By means of Morse theory we prove the existence of a nontrivial solution to a superlinear p-harmonic elliptic problem with Navier boundary conditions having a linking structure around the origin. Moreover, in case of both resonance near zero and nonresonance at $+\infty$ the existence of two nontrivial solutions is shown.

1. Introduction and main results

Let $p > 1$ and $\Omega \subset \mathbb{R}^n$ be a smooth bounded domain with $n \geq 2p + 1$. We are concerned with the existence of nontrivial solutions to the p-harmonic equation

$$\Delta(|\Delta u|^{p-2}\Delta u) = g(x,u) \text{ in } \Omega$$

with Navier boundary conditions

$$u = \Delta u = 0 \text{ on } \partial \Omega,$$

where $g : \Omega \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function such that for some $C > 0$,

$$|g(x,s)| \leq C(1 + |s|^{q-1})$$

for a.e. $x \in \Omega$ and all $s \in \mathbb{R}$, being $1 \leq q < p_*$ and $p_* = np/(n-2p)$.

It is well known that the functional $\Phi : W^{2,p}(\Omega) \cap W_0^{1,p}(\Omega) \to \mathbb{R}$

$$\Phi(u) = \frac{1}{p} \int_{\Omega} |\Delta u|^p \, dx - \int_{\Omega} G(x,u) \, dx,$$

with $G(x,s) = \int_0^s g(x,t) \, dt$, is of class C^1 and

$$\langle \Phi'(u), \varphi \rangle = \int_{\Omega} |\Delta u|^{p-2}\Delta u \Delta \varphi \, dx - \int_{\Omega} g(x,u) \varphi \, dx$$
for each \(\varphi \in W^{2,p}(\Omega) \cap W^{1,p}_0(\Omega) \). Moreover, the critical points of \(\Phi \) are weak solutions for (1.1). Notice that for the eigenvalue problem
\[
\Delta(|\Delta u|^{p-2}\Delta u) = \lambda |u|^{p-2}u \quad \text{in } \Omega
\]
(1.6)
with boundary data (1.2), as for the \(p \)-Laplacian eigenvalue problem with Dirichlet boundary data,
\[
\lambda_n = \inf_{A \in \Gamma_n} \sup_{u \in A} \int_\Omega |\Delta u|^p \, dx, \quad n = 1, 2, \ldots
\]
(1.7)
is the sequence of eigenvalues, where
\[
\Gamma_n = \{ A \subseteq W^{2,p}(\Omega) \cap W^{1,p}_0(\Omega) \setminus \{0\} : A = -A, \, \gamma(A) \geq n \},
\]
(1.8)
being \(\gamma(A) \) the Krasnoselski’s genus of the set \(A \). This follows by the Ljusternik-Schnirelman theory for \(C^1 \)-manifolds proved in [13] applied to the functional
\[
J(u) = \int_\Omega |\Delta u|^p \, dx,
\]
(1.9)
\[\mathcal{M} = \left\{ u \in W^{2,p}(\Omega) \cap W^{1,p}_0(\Omega) : \int_\Omega |u|^p \, dx = 1 \right\},\]
since \(\mathcal{M} \) is a \(C^1 \)-manifold with tangent space
\[
T_u \mathcal{M} = \left\{ w \in W^{2,p}(\Omega) \cap W^{1,p}_0(\Omega) : \int_\Omega |u|^{p-2}uw \, dx = 0 \right\}.
\]
(1.10)
The next remark is the starting point of our paper.

Remark 1.1. It has been recently proved by Drábek and Otani [4] that (1.6) with boundary data (1.2) has the least eigenvalue
\[
\lambda_1(p) = \inf \left\{ \int_\Omega |\Delta u|^p \, dx : u \in W^{2,p}(\Omega) \cap W^{1,p}_0(\Omega), \, \|u\|^p_p = 1 \right\}
\]
(1.11)
which is simple, positive, and isolated in the sense that the solutions of (1.6) with \(\lambda = \lambda_1(p) \) form a one-dimensional linear space spanned by a positive eigenfunction \(\varphi_1(p) \) associated with \(\lambda_1(p) \) and there exists \(\delta > 0 \) so that \((\lambda_1(p), \lambda_1(p) + \delta) \) does not contain other eigenvalues. The situation is actually more involved with Dirichlet boundary conditions
\[
u = \nabla u = 0 \quad \text{on } \partial \Omega
\]
(1.12)
and, to our knowledge, it is not clear whether the first eigenspace has the previous good properties; the fact is that while Navier boundary conditions allow to reduce the fourth-order problem into a system of two second-order problems, Dirichlet boundary conditions do not. Some pathologies are indeed known, for instance, the first eigenfunction of \(\Delta^2 u = \lambda u \) with boundary data (1.12) may change sign [12].
Remark 1.2. Let $V = \text{span}\{\phi_1\}$ be the eigenspace associated with λ_1, where $\|\phi_1\|_{2,p} = 1$. Taking a subspace $W \subset W^{2,p}(\Omega) \cap W^{1,p}_0(\Omega)$ complementing V, that is, $W^{2,p}(\Omega) \cap W^{1,p}_0(\Omega) = V \oplus W$, there exists $\hat{\lambda} > \lambda_1$ with

$$
\int_{\Omega} |\Delta u|^p \, dx \geq \hat{\lambda} \int_{\Omega} |u|^p \, dx
$$

(1.13)

for each $u \in W$ (in case $p = 2$, one may take $\hat{\lambda} = \lambda_2$).

We may now assume the following conditions:

(\mathcal{H}_1) there exist $R > 0$ and $\bar{\lambda} \in]\lambda_1, \hat{\lambda}[\,$ such that

$$
|s| \leq R \implies \lambda_1 |s|^p \leq pG(x,s) \leq \bar{\lambda} |s|^p,
$$

(1.14)

for a.e. $x \in \Omega$ and each $s \in \mathbb{R}$;

(\mathcal{H}_2) there exist $\vartheta > p$ and $M > 0$ such that

$$
|s| \geq M \implies 0 < \vartheta G(x,s) \leq sg(x,s),
$$

(1.15)

for a.e. $x \in \Omega$ and each $s \in \mathbb{R}$.

Assumption (\mathcal{H}_1) corresponds to a resonance condition around the origin while (\mathcal{H}_2) is the standard condition of Ambrosetti-Rabinowitz type.

Theorem 1.3. Assume that conditions (\mathcal{H}_1) and (\mathcal{H}_2) hold. Then problem (1.1) with boundary conditions (1.2) admits a nontrivial solution in $W^{2,p}(\Omega) \cap W^{1,p}_0(\Omega)$.

Now replace (\mathcal{H}_2) with a nonresonance condition at $+\infty$.

Theorem 1.4. Assume that condition (\mathcal{H}_1) holds and that for a.e. $x \in \Omega$

$$
\lim_{|s| \to +\infty} \frac{pG(x,s)}{|s|^p} < \lambda_1.
$$

(1.16)

Then problem (1.1) with boundary conditions (1.2) admits two nontrivial solutions in $W^{2,p}(\Omega) \cap W^{1,p}_0(\Omega)$.

We use variational methods to prove Theorems 1.3 and 1.4. Usually, one uses a minimax type argument of mountain pass type to prove the existence of solutions of equations with a variational structure. However, it seems difficult to use minimax theorems in our situation. Thus we will adopt an approach based on Morse theory. Notice that there were a few works using Morse theory to treat p-Laplacian problems with Dirichlet boundary conditions (see [9] and the references therein). Moreover, to the authors' knowledge, (1.1) has a very poor literature; the only papers in which a p-harmonic equation is mentioned are [1, Section 8] and [4].

The existence of multiple solutions depends mainly on the behaviour of $G(x,s)$ near 0 and at $+\infty$. Without the above resonant or nonresonant conditions to obtain multiple solutions seems hard even in the semilinear case $p = 2$.

Remark 1.5. Arguing as in [9], it is possible to prove Theorem 1.4 by replacing assumption (1.16) with the following conditions:
\[
\lim_{|s| \to +\infty} \frac{pG(x,s)}{|s|^p} = \lambda_1, \quad \lim_{|s| \to +\infty} \{g(x,s)s - pG(x,s)\} = +\infty
\] (1.17)
for a.e. \(x \in \Omega\) (resonance condition at \(+\infty\)).

Remark 1.6. The existence of solutions \(u \in W^{2,p}_0(\Omega)\) of the quasilinear problem
\[
\Delta(|\Delta u|^{p-2} \Delta u) = g(x,u) \quad \text{in } \Omega,
\]
\[
u = \nabla u = 0 \quad \text{on } \partial \Omega
\] (1.18)
under the previous assumptions (\(\mathcal{H}_j\)) is, to our knowledge, an open problem.

2. Proofs of Theorems 1.3 and 1.4

In this section, we give the proof of our main results. It is readily seen that
\[
\|u\|_{2,p} = \left(\int_{\Omega} |\Delta u|^p \, dx \right)^{1/p}
\] (2.1)
is an equivalent norm of the standard space norm of \(W^{2,p}(\Omega) \cap W^{1,p}_0(\Omega)\). For \(\Phi\) a continuously Fréchet differentiable map, let \(\Phi'\) denote its Fréchet derivative.

Lemma 2.1. The functional \(\Phi\) satisfies the Palais-Smale condition.

Proof. Let \((u_h) \subset W^{2,p}(\Omega) \cap W^{1,p}_0(\Omega)\) be such that \(|\Phi(u_h)| \leq B\), for some \(B > 0\) and \(\Phi'(u_h) \to 0\) as \(h \to +\infty\). Let \(d = \sup_{h \geq 0} \Phi(u_h)\). Then we have
\[
\vartheta d + \|u_h\|_{2,p} \geq \vartheta \Phi(u_h) - \langle \Phi'(u_h), u_h \rangle
\]
\[
= \left(\frac{\vartheta}{p} - 1 \right) \|u_h\|_{2,p}^p - \int_{|u_h| \geq M} \left[\vartheta G(x, u_h) - g(x, u_h) u_h \right] \, dx
\]
\[
- \int_{|u_h| \leq M} \left[\vartheta G(x, u_h) - g(x, u_h) u_h \right] \, dx
\]
\[
\geq \left(\frac{\vartheta}{p} - 1 \right) \|u_h\|_{2,p}^p - \int_{|u_h| \leq M} \left[\vartheta G(x, u_h) - g(x, u_h) u_h \right] \, dx
\]
\[
\geq \left(\frac{\vartheta}{p} - 1 \right) \|u_h\|_{2,p}^p - D,
\]
for some \(D \in \mathbb{R}\). Thus \((u_h)\) is bounded and, up to a subsequence, we may assume that \(u_h \rightharpoonup u\) is, for some \(u\), in \(W^{2,p}(\Omega) \cap W^{1,p}_0(\Omega)\). Since the embedding \(W^{2,p}(\Omega) \cap W^{1,p}_0(\Omega) \hookrightarrow L^q(\Omega)\) is compact, then a standard argument shows that \(u_h \to u\) strongly and the proof is complete. \(\square\)

Now recall the notion of “Local Linking,” which was initially introduced by Liu and Li [8] and has been used in a vast amount of literature (cf. [2, 5, 6, 11]).
Definition 2.2. Let E be a real Banach space such that $E = V \oplus W$, where V and W are closed subspaces of E. Let $\Phi : E \to \mathbb{R}$ be a C^1-functional. We say that Φ has a local linking near the origin 0 (with respect to the decomposition $E = V \oplus W$), if there exists $\varrho > 0$ such that

\begin{align}
 u \in V : \|u\| \leq \varrho & \implies \Phi(u) \leq 0, \\
 u \in W : 0 < \|u\| \leq \varrho & \implies \Phi(u) > 0.
\end{align}

(2.3)

We now show that our functional Φ has a local linking near the origin with respect to the space decomposition $W^{2,p}(\Omega) \cap W^{1,p}_0(\Omega) = V \oplus W$, according to Remark 1.2.

Lemma 2.3. There exists $\varrho > 0$ such that conditions (2.3) hold with respect to the decomposition $W^{2,p}(\Omega) \cap W^{1,p}_0(\Omega) = V \oplus W$.

Proof. For $u \in V$, the condition $\|u\|_{2,p} \leq \varrho$ implies $u(x) \leq R$ for a.e. $x \in \Omega$ if $\varrho > 0$ is small enough, being $R > 0$ as in assumption (H_{1}). Thus for $u \in V$,

\begin{align}
 \Phi(u) &= \frac{1}{P} \int_{\Omega} |\Delta u|^p \, dx - \int_{\Omega} G(x, u) \, dx \\
 &= \frac{1}{P} \int_{\Omega} |u|^p \, dx - \int_{\Omega} G(x, u) \, dx = \int_{\{\|u\| \leq R\}} \left[\frac{\lambda_1}{P} |u|^p - G(x, u) \right] \, dx \leq 0
\end{align}

(2.4)

provided that $\|u\|_{2,p} \leq \varrho$ and ϱ is small.

To prove the second assertion, take $u \in W$. In view of (1.3) and (1.13) we have

\begin{align}
 \Phi(u) &= \frac{1}{P} \int_{\Omega} |\Delta u|^p \, dx - \int_{\Omega} G(x, u) \, dx \\
 &= \frac{1}{P} \int_{\Omega} (|\Delta u|^p - \hat{\lambda}|u|^p) \, dx \\
 &\quad - \left(\int_{\{\|u\| \leq R\}} + \int_{\{\|u\| \geq R\}} \right) (G(x, u) - \frac{\hat{\lambda}}{P} |u|^p) \, dx \\
 &\geq \frac{1}{P} \left(1 - \frac{\hat{\lambda}}{\lambda} \right) \|u\|_{2,p}^p - c \int_{\Omega} |u|^s \, dx \geq \frac{1}{P} \left(1 - \frac{\hat{\lambda}}{\lambda} \right) \|u\|_{2,p}^p - C \|u\|_{2,p}^s,
\end{align}

(2.5)

where $p < s \leq p_*$ and c, C are positive constants. Since $s > p$, it follows that $\Phi(u) > 0$ for $\varrho > 0$ sufficiently small. \qed

Assume that u is an isolated critical point of Φ such that $\Phi(u) = c$. We define the critical group of Φ at u by setting for each $q \in \mathbb{Z}$

\begin{align}
 C_q(\Phi, u) = H_q(\Phi_c, \Phi_c \backslash \{u\}),
\end{align}

(2.6)

being $H_q(X, Y)$ the qth homology group of the topological pair (X, Y) over the ring \mathbb{Z} and Φ_c the c-sublevel of Φ. For the detail of Morse theory and critical groups, we refer the reader to [3].
Since \(\dim V = 1 < +\infty \), by combining Lemma 2.3 and [7, Theorem 2.1], we obtain the following result.

Lemma 2.4. The point 0 is a critical point of \(\Phi \) and \(C_1(\Phi, 0) \neq \{0\} \).

We now investigate the behavior of \(\Phi \) near infinity.

Lemma 2.5. There exists a constant \(A > 0 \) such that

\[
a < -A \implies \Phi_a \simeq S^\infty,
\]

where \(S^\infty = \{ u \in W^{2,p}(\Omega) \cap W_0^{1,p}(\Omega) : \|u\|_{2,p} = 1 \} \).

Proof. By integrating inequality (1.15), we obtain a constant \(C_1 > 0 \) with

\[
|s| \geq M \implies G(x, s) \geq C_1 |s|^\theta
\]
a.e. in \(\Omega \) and for each \(s \in \mathbb{R} \). Thus, for \(u \in S^\infty \), we have \(\Phi(tu) \to -\infty \), as \(t \) goes to +\(\infty \). Set

\[
A = \left(1 + \frac{1}{p} \right) M \mathcal{L}^n(\Omega) \max_{\Omega \times [-M, M]} |g(x, s)| + 1,
\]

being \(\mathcal{L}^n \) the Lebesgue measure. As in the proof of [10, Lemma 2.4] we obtain

\[
\int_{\Omega} G(x, u) \, dx - \frac{1}{p} \int_{\Omega} g(x, u) \, u \, dx \\
\leq \left(\frac{1}{\theta} - \frac{1}{p} \right) \int_{\|u\| \geq M} g(x, u) \, u \, dx + A - 1.
\]

For \(a < -A \) and

\[
\Phi(tu) = \frac{|t|^p}{p} - \int_{\Omega} G(x, tu) \, dx \leq a \quad (u \in S^\infty),
\]

in view of (2.8) and (2.10), arguing as in the proof of [10, Lemma 2.4],

\[
\frac{d}{dt} \Phi(tu) < 0.
\]

By the implicit function theorem, there is a unique \(T \in C(S^\infty, \mathbb{R}) \) such that

\[
\forall u \in S^\infty, \quad \Phi(T(u)u) = a.
\]

For \(u \neq 0 \), set \(\tilde{T}(u) = (1/\|u\|_{2,p}) T(u/\|u\|_{2,p}) \). Then \(\tilde{T} \in C(W^{2,p}(\Omega) \cap W_0^{1,p}(\Omega) \setminus \{0\}, \mathbb{R}) \) and

\[
\forall u \in W^{2,p}(\Omega) \cap W_0^{1,p}(\Omega) \setminus \{0\}, \quad \Phi(\tilde{T}(u)u) = a.
\]
We define now a functional $\hat{T} : W^{2,p}(\Omega) \cap W^{1,p}_0(\Omega) \setminus \{0\} \to \mathbb{R}$ by setting
\[
\hat{T}(u) = \begin{cases}
\hat{T}(u) & \text{if } \Phi(u) \geq a, \\
1 & \text{if } \Phi(u) \leq a.
\end{cases}
\tag{2.15}
\]
Since $\Phi(u) = a$ implies $\hat{T}(u) = 1$, we conclude that
\[
\hat{T} \in C(W^{2,p}(\Omega) \cap W^{1,p}_0(\Omega) \setminus \{0\}, \mathbb{R}).
\tag{2.16}
\]
Finally, let $\eta : [0, 1] \times W^{2,p}(\Omega) \cap W^{1,p}_0(\Omega) \setminus \{0\} \to W^{2,p}(\Omega) \cap W^{1,p}_0(\Omega) \setminus \{0\}$,
\[
\eta(s, u) = (1-s)u + s\hat{T}(u)u.
\tag{2.17}
\]
It results that η is a strong deformation retract from $W^{2,p}(\Omega) \cap W^{1,p}_0(\Omega) \setminus \{0\}$ to Φ_a. Thus $\Phi_a \simeq W^{2,p}(\Omega) \cap W^{1,p}_0(\Omega) \setminus \{0\} \simeq S^\infty$. \hfill \Box

Remark 2.6. A result similar to Lemma 2.5 has been proved for the Laplacian $-\Delta$ in [3, 14], under the additional conditions
\[
g \in C^1(\Omega \times \mathbb{R}, \mathbb{R}), \quad g_t(x, 0) = \frac{\partial g(x, t)}{\partial t} \bigg|_{t=0} = 0.
\tag{2.18}
\]
We recall the following topological result due to Perera [11].

Lemma 2.7. Let $Y \subset B \subset A \subset X$ be topological spaces and $q \in \mathbb{Z}$. If
\[
H_q(A, B) \neq \{0\}, \quad H_q(X, Y) = \{0\},
\tag{2.19}
\]
then it results that
\[
H_{q+1}(X, A) \neq \{0\} \quad \text{or} \quad H_{q-1}(B, Y) \neq \{0\}.
\tag{2.20}
\]

Proof of Theorem 1.3. By Lemma 2.1, Φ satisfies the Palais-Smale condition. Note that $\Phi(0) = 0$, by [3, Chapter I, Theorem 4.2], there exists $\varepsilon > 0$ with
\[
H_1(\Phi_\varepsilon, \Phi_{-\varepsilon}) = C_1(\Phi, 0) \neq \{0\}.
\tag{2.21}
\]
If A is as in Lemma 2.5, for $a < -A$ we have $\Phi_a \simeq S^\infty$, which yields
\[
H_1(W^{2,p}(\Omega) \cap W^{1,p}_0(\Omega), \Phi_a) = H_1(W^{2,p}(\Omega) \cap W^{1,p}_0(\Omega), S^\infty) \neq \{0\}.
\tag{2.22}
\]
Therefore, being $\Phi_a \subset \Phi_{-\varepsilon} \subset \Phi_\varepsilon$, Lemma 2.7 yields
\[
H_2(W^{2,p}(\Omega) \cap W^{1,p}_0(\Omega), \Phi_\varepsilon) \neq \{0\} \quad \text{or} \quad H_0(\Phi_{-\varepsilon}, \Phi_a) \neq \{0\}.
\tag{2.23}
\]
It follows that Φ has a critical point u for which
\[
\Phi(u) > \varepsilon \quad \text{or} \quad -\varepsilon > \Phi(u) > a.
\tag{2.24}
\]
Therefore, $u \neq 0$ and (1.1), (1.2) possess a nontrivial solution. \hfill \Box
Recall from [9] the following three-critical point theorem.

Lemma 2.8. Let X be a real Banach space and let $\Phi \in C^1(X, \mathbb{R})$ be bounded from below and satisfying the Palais-Smale condition. Assume that Φ has a critical point u which is homologically nontrivial, that is, $C_j(\Phi, u) \neq \{0\}$ for some j, and it is not a minimizer for Φ. Then Φ admits at least three critical points.

Proof of Theorem 1.4. By Lemma 2.8, taking into account Lemma 2.4, it suffices to show that Φ is bounded from below. Indeed, by (1.16) there exist $\epsilon > 0$ small and $C > 0$ such that

$$G(x, s) \leq \frac{\lambda_1 - \epsilon}{p} |s|^p + C$$

(2.25)

for a.e. $x \in \Omega$ and each $s \in \mathbb{R}$. This, by (1.11), immediately yields

$$\Phi(u) \geq \frac{1}{p} \|u\|_{L^p}^p - \frac{1}{p} (\lambda_1 - \epsilon) \|u\|_{L^p}^p - C\mathcal{L}^n(\Omega)$$

$$\geq \frac{1}{p} \left(1 - \frac{\lambda_1 - \epsilon}{\lambda_1} \right) \|u\|_{L^p}^p - C\mathcal{L}^n(\Omega) \to +\infty$$

(2.26)

as $\|u\|_{L^p} \to +\infty$. Then Φ is coercive and satisfies the Palais-Smale condition. In particular Lemma 2.8 provides the existence of at least two nontrivial critical points of Φ. □

Acknowledgment

The authors wish to thank Prof. Pavel Drábek for his useful comments about the spectrum of the p-harmonic eigenvalue problem.

References

Shibo Liu: Institute of Mathematics, Academy of Mathematics and Systems Sciences, Academia Sinica, Beijing 100080, China

E-mail address: liusb@amss.ac.cn

Marco Squassina: Dipartimento di Matematica, Università Cattolica S.C., Via Musei 41, 25121 Brescia, Italy

E-mail address: squassin@dmf.unicatt.it
Special Issue on
Decision Support for Intermodal Transport

Call for Papers

Intermodal transport refers to the movement of goods in a single loading unit which uses successive various modes of transport (road, rail, water) without handling the goods during mode transfers. Intermodal transport has become an important policy issue, mainly because it is considered to be one of the means to lower the congestion caused by single-mode road transport and to be more environmentally friendly than the single-mode road transport. Both considerations have been followed by an increase in attention toward intermodal freight transportation research.

Various intermodal freight transport decision problems are in demand of mathematical models of supporting them. As the intermodal transport system is more complex than a single-mode system, this fact offers interesting and challenging opportunities to modelers in applied mathematics. This special issue aims to fill in some gaps in the research agenda of decision-making in intermodal transport.

The mathematical models may be of the optimization type or of the evaluation type to gain an insight in intermodal operations. The mathematical models aim to support decisions on the strategic, tactical, and operational levels. The decision-makers belong to the various players in the intermodal transport world, namely, drayage operators, terminal operators, network operators, or intermodal operators.

Topics of relevance to this type of decision-making both in time horizon as in terms of operators are:

- Intermodal terminal design
- Infrastructure network configuration
- Location of terminals
- Cooperation between drayage companies
- Allocation of shippers/receivers to a terminal
- Pricing strategies
- Capacity levels of equipment and labour
- Operational routines and lay-out structure
- Redistribution of load units, railcars, barges, and so forth
- Scheduling of trips or jobs
- Allocation of capacity to jobs
- Loading orders
- Selection of routing and service

Before submission authors should carefully read over the journal’s Author Guidelines, which are located at http://www.hindawi.com/journals/jamds/guidelines.html. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/, according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>June 1, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>September 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>December 1, 2009</td>
</tr>
</tbody>
</table>

Lead Guest Editor

Gerrit K. Janssens, Transportation Research Institute (IMOB), Hasselt University, Agoralaan, Building D, 3590 Diepenbeek (Hasselt), Belgium; Gerrit.Janssens@uhasselt.be

Guest Editor

Cathy Macharis, Department of Mathematics, Operational Research, Statistics and Information for Systems (MOSI), Transport and Logistics Research Group, Management School, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium; Cathy.Macharis@vub.ac.be