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Rigid cohomology and p-adic point counting

par Alan G.B. LAUDER

Résumé. Je présente quelques algorithmes pour calculer la fonc-
tion zêta d’une variété algébrique sur un corps fini qui sont basés
sur la cohomologie rigide. Deux méthodes distinctes sont élaborées
à l’aide d’un exemple.

Abstract. I discuss some algorithms for computing the zeta
function of an algebraic variety over a finite field which are based
upon rigid cohomology. Two distinct approaches are illustrated
with a worked example.

1. Introduction

I consider the problem of computing the zeta function of an algebraic
variety defined over a finite field. This problem has been pushed into the
limelight in recent years because of its importance in cryptography, at least
in the case of curves. Wan’s excellent survey article gives an overview
of what has been achieved, and what remains to be done, on the topic
[16]. The purpose of this expository article is to extract the essential con-
tent of previous results, and contrast this with some new developments in
p-adic point counting. All of the p-adic algorithms I discuss rely upon rigid
cohomology in some incarnation, and the alternative approaches pioneered
by Mestre and Satoh are not touched upon. Moreover, little attention is
paid to the precise running times of algorithms, the focus instead being on
the qualitative nature of the complexities of algorithms. For this reason,
much significant recent work using rigid cohomology, by Denef, Gaudry,
Gerkmann, Gürel, Vercauteren and others, is not mentioned.

Let Fq be a finite field with q elements of characteristic p. Let X be an
algebraic variety defined over Fq. For each positive integer k, denote by Nk

the number of Fqk -rational points on X. The zeta function Z(X, T ) of X
is the formal power series

Z(X, T ) = exp

( ∞∑
k=1

Nk
T k

k

)
.
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By a famous theorem of Dwork, this power series is known to be a rational
function P (T )/Q(T ), where P (T ), Q(T ) ∈ 1 + TZ[T ] with gcd(P,Q) = 1.
Thus the zeta function of X can be finitely described, and a meaningful
question to ask then is: Can one compute it? To address this question,
let us for simplicity assume that X is an affine variety, defined by the
common vanishing of a finite set of n-variate polynomials. The obvious
approach is to determine Nk for k = 1, 2, . . . , 2D by evaluating all the
defining polynomials at all points in affine n-space over Fqk . Here D is any
upper bound on deg(P ) + deg(Q). This gives the first 2D + 1 coefficients
in the local expansion of the rational function around the origin, and it can
then be recovered using linear algebra. This works provided one knows a
priori an upper bound D. Fortunately, Bombieri has proved such a bound in
terms of n, the number of defining polynomials, and their degrees [2]. Thus
the answer to our first question for affine varieties is “Yes” [16, Corollary
2.7]. More general varieties can be decomposed into affine pieces, and the
same approach then applies.

A much more interesting question to ask is: Is there an efficient algorithm
for computing Z(X, T ), i.e., an algorithm whose running time is bounded
by a polynomial function in the input size? For example, let us consider
the case of a projective hypersurface defined by a homogeneous polynomial
f of degree d ≥ 2 in n ≥ 2 variables over Fq. A workable measure of the
“size” of this polynomial is dn−1 lg(q) bits, where lg(q) := (blog2(q)c + 1).
We then require an algorithm whose running time is (dn−1 lg(q))O(1) bit
operations, or put more simply, (dn lg(q))O(1) bit operations. It is not
difficult to check that the running time of our näıve algorithm for computing
the zeta function is actually exponential in dn lg(q). Thus certainly a more
sophisticated approach is required, as discussed in the next section.

2. Cohomological formulae and previous results

Cohomological formulae allow one to express the zeta function as an
alternating product of characteristic polynomials of maps on certain finite
dimensional spaces. Specifically one has

Z(X, T ) =
2 dim(X)∏

i=0

det(I − TFrobq|H i(X))(−1)i−1
.

Here Frobq is the geometric Frobenius acting on cohomology. The cohomol-
ogy space H∗(X) depends upon which cohomology theory one uses. For
example, one might take H i(X) = H i

et,c(X, Q`), `-adic étale cohomology
with compact support where ` 6= p. In this situation, if one can compute
the reduction modulo ` of the characteristic polynomials for enough “small
primes” `, the Chinese Remainder Theorem can be used to recover the zeta
function. Unfortunately, the methods used by Grothendieck to prove his
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`-adic formula do not seem suited to algorithmic applications. However, for
curves and abelian varieties, the more constructive approach of Weil does
lead to algorithms [13, 14]:

Theorem 2.1 (Schoof-Pila). The zeta function of a smooth projective curve
birational to a plane curve of degree d over Fq can be computed determi-
nistically in lg(q)Cd bit operations, for some exponent Cd depending on d.

In the original work of Schoof and Pila the exponent Cd depends at least
exponentially on d. Huang and Ierardi have a different but related algo-
rithm for which Cd = dO(1), but this algorithm requires some randomisation
[7]. For elliptic curves, significant improvements have been found to these
approaches, most notably through the work of Elkies and Atkin [6].

A more fruitful approach when the characteristic p is “small” is to use
a p-adic formula. For example, one can take H i(X) = Hrig,c(X, Qq), rigid
cohomology with compact support, where Qq is the unramified extension of
Qp of degree logp(q). Rigid cohomology has an explicit description in terms
of de Rham complexes. This allows one to compute the required matrices.
Specifically, first one observes that Frobq = Frob

logp(q)
p , where Frobp is the

absolute Frobenius map. The matrix of Frobp can be computed modulo
some suitably large power of p by lifting to the de Rham complex, where
its action is given very explicitly, and performing some kind of cohomologi-
cal reduction. This approach was first explored by Kedlaya, and seems very
useful for curves [8]. An even simpler approach is to use a trace formula
which is defined on the de Rham complex itself, as then one can avoid coho-
mology altogether. For example the Dwork Trace Formula, which describes
the zeta function in terms of the Fredholm determinant of a certain com-
pletely continuous operator on an infinite dimensional p-adic Banach space
[4]. This formula was used to obtain the following result [12, Theorem 1].

Theorem 2.2. The zeta function of an affine hypersurface defined by a
polynomial of degree d in n variables over Fq can be computed determinis-
tically in (pdn lg(q))O(n) bit operations. Here p is the characteristic of the
field Fq.

Working on the de Rham complex allows one to circumvent any prob-
lems caused by singularities. For non-singular hypersurfaces the more prac-
tical approach described by Kedlaya is better, but the complexity remains
(pdn log(q))O(n) bit operations. The reason for this is that in both algo-
rithms one computes the Frobenius action on the de Rham complex. In
Kedlaya’s algorithm one then reduces back into cohomology. The elements
one computes on the de Rham complex are truncated power series of degree
O(pdn log(q)) in n variables. Such power series take up (pdn log(q))O(n) bits
of space, and this dominates the complexity of both approaches. To make
further progress with p-adic cohomology one needs a method of finding the
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absolute Frobenius matrix which entirely avoids computations on the de
Rham complex itself, and works solely on the homology of the complex.
Such a method is introduced in the next section.

3. The deformation algorithm

Recently I have proved the following theorem [11, Theorem 1 and Note
21].

Theorem 3.1. The zeta function of a smooth projective hypersurface de-
fined by a homogeneous polynomial of degree d in n variables over Fq can be
computed deterministically in (pdn lg(q))O(1) bit operations, provided p 6= 2
and p does not divide d. Here p is the characteristic of the field Fq.

The improvement is that the exponent no longer depends upon n. In
fact, the exponent is rather small: for example, the dependence on lg(q) is
essentially third power regardless of the dimension. Although an undesired
factor pO(1) still occurs, it is of interest to note that the algorithm does give
a non-trivial result even for prime fields [11, Theorem 2 and Note 21].

Theorem 3.2. Let f ∈ Z[X1, . . . , Xn] be homogeneous of degree d and
assume that the projective hypersurface defined by the equation f = 0 is
smooth. For any ε > 0, there exists an explicit deterministic algorithm
which takes as input a prime p, outputs the number of solutions to the
equation f = 0 mod p, and requires O(p2+ε) bit operations.

Note that the hidden constant in the big-Oh notation depends now upon
f , whereas in all previous results it was an absolute constant. A näıve
approach to this problem would require O(pn−2+ε) bit operations.

The theorems are proved in a very indirect manner which is inspired by
the beautiful paper of Dwork [5]. Here is a sketch of the method: The hyper-
surface is embedded in a one-dimensional family over a subset of the affine
line whose fibre at the origin is a smooth diagonal hypersurface. Specifi-
cally, one defines f(Γ) =

∑n
i=1 Xd

i + Γh(X1, . . . , Xn), so that f(1) is the
original polynomial which defines the smooth projective hypersurface over
Fq and f(0) is a diagonal form. The relative rigid cohomology of this family
has the structure of an overconvergent F -isocrystal with connection. (I ac-
tually work with an older version of this cohomology theory due to Dwork.)
Concretely, this just means that one has a relative Frobenius map Frobp(Γ)
and a linear differential operator ∇(Γ) acting on the middle-dimensional
piece of cohomology, and they commute in an appropriate sense. This
commutativity gives a local factorisation of the Frobenius operator around
the origin in terms of its value at the origin and the local solution matrix
of the differential operator around the origin. The differential operator can



Point Counting 173

be constructed and solved locally within the required time. Similarly, the
Frobenius matrix at the origin can be given explicitly, since it is the Frobe-
nius matrix of a diagonal hypersurface. Finally, one needs to recover a
matrix for Frobp(1), which is the Frobenius matrix of the initial hypersur-
face, from the local expansion of Frobp(Γ) around the origin. Unfortunately
this expansion will not in general converge on the closed p-adic unit disk,
because of singular fibres in the family. However, one can calculate bounds
on the domain of holomorphy of the entries in a matrix for Frobp(Γ), as
p-adic holomorphic functions in the sense of Krasner. These bounds allow
one to compute a matrix for Frobp(1) in an indirect manner from the local
expansion. This last step can be thought of as some kind of “p-adic analytic
continuation”.

The technique of deforming one polynomial into another is reminiscent
of the “homotopy methods” used in numerical analysis [3, Section 4.2]. It
seems quite remarkable that such methods also lead to powerful algorithms
for polynomials over finite fields! The approach should extend to quite
general smooth varieties, the key difficulty being that one needs explicit
estimates on the domain of holomorphy of the relative Frobenius matrix
Frobp(Γ). Rigid cohomology itself just tells one that the matrix is overcon-
vergent.

I like to call the approach used above the deformation algorithm. To
my knowledge, the technique was first introduced in [10], and applied in
that paper to the easier case of L-functions of certain additive character
sums. Nobuo Tsuzuki from Hiroshima University has also independently
been exploring quite similar ideas for computing L-functions of some one-
dimensional Kloosterman sums. His results are presented in [15], along
with details of a computer implementation.

4. Some details for hyperelliptic curves

The purpose of this section is to give the reader an idea of the theoretical
constructions underlying the deformation algorithm. Rather than working
with Dwork’s version of rigid cohomology for smooth projective hypersur-
faces, I believe it is more helpful to the reader if I discuss how one can
apply similar ideas to certain smooth affine curves. For in the case of affine
curves, one can work in the setting of Monsky-Washnitzer cohomology, an
older special case of rigid cohomology. This cohomology theory is a p-adic
analytic version of algebraic de Rham cohomology, and the algebraic struc-
tures needed then turn out to be rather pretty “commutative squares and
cubes”. I have not worked out any of the essential p-adic analytic details in
this setting. This is rather hard work, and I completely avoid this aspect
in the discussion below.
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Consider the case of a smooth affine curve X̄ defined by the system of
equations

Y 2 = Q̄(X)
Y 6= 0

over a finite field Fq of odd characteristic p. Here Q̄ is a polynomial over Fq

of degree 2g + 1 with distinct roots. This is exactly the situation discussed
in detail in the paper of Kedlaya [8]. Let Ā := Fq[X, Y, Y −1]/(Y 2 − Q̄(X))
be the coordinate ring of X̄. Let Qq denote the unramified extension of the
p-adic field Qp of degree logp(q), and Zq the ring of integers of Qq. Choose
a p-adic lift Q ∈ Zq[X] of degree 2g + 1 of the polynomial Q̄. Define

A† :=

{ ∞∑
m=−∞

2g∑
i=0

am,iX
i

√
Q

m | lim inf(ord(am,i)/|m|) > 0

}
.

This ring is the weak completion of a p-adic lift of Ā, see [9] for a more
detailed discussion of such rings. The module of continuous Qq-linear dif-
ferentials Ω(A†) can be identified with the set of elements of the form ∗dX
for ∗ ∈ A†. We shall just write A†dX for Ω(A†). The universal deriva-
tion d : A† → A†dX maps a series r to dr

dX dX. We need to lift the
pth power Frobenius ring monomorphism Frobp from Ā to A†. We can
do this by first defining Frobp(X) := Xp, and Frobp(c) = cσ for c ∈ Qq

where σ is the automorphism of Qq lifting the pth power Frobenius au-
tomorphism on Fq. Now Frobp can be defined by continuity on elements
in A† provided we can work out where it sends

√
Q. We must have that

Frobp(
√

Q)2 = Frobp(Q) = Qσ(Xp). Defining

(4.1) Frobp(
√

Q) := Qp/2

(
1− Qp −Qσ(Xp)

Qp

)1/2

does the trick. The righthand-side squares to Qσ(Xp) and since p|(Q(X)p−
Qσ(Xp)) it can be expanded as a series in A†. It is precisely the problem
of defining Frobp(

√
Q) which forced us to take some larger “completion” of

a p-adic lift of Ā.
The next diagram commutes:

(4.2)
0 −→ A†

d·
dX

dX
−→ A†dX −→ 0

↓ Frobp ↓ Frobp

0 −→ A†
d·

dX
dX

−→ A†dX −→ 0.

Here we define Frobp(dX) := d(Xp) = pXp−1dX. Kedlaya showed that to
compute the zeta function of X̄ it is enough to find a matrix for the action
of Frobp on the cokernel of the map d·

dX dX, i.e., on the space H1
MW (X̄) :=

A†dX/dA†

dX dX. (Note that Frobp is a σ-linear map on this space, rather than
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a linear map.) This space has finite dimension 4g +1 over Qq. It splits into
positive and negative eigenspaces under the map induced by

√
Q 7→ −

√
Q

of dimension 2g+1 and 2g respectively. Each eigenspace is stable under the
map induced by Frobp, and Kedlaya showed that one need only consider
the action on the negative eigenspace. However, to save introducing too
much notation, we shall just ignore this observation.

A basis for H1
MW (X̄) is given by the forms

(4.3)

{
XidX
√

Q
j
| j = 1 and 0 ≤ i < 2g, j = 2 and 0 ≤ i ≤ 2g

}
.

We reduce elements of A†dX to linear combinations of these basis elements
modulo dA†

dX dX as follows. For B ∈ Qq[X] since gcd(Q,Q′) = 1, where
Q′ = dQ

dX , we can write B = RQ + SQ′ for some polynomials R and S
whose degrees may be explicitly bounded. For m ≥ 1

d

(
S(X)

Q(X)m/2

)
=

S′dX

Qm/2
− mSQ′dX

2Qm/2+1
.

Hence in homology:

BdX

Qm/2+1
=

(RQ + SQ′)dX

Qm/2+1

≡ RdX

Qm/2
+

2S′dX

mQm/2
.(4.4)

This reduces all “rational forms” to the shape ∗dX/Qj/2, for j = 1, 2 and
∗ ∈ Qq[X]. Reduction of ∗ to a polynomial of the appropriate degree is
easier: A form ∗dX/

√
Q with ∗ of degree m ≥ 2g can be reduced in degree

by subtracting an appropriate constant multiple of d(Xm−2g
√

Q); a form
∗dX/Q with ∗ of degree m > 2g can be reduced in degree by subtracting
an appropriate constant multiple of d(Xm−2g). Forms in A† are p-adic
limits of rational forms, and since derivation is continuous we can reduce
elements in A† to the limits of reduced rational forms. It is precisely the
“weak completion” condition that ensures these limits actually exist.

To compute the Frobenius action, following Kedlaya, one computes it
explicitly on the basis of H1

MW (X̄), giving a series in A†dX, and reduces
this series back to a linear combination of the basis elements. Of course, all
this is done to some required p-adic accuracy. This approach is excellent for
curves; however, for higher dimensional varieties the explicit computation of
the Frobenius map on the “de Rham complex” impacts on the complexity.
I will now sketch how the deformation algorithm gets around this problem.
(Admittedly, my sketch is in the case of curves, where the problem is not
so significant anyway.)



176 Alan G.B. Lauder

Let Γ be a new parameter, and let Q(X, Γ) ∈ Zq[X, Γ] be such that
Q(X, 1) is our old polynomial Q. Assume Q(X, Γ) is monic in X of degree
2g + 1. Define

r(Γ) := Res(Q,
∂Q

∂X
,X) ∈ Zq[Γ],

the resultant with respect to X of Q and ∂Q
∂X . Let Cp be the completion of

an algebraic closure of Qq, and F̄q be the residue class field of Cp. For γ̄ ∈ F̄q

let γ ∈ Cp denote the Teichmüller lift of γ̄. For each γ̄ ∈ F̄q, let X̄γ̄ be the
affine curve over Fq(γ̄) defined by the equations Y 2 = Q(X, γ) mod p, Y 6=
0 mod p. For γ̄ ∈ F̄q with r(γ) 6= 0 mod p, the curve X̄γ̄ is smooth. Thus
we have a family of smooth affine curves over the line {γ̄ ∈ F̄q | r(γ) 6=
0 mod p}. Let us denote the family by X̄ and the base space by S̄. Assume
that Q(X, 0) mod p is square-free of degree 2g + 1, so that r(0) 6= 0 mod p.

We wish to compute the zeta function of the smooth fibre X̄1̄. We assume
that the Frobenius matrix of X̄0̄ is already known, that is, the matrix for
the action of Frobp on H1

MW (X̄0̄). For example, as in the case in [11], it may
be that there is an explicit formula for the entries in the Frobenius matrix
which is easily computed. Or alternatively, we may have computed the
Frobenius matrix for this fibre using Kedlaya’s algorithm and now want
to find that of other fibres. (There is actually some sense in this, since
for families of curves defined over prime fields the space complexity of the
deformation algorithm is quadratic in log(q), rather than cubic as in the
case of Kedlaya’s algorithm. Note that for general curves the deformation
algorithm does not appear to improve upon Kedlaya’s approach, the clear
benefit being for higher dimensional varieties.)

We need relative versions of the rings and modules we worked with above,
i.e., modules of continuous relative differentials etc. Care must be taken in
defining these algebraic structures, to ensure that finite dimensionality of
quotients is retained. Define S to be the weak completion of Qq[Γ, 1/r(Γ)],
and T to be the weak completion of Qq[X, Y, Y −1,Γ, 1/r(Γ)]/(Y 2−Q(X, Γ)).
Define Frobp(Γ) := Γp and Frobp(dΓ) := pΓp−1dΓ and let Frobp act on all
other symbols we encounter exactly as before. Note though that now Frobp

acts on
√

Q(X, Γ) via the formula (4.1), but with “Qσ(Xp)” replaced by
“Qσ(Xp,Γp)”.

The next diagram commutes:

(4.5)
0 −→ T

∂·
∂X

dX
−→ TdX −→ 0

↓ Frobp ↓ Frobp

0 −→ T
∂·

∂X
dX

−→ TdX −→ 0.

Here TdX is just the “module of continuous relative differentials Ω(T/S)”.
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As before, we need to understand the map induced on the cokernel
TdX/ ∂T

∂X dX by Frobp. Call this cokernel H1
MW (X̄/S̄). I claim, but do not

prove, that this is a free S-module with basis the set (4.3). To see why this
should be true, observe, using resultants, that for any B(X, Γ) ∈ Zq[X, Γ]
we can find R, S ∈ Zq[X, Γ] such that r(Γ)B = RQ + S ∂Q

∂X . So formulae
similar to (4.4) reduce rational forms to Qq[Γ, 1/r(Γ)]-linear combinations
of the basis set — the key difference is that a factor r(Γ) is introduced on
the denominator on each reduction step. To ensure this process converges
in the p-adic limit, one must define the rings S and T with great care in
the first place. I believe that my definitions for S and T should ensure this.
In any case, let us proceed under the assumption that my claim is true.

Let (Frobp(Γ)) be the matrix with respect to the basis (4.3) for the map
which Frobp induces on the free S-module H1

MW (X̄/S̄). (Note that it is
not a linear map, but is additive with Frobp(c(Γ)m) = cσ(Γp)Frobp(m) for
c(Γ) ∈ S and m ∈ H1

MW (X̄/S̄).) This matrix contains entries which are
elements in S, that is of the form

∞∑
i=0

aiΓi +
∞∑

j=1

bj(Γ)
r(Γ)j

, degΓ(bj) < degΓ(r)

with linear decay conditions on ord(ai) and ord(bj(Γ)) as i, j →∞. More-
over, by our construction, (Frobp(γ)) equals the Frobenius matrix for the
fibre X̄γ̄ for any Teichmüller point γ, for in those cases Frobp(γ) = γp. Our
aim in the deformation algorithm is to compute this matrix (Frobp(Γ)),
for then we may recover the Frobenius matrix of any fibre by specialisa-
tion. We compute (Frobp(Γ)) from (Frobp(0)) and the fact that it satisfies
a differential equation, as we now describe.

We have another commutative diagram:

(4.6)
0 −→ T

∂·
∂X

dX
−→ TdX −→ 0

↓ ∂·
∂ΓdΓ ↓ ∂·

∂ΓdΓ

0 −→ TdΓ
∂·

∂X
dX

−→ TdXdΓ −→ 0.

It commutes by the commutativity of partial differentiation. Along with
the previous diagram (4.5), diagram (4.6) fits into a “commutative cube”.
Specifically, the front face of cube is diagram (4.5), and the back face dia-
gram (4.5) with the symbol dΓ appended to all modules. The top face is
diagram (4.6) and the bottom face also diagram (4.6). The left and right
faces of the cube are also commutative diagrams, since the Frobenius map
commutes with partial differentiation by Γ.
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Descending to homology on the righthand face of the cube we get another
commutative diagram:

(4.7)
0 −→ H1

MW (X̄/S̄)
∂·
∂Γ

dΓ
−→ H1

MW (X̄/S̄)dΓ −→ 0
↓ Frobp ↓ Frobp

0 −→ H1
MW (X̄/S̄)

∂·
∂Γ

dΓ
−→ H1

MW (X̄/S̄)dΓ −→ 0.

Let ∇ denote the map H1
MW (X̄/S̄)

∂·
∂Γ

dΓ
−→ H1

MW (X̄/S̄)dΓ. The map ∇
is called the connection and the pair (Frobp,∇) the overconvergent
F -isocrystal defined by taking the “relative Monsky-Washnitzer cohomo-
logy” of the family in the middle dimension. The map ∇ is additive and
satisfies the Leibniz rule, i.e., ∇(cm) = dc

dΓmdΓ + c∇(m) for c ∈ S and
m ∈ H1

MW (X̄/S̄).
The action of ∇ on the basis (4.3) of H1

MW (X̄/S̄) can be computed
explicitly by differentiating the basis elements with respect to Γ and using
the reduction formulae. This gives a matrix, B(Γ) say, for the differential
operator ∇. The commutativity ∇ ◦ Frobp = Frobp ◦ ∇ of the connection
and Frobenius, as in diagram (4.7), yields the differential equation

d(Frobp(Γ))
dΓ

+ B(Γ)(Frobp(Γ)) = (Frobp(Γ))Bσ(Γp)pΓp−1.

To compute (Frobp(Γ)) one could solve this locally around the non-singular
point Γ = 0, using the foregiven knowledge of (Frobp(0)) as the initial
condition, and then recover the matrix (Frobp(Γ)) globally from its local
expansion. The latter can be done rather easily, although one must have
a priori bounds on the decay of the entries in the matrix (Frobp(Γ)), see
[11, Section 8].

An alternative approach is to compute a basis of local solutions to the dif-
ferential equation ∇ = 0 around the origin. Specifically, solve the differen-
tial equation

dC

dΓ
= −B(Γ)C(Γ), C(0) = I

where the matrix C(Γ) has entries in Qq[[Γ]]. Diagram (4.7) shows that
Frobp is stable on the basis of local solutions, which leads to the equation

(Frobp(Γ))Cσ(Γp) = C(Γ)(Frobp(0)).

Thus we get a local factorisation of the Frobenius matrix

(Frobp(Γ)) = C(Γ)(Frobp(0))(Cσ(Γp))−1

around the origin. Once again, one can recover the Frobenius matrix glo-
bally from its local expansion. This was actually the approach taken in
[10, 11]. In [10] the local expansion actually converged on the closed p-adic
unit disk, which was a helpful simplification.
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Whether one uses the first approach or the second, the essential point is
that the matrix B(Γ) can be computed easily. In fact, if we take a “lifting”
of our family to the complex numbers, it is just the classical Picard-Fuchs
matrix for the family of complex curves. All subsequent computations in
both approaches involve rational functions in the single parameter Γ, and
nowhere does one have to compute the Frobenius map on the de Rham
complex. (Note that elements in S reduce to rational functions when one
works to a finite p-adic precision.) This is the reason that the complexity
of the deformation algorithm does not increase with the dimension of the
variety.

This completes my sketch of the deformation algorithm for the case of
hyperelliptic curves in odd characteristic. I hope the expert in p-adic co-
homology has found the sketch useful in identifying precisely how I exploit
the theory, and the non-expert found it a readable introduction to a very
beautiful part of number theory.
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