5) by the maximum principle, we may also assume that $g(u) = bu$ with $b < 0$, for $|u|$ large. Then the functional

\[F(u) = \int_{\Omega} \frac{1}{2} \left(|\nabla u|^2 + au^2 \right) - \lambda G(u) \]

is well defined on $X = H^1_0(\Omega)$, and bounded below and satisfies (PS) for λ large.

Since $F(\pm t\phi_1) < 0$ for $t > 0$ sufficiently small, F has two local minimizers u_0^\pm with $u_0^- < 0 < u_0^+$,

\[\text{rank } C_q(F, u_0^\pm) = \delta_{q0}. \]

Then F also has a mountain pass point u_1,

\[\text{rank } C_q(F, u_1) = \delta_{q1}. \]

As before,

\[C_j(F, 0) \neq 0, \]

and, for $\alpha < \inf F$,

\[\text{rank } H_q(X, F_\alpha) = \delta_{q0}, \]

so F has a (fourth) nontrivial critical point u_j with either

\[C_{j+1}(F, u_j) \neq 0 \text{ or } C_{j-1}(F, u_j) \neq 0. \]

References

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF CALIFORNIA IRVINE

IRVINE, CA 92697-3875, USA

E-mail: kperera@math.uci.edu
Special Issue on
Singular Boundary Value Problems for Ordinary Differential Equations

Call for Papers

The purpose of this special issue is to study singular boundary value problems arising in differential equations and dynamical systems. Survey articles dealing with interactions between different fields, applications, and approaches of boundary value problems and singular problems are welcome.

This Special Issue will focus on any type of singularities that appear in the study of boundary value problems. It includes:

- Theory and methods
- Mathematical Models
- Engineering applications
- Biological applications
- Medical applications
- Finance applications
- Numerical and simulation applications

Before submission authors should carefully read over the journal's Author Guidelines, which are located at http://www.hindawi.com/journals/bvp/guidelines.html. Authors should follow the Boundary Value Problems manuscript format described at the journal site http://www.hindawi.com/journals/bvp/. Articles published in this Special Issue shall be subject to a reduced Article Processing Charge of €200 per article. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Deadline</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>May 1, 2009</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>August 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>November 1, 2009</td>
</tr>
</tbody>
</table>

Lead Guest Editor

Juan J. Nieto, Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad de Santiago de Compostela, Santiago de Compostela 15782, Spain; juanjose.nieto.roig@usc.es

Guest Editor

Donal O’Regan, Department of Mathematics, National University of Ireland, Galway, Ireland; donal.oregan@nuigalway.ie