Splitting Polytopes
Sven Herrmann (joint work with Michael Joswig)
62ème Séminaire Lotharingien de Combinatoire
Subdivisions and Splits of Convex Polytopes

Regular Subdivisions and Secondary Polytopes

Properties of Splits

Application: Tropical Geometry

Generalizations/Outlook
Definition
A subdivision of P is a collection Σ of polytopes (faces) such that

- $\bigcup_{F \in \Sigma} = P$,
- $F \in \Sigma \implies$ all faces of F are in Σ,
- $F_1, F_2 \in \Sigma \implies F_1 \cap F_2$ is a face of both,
- F 0-dimensional \implies F is a vertex of P.
Subdivisions

Definition
A subdivision of P is a collection Σ of polytopes (faces) such that

- $\bigcup_{F \in \Sigma} = P$,
- $F \in \Sigma \implies$ all faces of F are in Σ,
- $F_1, F_2 \in \Sigma \implies F_1 \cap F_2$ is a face of both,
- F 0-dimensional $\implies F$ is a vertex of P.
Subdivisions

Definition
A subdivision of P is a collection Σ of polytopes (faces) such that

$\forall F \in \Sigma \Rightarrow \bigcup_{F \in \Sigma} = P,$

$\forall F \in \Sigma \Rightarrow \text{all faces of } F \text{ are in } \Sigma,$

$\forall F_1, F_2 \in \Sigma \Rightarrow F_1 \cap F_2 \text{ is a face of both},$

$\forall F \text{ 0-dimensional} \Rightarrow F \text{ is a vertex of } P.$
Refinements of Subdivisions

Definition

- Σ' is a refinement of Σ if each face of Σ' is contained in a face of Σ.
- The common refinement of two subdivisions Σ, Σ' of P is the subdivision $\{S \cap S' \mid S \in \Sigma, S' \in \Sigma'\}$.

- The refinement defines a partial order on the set of all subdivisions of P.
- A finest subdivision (minimal element) is a triangulation.
Refinements of Subdivisions

Definition

- Σ' is a refinement of Σ if each face of Σ' is contained in a face of Σ.
- The common refinement of two subdivisions Σ, Σ' of P is the subdivision
 \[\{ S \cap S' \mid S \in \Sigma, S' \in \Sigma' \}. \]
Refinements of Subdivisions

Definition

- Σ' is a refinement of Σ if each face of Σ' is contained in a face of Σ.
- The common refinement of two subdivisions Σ, Σ' of P is the subdivision

$$\{S \cap S' \mid S \in \Sigma, S' \in \Sigma'\}.$$
Refinements of Subdivisions

Definition

- \(\Sigma' \) is a refinement of \(\Sigma \) if each face of \(\Sigma' \) is contained in a face of \(\Sigma \).
- The common refinement of two subdivisions \(\Sigma, \Sigma' \) of \(P \) is the subdivision
 \[
 \{ S \cap S' \mid S \in \Sigma, S' \in \Sigma' \}.
 \]
Refinements of Subdivisions

Definition

- Σ' is a refinement of Σ if each face of Σ' is contained in a face of Σ.
- The common refinement of two subdivisions Σ, Σ' of P is the subdivision

$$\{ S \cap S' \mid S \in \Sigma, S' \in \Sigma' \}.$$

- The refinement defines a partial order on the set of all subdivisions of P.
- A finest subdivision (minimal element) is a triangulation.
Refinements of Subdivisions

Definition

- Σ' is a refinement of Σ if each face of Σ' is contained in a face of Σ.
- The common refinement of two subdivisions Σ, Σ' of P is the subdivision
 \[\{ S \cap S' \mid S \in \Sigma, S' \in \Sigma' \}. \]

- The refinement defines a partial order on the set of all subdivisions of P.
- A finest subdivision (minimal element) is a triangulation.
Splits of Convex Polytopes

Definition
A **split** S of a polytope P is a subdivision of P with exactly two maximal faces.

- A split S is defined by a hyperplane H_S.
- A hyperplane H (that meets the interior of P) defines a split if and only if H does not cut any edge of P.
- The splits of P only depend on the combinatorics (oriented matroid) of P, not on the realization.
- Example: v a vertex of P such that all neighbors of v lie in a common Hyperplane H_v: vertex split for v.
Splits of Convex Polytopes

Definition
A split S of a polytope P is a subdivision of P with exactly two maximal faces.

- A split S is defined by a hyperplane H_S.
- A hyperplane H (that meets the interior of P) defines a split if and only if H does not cut any edge of P.
- The splits of P only depend on the combinatorics (oriented matroid) of P, not on the realization.
- Example: v a vertex of P such that all neighbors of v lie in a common Hyperplane H_v: vertex split for v.
Definition

A split S of a polytope P is a subdivision of P with exactly two maximal faces.

- A split S is defined by a hyperplane H_S.
- A hyperplane H (that meets the interior of P) defines a split if and only if H does not cut any edge of P.

\implies The splits of P only depend on the combinatorics (oriented matroid) of P, not on the realization.

- Example: v a vertex of P such that all neighbors of v lie in a common hyperplane H_v: vertex split for v.
Splits of Convex Polytopes

Definition
A split S of a polytope P is a subdivision of P with exactly two maximal faces.

- A splits S is defined by a hyperplane H_S.
- A hyperplane H (that meets the interior of P) defines a split if and only if H does not cut any edge of P.
- \implies The splits of P only depend on the combinatorics (oriented matroid) of P, not on the realization.
- Example: v a vertex of P such that all neighbors of v lie in a common Hyperplane H_v: vertex split for v.
Definition
A split S of a polytope P is a subdivision of P with exactly two maximal faces.

- A split S is defined by a hyperplane H_S.
- A hyperplane H (that meets the interior of P) defines a split if and only if H does not cut any edge of P.
- The splits of P only depend on the combinatorics (oriented matroid) of P, not on the realization.
- Example: v a vertex of P such that all neighbors of v lie in a common Hyperplane H_v: vertex split for v.
Example: Hypersimplices

\[\Delta(k, n) := \text{conv} \left\{ \sum_{i \in I} e_i \ \bigg| \ I \in \binom{\{1, \ldots, n\}}{k} \right\} \subset \mathbb{R}^n, \]

- \(n \)-dimensional unit cube cut with the hyperplane \(\sum_i x_i = k \),
- For a partition \((A, B)\) of \(\{1, \ldots, n\} \) define the \((A, B; \mu)\)-hyperplane by
 \[\sum_{i \in A} x_i = \mu. \]

Satz (Joswig, H. 08)

The splits of \(\Delta(k, n) \) correspond to the \((A, B; \mu)\)-hyperplanes with \(k - \mu + 1 \leq |A| \leq n - \mu - 1 \) and \(1 \leq \mu \leq k - 1 \).

Theorem (Joswig, H. 08)

The number of splits of \(\Delta(k, n) \) equals \((k - 1) \left(2^n - (n - 1)\right) - \sum_{i=2}^{k-1} (k - i) \binom{n}{i} \).
Example: Hypersimplices

\[\Delta(k, n) := \text{conv} \left\{ \sum_{i \in I} e_i \mid I \in \binom{\{1, \ldots, n\}}{k} \right\} \subset \mathbb{R}^n, \]

\[n \text{-dimensional unit cube cut with the hyperplane } \sum_i x_i = k, \]

\[\text{For a partition } (A, B) \text{ of } \{1, \ldots, n\} \text{ define the } (A, B; \mu)\text{-hyperplane by} \]

\[\sum_{i \in A} x_i = \mu. \]

Satz (Joswig, H. 08)
The splits of \(\Delta(k, n) \) correspond to the \((A, B; \mu)\)-hyperplanes with \(k - \mu + 1 \leq |A| \leq n - \mu - 1 \) and \(1 \leq \mu \leq k - 1 \).

Theorem (Joswig, H. 08)
The number of splits of \(\Delta(k, n) \) equals \((k - 1)(2^n - (n - 1)) - \sum_{i=2}^{k-1} (k - i)(n \choose i) \).
Example: Hypersimplices

- \(\Delta(k, n) \) := \text{conv} \left\{ \sum_{i \in I} e_i \mid I \in \binom{\{1, \ldots, n\}}{k} \right\} \subset \mathbb{R}^n,
- \(n \)-dimensional unit cube cut with the hyperplane \(\sum_i x_i = k \),
- For a partition \((A, B)\) of \(\{1, \ldots, n\} \) define the \((A, B; \mu)\)-hyperplane by

\[
\sum_{i \in A} x_i = \mu.
\]

Satz (Joswig, H. 08)

The splits of \(\Delta(k, n) \) correspond to the \((A, B; \mu)\)-hyperplanes with \(k - \mu + 1 \leq |A| \leq n - \mu - 1 \) and \(1 \leq \mu \leq k - 1 \).

Theorem (Joswiw, H. 08)

The number of splits of \(\Delta(k, n) \) equals \((k - 1) (2^n - (n - 1)) - \sum_{i=2}^{k-1} (k - i) \binom{n}{i}\).
Example: Hypersimplices

- $\Delta(k, n) := \text{conv}\left\{ \sum_{i \in l} e_i \mid l \in \binom{\{1, \ldots, n\}}{k} \right\} \subset \mathbb{R}^n$,
- n-dimensional unit cube cut with the hyperplane $\sum_i x_i = k$,
- For a partition (A, B) of $\{1, \ldots, n\}$ define the $(A, B; \mu)$-hyperplane by
 \[\sum_{i \in A} x_i = \mu. \]

Satz (Joswig, H. 08)
The splits of $\Delta(k, n)$ correspond to the $(A, B; \mu)$-hyperplanes with $k - \mu + 1 \leq |A| \leq n - \mu - 1$ and $1 \leq \mu \leq k - 1$.

Theorem (Joswiw, H. 08)
The number of splits of $\Delta(k, n)$ equals $(k - 1)(2^n - (n - 1)) - \sum_{i=2}^{k-1} (k - i)(^n_i)$.

Heilsbronn, February 24, 2009 | 62ème Séminaire | Sven Herrmann | 6
Example: Hypersimplices

- \(\Delta(k, n) := \text{conv} \left\{ \sum_{i \in I} e_i \mid I \in \binom{\{1, \ldots, n\}}{k} \right\} \subset \mathbb{R}^n \),
- \(n \)-dimensional unit cube cut with the hyperplane \(\sum_i x_i = k \),
- For a partition \((A, B)\) of \(\{1, \ldots, n\}\) define the \((A, B; \mu)\)-hyperplane by
 \[
 \sum_{i \in A} x_i = \mu .
 \]

Satz (Joswig, H. 08)
The splits of \(\Delta(k, n) \) correspond to the \((A, B; \mu)\)-hyperplanes with
\(k - \mu + 1 \leq |A| \leq n - \mu - 1 \) and \(1 \leq \mu \leq k - 1 \).

Theorem (Joswiw, H. 08)
The number of splits of \(\Delta(k, n) \) equals
\[
(k - 1) \left(2^n - (n - 1) \right) - \sum_{i=2}^{k-1} (k - i) \binom{n}{i}.
\]
Subdivisions and Splits of Convex Polytopes

Regular Subdivisions and Secondary Polytopes

Properties of Splits

Application: Tropical Geometry

Generalizations/Outlook
Regular Subdivisions

- \(w : \text{vert } P \rightarrow \mathbb{R} \) weight function,
- consider \(\text{conv}\{(v, w(v)) | v \in \text{vert } P\} \),
- project the lower convex hull down to \(P \),
- the resulting subdivision \(\Sigma_w(P) \) is called regular.
Regular Subdivisions

- \(w : \text{vert } P \rightarrow \mathbb{R} \) weight function,
- consider \(\text{conv}\{(v, w(v)) \mid v \in \text{vert } P\} \),
- project the lower convex hull down to \(P \),
- the resulting subdivision \(\Sigma_w(P) \) is called regular.
Regular Subdivisions

- $w : \text{vert } P \rightarrow \mathbb{R}$ weight function,
- consider $\text{conv}\{(v, w(v)) \mid v \in \text{vert } P\}$,
- project the lower convex hull down to P,
- the resulting subdivision $\Sigma_w(P)$ is called regular.
Regular Subdivisions

- $w : \text{vert } P \rightarrow \mathbb{R}$ weight function,
- consider $\text{conv}\{(v, w(v)) \mid v \in \text{vert } P\}$,
- project the lower convex hull down to P,
- the resulting subdivision $\Sigma_w(P)$ is called regular.
Regular Subdivisions

- \(w : \text{vert } P \rightarrow \mathbb{R} \) weight function,
- consider \(\text{conv}\{(v, w(v)) \mid v \in \text{vert } P\} \),
- project the lower convex hull down to \(P \),
- the resulting subdivision \(\Sigma_w(P) \) is called regular.

Lemma

Splits are regular.
The Secondary Polytope

- A d-dimensional polytope in \mathbb{R}^d with n vertices v_1, \ldots, v_n.

Theorem (Gel′fand, Kapranov, Zelevinsky 90)

There exists an $(n - d - 1)$-dimensional polytope $\text{SecPoly}(P)$ (secondary polytope of P) whose face lattice is isomorphic to the poset of all regular subdivisions of P.

- Vertices of $\text{SecPoly}(P)$ correspond to triangulations Σ:
 $$x_i^\Sigma = \sum_{v_i \in S \in \Sigma} \text{vol}(S).$$

- Facets of $\text{SecPoly}(P)$ correspond to coarsest regular subdivisions.

- The intersection of two faces corresponds to the common refinement of the subdivisions corresponding to the faces.
The Secondary Polytope

- P d-dimensional polytope in \mathbb{R}^d with n vertices v_1, \ldots, v_n.

Theorem (Gel’fand, Kapranov, Zelevinsky 90)

There exists an $(n - d - 1)$-dimensional polytope $\text{SecPoly}(P)$ (secondary polytope of P) whose face lattice is isomorphic to the poset of all regular subdivisions of P.

- Vertices of $\text{SecPoly}(P)$ correspond to triangulations Σ: $x_i^\Sigma = \sum_{v_i \in S \in \Sigma} \text{vol}(S)$.
- Facets of $\text{SecPoly}(P)$ correspond to coarsest regular subdivisions.
- The intersection of two faces corresponds to the common refinement of the subdivisions corresponding to the faces.
The Secondary Polytope

- P d-dimensional polytope in \mathbb{R}^d with n vertices v_1, \ldots, v_n.

Theorem (Gel’fand, Kapranov, Zelevinsky 90)

There exists an $(n - d - 1)$-dimensional polytope $\text{SecPoly}(P)$ (secondary polytope of P) whose face lattice is isomorphic to the poset of all regular subdivisions of P.

- Vertices of $\text{SecPoly}(P)$ correspond to triangulations Σ:
 $$x_i^\Sigma = \sum_{v_i \in S \in \Sigma} \text{vol}(S).$$

- Facets of $\text{SecPoly}(P)$ correspond to coarsest regular subdivisions.
- The intersection of two faces corresponds to the common refinement of the subdivisions corresponding to the faces.
The Secondary Polytope

- P d-dimensional polytope in \mathbb{R}^d with n vertices v_1, \ldots, v_n,

Theorem (Gel’fand, Kapranov, Zelevinsky 90)

There exists an $(n - d - 1)$-dimensional polytope $\text{SecPoly}(P)$ (secondary polytope of P) whose face lattice is isomorphic to the poset of all regular subdivisions of P.

- Vertices of $\text{SecPoly}(P)$ correspond to triangulations Σ: $x_i^\Sigma = \sum_{v_i \in S \in \Sigma} \text{vol}(S)$.
- Facets of $\text{SecPoly}(P)$ correspond to coarsest regular subdivisions.
- The intersection of two faces corresponds to the common refinement of the subdivisions corresponding to the faces.
The Secondary Polytope

- P d-dimensional polytope in \mathbb{R}^d with n vertices v_1, \ldots, v_n.

Theorem (Gel’fand, Kapranov, Zelevinsky 90)

There exists an $(n - d - 1)$-dimensional polytope $\text{SecPoly}(P)$ (secondary polytope of P) whose face lattice is isomorphic to the poset of all regular subdivisions of P.

- Vertices of $\text{SecPoly}(P)$ correspond to triangulations Σ:
 \[x_i^\Sigma = \sum_{v_i \in S \in \Sigma} \text{vol}(S). \]

- Facets of $\text{SecPoly}(P)$ correspond to coarsest regular subdivisions.

- The intersection of two faces corresponds to the common refinement of the subdivisions corresponding to the faces.
Splits and Secondary Polytopes

- Splits are facets of \(\text{SecPoly}(P) \), they define an approximation \(\text{SplitPoly}(P) \supset \text{SecPoly}(P) \).
- This is a common approximation for all polytopes with the same oriented matroid.

Theorem (Joswig, H. 09)
\(\text{SecPoly}(P) = \text{SplitPoly}(P) \) if and only if \(P \) is a simplex, polygon, cross polytope, prism over a simplex, or a (possible multiple) join of these polytopes.
Splits and Secondary Polytopes

- Splits are facets of $\text{SecPoly}(P)$, they define an approximation $\text{SplitPoly}(P) \supset \text{SecPoly}(P)$.
- This is a common approximation for all polytopes with the same oriented matroid.

Theorem (Joswig, H. 09)

$\text{SecPoly}(P) = \text{SplitPoly}(P)$ if and only if P is a simplex, polygon, cross polytope, prism over a simplex, or a (possible multiple) join of these polytopes.
Splits and Secondary Polytopes

- Splits are facets of $\text{SecPoly}(P)$, they define an approximation $\text{SplitPoly}(P) \supset \text{SecPoly}(P)$.
- This is a common approximation for all polytopes with the same oriented matroid.

Theorem (Joswig, H. 09)

$\text{SecPoly}(P) = \text{SplitPoly}(P)$ if and only if P is a simplex, polygon, cross polytope, prism over a simplex, or a (possible multiple) join of these polytopes.
Subdivisions and Splits of Convex Polytopes

Regular Subdivisions and Secondary Polytopes

Properties of Splits

Application: Tropical Geometry

Generalizations/Outlook
(Weakly) Compatible Split Systems

Definition
Let S be a set of splits (split system) of a polytope P.

- We call S weakly compatible if the subdivisions $S \in S$ have a common refinement (without new vertices).
- We call S compatible if none of the split defining hyperplanes meet in the interior of P.

- Example: Vertex splits are (weakly) compatible if and only if the corresponding vertices are not connected by an edge.
- Stable set of the edge graph of a polytope yields a compatible split system.
(Weakly) Compatible Split Systems

Definition

Let \(S \) be a set of splits (split system) of a polytope \(P \).

- We call \(S \) weakly compatible if the subdivisions \(S \in S \) have a common refinement (without new vertices).

- We call \(S \) compatible if none of the split defining hyperplanes meet in the interior of \(P \).

- Example: Vertex splits are (weakly) compatible if and only if the corresponding vertices are not connected by an edge.

- Stable set of the edge graph of a polytope yields a compatible split system.
(Weakly) Compatible Split Systems

Definition
Let S be a set of splits (split system) of a polytope P.

- We call S weakly compatible if the subdivisions $S \in S$ have a common refinement (without new vertices).
- We call S compatible if none of the split defining hyperplanes meet in the interior of P.

- Example: Vertex splits are (weakly) compatible if and only if the corresponding vertices are not connected by an edge.
- Stable set of the edge graph of a polytope yields a compatible split system.
(Weakly) Compatible Split Systems

Definition
Let \(S \) be a set of splits (split system) of a polytope \(P \).

- We call \(S \) weakly compatible if the subdivisions \(S \in S \) have a common refinement (without new vertices).
- We call \(S \) compatible if none of the split defining hyperplanes meet in the interior of \(P \).

- Example: Vertex splits are (weakly) compatible if and only if the corresponding vertices are not connected by and edge.
- Stable set of the edge graph of a polytope yields a compatible split system.
Definition

Let S be a set of splits (split system) of a polytope P.

- We call S **weakly compatible** if the subdivisions $S \in S$ have a common refinement (without new vertices).
- We call S **compatible** if none of the split defining hyperplanes meet in the interior of P.

- Example: Vertex splits are (weakly) compatible if and only if the corresponding vertices are not connected by an edge.
- Stable set of the edge graph of a polytope yields a compatible split system.
The Split Complex

Definition

The split complex of a polytope P is the simplicial complex

$$\text{Split}(P) := \{ S \mid S \text{ set of compatible splits} \}.$$
The Split Complex

Definition
The split complex of a polytope P is the simplicial complex

$$\text{Split}(P) := \{ S \mid S \text{ set of compatible splits} \}.$$

- The weak split complex is defined in the same way (but is in general not simplicial).
- These complexes can be seen as (kind of) subcomplexes of the dual complex of the secondary polytope of P.
The Split Complex

Definition
The split complex of a polytope P is the simplicial complex

$$\text{Split}(P) := \{S \mid S \text{ set of compatible splits}\}.$$

- The weak split complex is defined in the same way (but is in general not simplicial).
- These complexes can be seen as (kind of) subcomplexes of the dual complex of the secondary polytope of P.

The dual graph of a compatible split system is a tree.
The dual graph of a weakly compatible split system is bipartite.
The dual graph of a compatible split system is a tree.

The dual graph of a weakly compatible split system is bipartite.
The dual graph of a compatible split system is a tree.

The dual graph of a weakly compatible split system is bipartite.
Compatibility for Hypersimplices

Satz (Joswig, H. 08)

Two splits \((A, B; \mu)\) and \((C, D; \nu)\) of \(\Delta(k, n)\) are compatible if and only if one of the following holds:

\[
\begin{align*}
|A \cap C| & \leq k - \mu - \nu, \\
|B \cap C| & \leq \mu - \nu, \\
|A \cap D| & \leq \nu - \mu, \\
|B \cap D| & \leq \mu + \nu - k.
\end{align*}
\]

This allows an explicit computation of the split complex of \(\Delta(k, n)\).
Satz (Joswig, H. 08)

Two splits \((A, B; \mu)\) and \((C, D; \nu)\) of \(\Delta(k, n)\) are compatible if and only if one of the following holds:

\[
\begin{align*}
|A \cap C| & \leq k - \mu - \nu, \\
|B \cap C| & \leq \mu - \nu, \\
|A \cap D| & \leq \nu - \mu, \\
or \ |B \cap D| & \leq \mu + \nu - k.
\end{align*}
\]

This allows an explicit computation of the split complex of \(\Delta(k, n)\).
A decomposition $w + w'$ of weight functions is called coherent if $\Sigma_w(P)$ and $\Sigma_{w'}(P)$ have a common refinement ($\Sigma_{w+w'}(P)$).

A weight function w is called split prime if $\Sigma_w(P)$ does not refine any split.

Theorem (Bandelt, Dress 92; Hirai 06; Joswig, H. 08)

Each weight function w for a polytope P has a coherent decomposition

$$w = w_0 + \sum_{S \in S} \alpha^w_{w_S} w_S,$$

where S is some weakly compatible set of splits and w_0 is split prime. This decomposition is unique.
A decomposition $w + w'$ of weight functions is called **coherent** if $\Sigma_w(P)$ and $\Sigma_{w'}(P)$ have a common refinement ($\Sigma_{w+w'}(P)$).

A weight function w is called **split prime** if $\Sigma_w(P)$ does not refine any split.

Theorem (Bandelt, Dress 92; Hirai 06; Joswig, H. 08)

Each weight function w for a polytope P has a coherent decomposition

$$w = w_0 + \sum_{S \in S} \alpha_{ws}^w w_S,$$

where S is some weakly compatible set of splits and w_0 is split prime. This decomposition is unique.
A decomposition $w + w'$ of weight functions is called coherent if $\Sigma_w(P)$ and $\Sigma_{w'}(P)$ have a common refinement ($\Sigma_{w+w'}(P)$).

A weight function w is called split prime if $\Sigma_w(P)$ does not refine any split.

Theorem (Bandelt, Dress 92; Hirai 06; Joswig, H. 08)

Each weight function w for a polytope P has a coherent decomposition

$$w = w_0 + \sum_{S \in S} \alpha^w_{ws} w_S,$$

where S is some weakly compatible set of splits and w_0 is split prime. This decomposition is unique.
The Second Hypersimplex and Metric Spaces

- \(\Delta(2, n) = \text{conv} \{e_i + e_j \mid 1 \leq i < j \leq n \} \).
- Lifting functions of \(\Delta(2, n) \) correspond to (pseudo-)metrics on \(n \) points.
- Splits of \(\Delta(2, n) \) are in bijection with partitions \((A, B)\) of \(\{1, \ldots, n\} \) where each part has at least two elements.
- Originally, these were the splits of finite metric spaces defined by Bandelt and Dress (92) for applications in biology.
- Two splits \((A, B)\) and \((C, D)\) of \(\Delta(2, n) \) are compatible if and only if one of the four sets \(A \cap C \), \(A \cap D \), \(B \cap C \), and \(B \cap D \) is empty.
- This is the original definition of compatibility for splits of finite metric spaces.
- There is also a combinatorial condition for weak compatibility.
The Second Hypersimplex and Metric Spaces

- $\Delta(2, n) = \operatorname{conv}\{e_i + e_j \mid 1 \leq i < j \leq n\}$.
- Lifting functions of $\Delta(2, n)$ correspond to (pseudo-)metrics on n points.
- Splits of $\Delta(2, n)$ are in bijection with partitions (A, B) of $\{1, \ldots, n\}$ where each part has at least two elements.
- Originally, these were the splits of finite metric spaces defined by Bandelt and Dress (92) for applications in biology.
- Two splits (A, B) and (C, D) of $\Delta(2, n)$ are compatible if and only if one of the four sets $A \cap C$, $A \cap D$, $B \cap C$, and $B \cap D$ is empty.
- This is the original definition of compatibility for splits of finite metric spaces.
- There is also a combinatorial condition for weak compatibility.
The Second Hypersimplex and Metric Spaces

- $\Delta(2, n) = \text{conv} \{ e_i + e_j \mid 1 \leq i < j \leq n \}$.
- Lifting functions of $\Delta(2, n)$ correspond to (pseudo-)metrics on n points.
- Splits of $\Delta(2, n)$ are in bijection with partitions (A, B) of $\{1, \ldots, n\}$ where each part has at least two elements.
- Originally, these were the splits of finite metric spaces defined by Bandelt and Dress (92) for applications in biology.
- Two splits (A, B) and (C, D) of $\Delta(2, n)$ are compatible if and only if one of the four sets $A \cap C, A \cap D, B \cap C,$ and $B \cap D$ is empty.
- This is the original definition of compatibility for splits of finite metric spaces.
- There is also a combinatorial condition for weak compatibility.
The Second Hypersimplex and Metric Spaces

- $\Delta(2, n) = \text{conv} \{e_i + e_j \mid 1 \leq i < j \leq n\}$.
- Lifting functions of $\Delta(2, n)$ correspond to (pseudo-)metrics on n points.
- Splits of $\Delta(2, n)$ are in bijection with partitions (A, B) of $\{1, \ldots, n\}$ where each part has at least two elements.
- Originally, these were the splits of finite metric spaces defined by Bandelt and Dress (92) for applications in biology.
- Two splits (A, B) and (C, D) of $\Delta(2, n)$ are compatible if and only if one of the four sets $A \cap C$, $A \cap D$, $B \cap C$, and $B \cap D$ is empty.
- This is the original definition of compatibility for splits of finite metric spaces.
- There is also a combinatorial condition for weak compatibility.
The Second Hypersimplex and Metric Spaces

- \(\Delta(2, n) = \text{conv} \{ e_i + e_j \mid 1 \leq i < j \leq n \} \).
- Lifting functions of \(\Delta(2, n) \) correspond to (pseudo-)metrics on \(n \) points.
- Splits of \(\Delta(2, n) \) are in bijection with partitions \((A, B)\) of \(\{1, \ldots, n\} \) where each part has at least two elements.
- Originally, these were the splits of finite metric spaces defined by Bandelt and Dress (92) for applications in biology.
- Two splits \((A, B)\) and \((C, D)\) of \(\Delta(2, n) \) are compatible if and only if one of the four sets \(A \cap C, A \cap D, B \cap C, \) and \(B \cap D \) is empty.
- This is the original definition of compatibility for splits of finite metric spaces.
- There is also a combinatorial condition for weak compatibility.
The Second Hypersimplex and Metric Spaces

- \(\Delta(2, n) = \text{conv} \{e_i + e_j \mid 1 \leq i < j \leq n \} \).
- Lifting functions of \(\Delta(2, n) \) correspond to (pseudo-)metrics on \(n \) points.
- Splits of \(\Delta(2, n) \) are in bijection with partitions \((A, B)\) of \(\{1, \ldots, n\} \) where each part has at least two elements.
- Originally, these were the splits of finite metric spaces defined by Bandelt and Dress (92) for applications in biology.
- Two splits \((A, B)\) and \((C, D)\) of \(\Delta(2, n) \) are compatible if and only if one of the four sets \(A \cap C, A \cap D, B \cap C, \) and \(B \cap D \) is empty.
- This is the original definition of compatibility for splits of finite metric spaces.
- There is also a combinatorial condition for weak compatibility.
The Second Hypersimplex and Metric Spaces

- $\Delta(2,n) = \text{conv}\{e_i + e_j \mid 1 \leq i < j \leq n\}$.
- Lifting functions of $\Delta(2,n)$ correspond to (pseudo-)metrics on n points.
- Splits of $\Delta(2,n)$ are in bijection with partitions (A, B) of $\{1, \ldots, n\}$ where each part has at least two elements.
- Originally, these were the splits of finite metric spaces defined by Bandelt and Dress (92) for applications in biology.
- Two splits (A, B) and (C, D) of $\Delta(2,n)$ are compatible if and only if one of the four sets $A \cap C$, $A \cap D$, $B \cap C$, and $B \cap D$ is empty.
- This is the original definition of compatibility for splits of finite metric spaces.
- There is also a combinatorial condition for weak compatibility.
Subdivisions and Splits of Convex Polytopes

Regular Subdivisions and Secondary Polytopes

Properties of Splits

Application: Tropical Geometry

Generalizations/Outlook
A subdivision Σ of $\Delta(k, n)$ is called a **matroid subdivision** if all edges of Σ are edges of $\Delta(k, n)$.

(Equivalently: Each face of Σ is a matroid polytope P_M, i.e. each vertex of P_M corresponds to a basis of \mathcal{M}.)

The **Dressian** is the polyhedral complex

$$Dr(k, n) := \left\{ w \in \mathbb{R}^{{{n}\choose{k}}} \mid \Sigma_w(\Delta(k, n)) \text{ is a matroid subdivision} \right\} \cap {n\choose{k}}^{-1}.$$

Elements of $Dr(k, n)$ are the tropical Plücker vectors (Speyer 08).

The tropical Grassmannian $Gr(k, n)$ parameterizes (realizable) subspaces of tropical projective space.
Definition

- A subdivision Σ of $\Delta(k, n)$ is called a matroid subdivision if all edges of Σ are edges of $\Delta(k, n)$.
- (Equivalently: Each face of Σ is a matroid polytope P_M, i.e. each vertex of P_M corresponds to a basis of M.)
- The Dressian is the polyhedral complex

$$Dr(k, n) := \left\{ w \in \mathbb{R}^\binom{n}{k} \mid \Sigma_w(\Delta(k, n)) \text{ is a matroid subdivision} \right\} \cap S^\binom{n}{k} - 1.$$

- Elements of $Dr(k, n)$ are the tropical Plücker vectors (Speyer 08).
- The tropical Grassmannian $Gr(k, n)$ parameterizes (realizable) subspaces of tropical projective space.
Hypersimplices, Dressians, and Tropical Grassmannians

Definition

- A subdivision Σ of $\Delta(k, n)$ is called a **matroid subdivision** if all edges of Σ are edges of $\Delta(k, n)$.
- (Equivalently: Each face of Σ is a matroid polytope P_M, i.e. each vertex of P_M corresponds to a basis of M.)
- The Dressian is the polyhedral complex

$$\text{Dr}(k, n) := \left\{ w \in \mathbb{R}^{\binom{n}{k}} \left| \Sigma_w(\Delta(k, n)) \text{ is a matroid subdivision} \right. \right\} \cap \mathbb{S}^{\binom{n}{k} - 1}. $$

- Elements of $\text{Dr}(k, n)$ are the tropical Plücker vectors (Speyer 08).
- The tropical Grassmannian $\text{Gr}(k, n)$ parameterizes (realizable) subspaces of tropical projective space.
Hypersimplices, Dressians, and Tropical Grassmannians

Definition

- A subdivision Σ of $\Delta(k, n)$ is called a matroid subdivision if all edges of Σ are edges of $\Delta(k, n)$.
- (Equivalently: Each face of Σ is a matroid polytope P_M, i.e. each vertex of P_M corresponds to a basis of M.)
- The Dressian is the polyhedral complex

\[
\text{Dr}(k, n) := \left\{ w \in \mathbb{R}^k \middle| \Sigma_w(\Delta(k, n)) \text{ is a matroid subdivision} \right\} \cap S^{(n)}_{k-1}.
\]

- Elements of $\text{Dr}(k, n)$ are the tropical Plücker vectors (Speyer 08).
- The tropical Grassmannian $\text{Gr}(k, n)$ parameterizes (realizable) subspaces of tropical projective space.
Hypersimplices, Dressians, and Tropical Grassmannians

Definition

▷ A subdivision Σ of $\Delta(k, n)$ is called a matroid subdivision if all edges of Σ are edges of $\Delta(k, n)$.

▷ (Equivalently: Each face of Σ is a matroid polytope P_M, i.e. each vertex of P_M corresponds to a basis of M.)

▷ The Dressian is the polyhedral complex

$$\text{Dr}(k, n) := \{ w \in \mathbb{R}^{n\choose k} \mid \Sigma_w(\Delta(k, n)) \text{ is a matroid subdivision} \} \cap \mathcal{S}^{n\choose k}.$$

▷ Elements of $\text{Dr}(k, n)$ are the tropical Plücker vectors (Speyer 08).

▷ The tropical Grassmannian $\text{Gr}(k, n)$ parameterizes (realizable) subspaces of tropical projective space.
Hypersimplices, Dressians, and Tropical Grassmannians

Definition

- A subdivision Σ of $\Delta(k, n)$ is called a matroid subdivision if all edges of Σ are edges of $\Delta(k, n)$.
- (Equivalently: Each face of Σ is a matroid polytope P_M, i.e. each vertex of P_M corresponds to a basis of M.)
- The Dressian is the polyhedral complex

$$\text{Dr}(k, n) := \left\{ w \in \mathbb{R}^\binom{n}{k} \mid \Sigma_w(\Delta(k, n)) \text{ is a matroid subdivision} \right\} \cap \mathbb{S}^{\binom{n}{k} - 1}.$$

- Elements of $\text{Dr}(k, n)$ are the tropical Plücker vectors (Speyer 08).
- The tropical Grassmannian $\text{Gr}(k, n)$ parameterizes (realizable) subspaces of tropical projective space.
The Split Complex and the Dressian

\(k = 2: \)

- Lifting functions of \(\Delta(2, n) \) correspond to (pseudo-)metrics on \(n \) points.
- \(Gr(2, n) = Dr(2, n) \cong \text{Split}(\Delta(2, n)) \) is the space of metric trees (Bunemann 74; Billera, Holmes & Vogtmann 01).

Theorem (Joswig, H. 08)

\(\text{Split}(\Delta(k, n)) \) is a subcomplex of \(Dr(k, n) \).

- Proof idea:
 - Splits are matroid subdivisions.
 - Since the splits are compatible, additional edges can only occur in the boundary.
 - Then use induction and the characterization of compatibility of hypersimplexes.
The Split Complex and the Dressian

\[k = 2: \]

- Lifting functions of \(\Delta(2, n) \) correspond to (pseudo-)metrics on \(n \) points.
- \(Gr(2, n) = Dr(2, n) \cong \text{Split}(\Delta(2, n)) \) is the space of metric trees (Bunemann 74; Billera, Holmes & Vogtmann 01).

Theorem (Joswig, H. 08)

\(\text{Split}(\Delta(k, n)) \) is a subcomplex of \(\text{Dr}(k, n) \).

- Proof idea:
 - Splits are matroid subdivisions.
 - Since the splits are compatible, additional edges can only occur in the boundary.
 - Then use induction and the characterization of compatibility of hypersimplexes.
The Split Complex and the Dressian

\(k = 2:\)
- Lifting functions of \(\Delta(2, n)\) correspond to (pseudo-)metrics on \(n\) points.
- \(Gr(2, n) = Dr(2, n) \cong \text{Split}(\Delta(2, n))\) is the space of metric trees (Bunemann 74; Billera, Holmes & Vogtmann 01).

Theorem (Joswig, H. 08)

\(\text{Split}(\Delta(k, n))\) *is a subcomplex of* \(\text{Dr}(k, n)\).

- **Proof idea:**
 - Splits are matroid subdivisions.
 - Since the splits are compatible, additional edges can only occur in the boundary.
 - Then use induction and the characterization of compatibility of hypersimplexes.
The Split Complex and the Dressian

\(k = 2: \)

- Lifting functions of \(\Delta(2, n) \) correspond to (pseudo-)metrics on \(n \) points.
- \(Gr(2, n) = Dr(2, n) \cong \text{Split}(\Delta(2, n)) \) is the space of metric trees (Bunemann 74; Billera, Holmes & Vogtmann 01).

Theorem (Joswig, H. 08)

\(\text{Split}(\Delta(k, n)) \) is a subcomplex of \(Dr(k, n) \).

Proof idea:

- Splits are matroid subdivisions.
- Since the splits are compatible, additional edges can only occur in the boundary.
- Then use induction and the characterization of compatibility of hypersimplexes.
The Split Complex and the Dressian

$k = 2$:
- Lifting functions of $\Delta(2, n)$ correspond to (pseudo-)metrics on n points.
- $Gr(2, n) = Dr(2, n) \cong Split(\Delta(2, n))$ is the space of metric trees (Bunemann 74; Billera, Holmes & Vogtmann 01).

Theorem (Joswig, H. 08)

$Split(\Delta(k, n))$ is a subcomplex of $Dr(k, n)$.

- Proof idea:
 - Splits are matroid subdivisions.
 - Since the splits are compatible, additional edges can only occur in the boundary.
 - Then use induction and the characterization of compatibility of hypersimplexes.
$k = 2$:

- Lifting functions of $\Delta(2, n)$ correspond to (pseudo-)metrics on n points.
- $Gr(2, n) = Dr(2, n) \cong \text{Split}(\Delta(2, n))$ is the space of metric trees (Bunemann 74; Billera, Holmes & Vogtmann 01).

Theorem (Joswig, H. 08)

Split($\Delta(k, n)$) is a subcomplex of Dr(k, n).

- Proof idea:
 - Splits are matroid subdivisions.
 - Since the splits are compatible, additional edges can only occur in the boundary.
 - Then use induction and the characterization of compatibility of hypersimplexexes.
The Split Complex and the Dressian

$k = 2$:

- Lifting functions of $\Delta(2, n)$ correspond to (pseudo-)metrics on n points.
- $Gr(2, n) = Dr(2, n) \cong \text{Split}(\Delta(2, n))$ is the space of metric trees
 (Bunemann 74; Billera, Holmes & Vogtmann 01).

Theorem (Joswig, H. 08)

Split($\Delta(k, n)$) is a subcomplex of Dr(k, n).

- Proof idea:
 - Splits are matroid subdivisions.
 - Since the splits are compatible, additional edges can only occur in the boundary.
 - Then use induction and the characterization of compatibility of hypersimplexes.
Theorem (Jensen, Joswig, Sturmfels, H. 08)

The dimension of the Dressian $\Delta(3, n)$ is of order $\Theta(n^2)$.

- $\dim \text{Gr}(3, n)$ is linear in n.
- Upper bound: Speyer 08.
- Lower bound:
Theorem (Jensen, Joswig, Sturmfels, H. 08)

The dimension of the Dressian $\Delta(3, n)$ is of order $\Theta(n^2)$.

- $\dim \text{Gr}(3, n)$ is linear in n.
- Upper bound: Speyer 08.
- Lower bound:
 - Uses Split($\Delta(3, n)$).
Theorem (Jensen, Joswig, Sturmfels, H. 08)

The dimension of the Dressian $\Delta(3, n)$ is of order $\Theta(n^2)$.

- $\dim \text{Gr}(3, n)$ is linear in n.
- Upper bound: Speyer 08.
- Lower bound:
 - Uses $\text{Split}(\Delta(3, n))$.
 - Find a stable set of the edge graph of $\Delta(3, n)$.
The Dimension of Grassmannians and Dressians

Theorem (Jensen, Joswig, Sturmfels, H. 08)

The dimension of the Dressian $\Delta(3, n)$ is of order $\Theta(n^2)$.

- $\dim \text{Gr}(3, n)$ is linear in n.
- Upper bound: Speyer 08.
- Lower bound:
 - Uses Split($\Delta(3, n)$).
 - Find a stable set of the edge graph of $\Delta(3, n)$.
The Dimension of Grassmannians and Dressians

Theorem (Jensen, Joswig, Sturmfels, H. 08)

The dimension of the Dressian $\Delta(3, n)$ is of order $\Theta(n^2)$.

- $\dim \text{Gr}(3, n)$ is linear in n.
- Upper bound: Speyer 08.
- Lower bound:
 - Uses $\text{Split}(\Delta(3, n))$.
 - Find a stable set of the edge graph of $\Delta(3, n)$.
The Dimension of Grassmannians and Dressians

Theorem (Jensen, Joswig, Sturmfels, H. 08)

The dimension of the Dressian $\Delta(3, n)$ is of order $\Theta(n^2)$.

- $\dim \text{Gr}(3, n)$ is linear in n.
- Upper bound: Speyer 08.
- Lower bound:
 - Uses $\text{Split}(\Delta(3, n))$.
 - Find a stable set of the edge graph of $\Delta(3, n)$.
Subdivisions and Splits of Convex Polytopes

Regular Subdivisions and Secondary Polytopes

Properties of Splits

Application: Tropical Geometry

Generalizations/Outlook
Further Coarsest Subdivisions

- Split: one combinatorial type, dual graph is an edge.
- Three maximal faces: one combinatorial type, regular.
- Four maximal faces: three combinatorial types.
- More than four: gets complicated...

Definition
A subdivision of Σ of P is called k-split, if the tight span of Σ is a $(k - 1)$-dimensional simplex.
Further Coarsest Subdivisions

- Split: one combinatorial type, dual graph is an edge.
- Three maximal faces: one combinatorial type, regular.
- Four maximal faces: three combinatorial types.
- More than four: gets complicated...

Definition
A subdivision of Σ of P is called k-split, if the tight span of Σ is a $(k - 1)$-dimensional simplex.
Further Coarsest Subdivisions

- Split: one combinatorial type, dual graph is an edge.
- Three maximal faces: one combinatorial type, regular.
- Four maximal faces: three combinatorial types.
- More than four: gets complicated...

Definition
A subdivision of Σ of P is called k-split, if the tight span of Σ is a $(k - 1)$-dimensional simplex.
Further Coarsest Subdivisions

- Split: one combinatorial type, dual graph is an edge.
- Three maximal faces: one combinatorial type, regular.
- Four maximal faces: three combinatorial types.
- More than four: gets complicated...

Definition
A subdivision of Σ of P is called k-split, if the tight span of Σ is a $(k - 1)$-dimensional simplex.
Further Coarsest Subdivisions

- Split: one combinatorial type, dual graph is an edge.
- Three maximal faces: one combinatorial type, regular.
- Four maximal faces: three combinatorial types.
- More than four: gets complicated...

Definition
A subdivision of Σ of P is called k-split, if the tight span of Σ is a $(k - 1)$-dimensional simplex.
Further Coarsest Subdivisions

Theorem (H. 08)

k-splits are regular.

- How does polytopes look like whose subdivisions are all induced by k-splits?
- Classification of these polytopes could lead to new interesting classes of polytopes whose secondary polytopes are computable.
Further Coarsest Subdivisions

Theorem (H. 08)

k-splits are regular.

- How does polytopes look like whose subdivisions are all induced by k-splits?
- Classification of these polytopes could lead to new interesting classes of polytopes whose secondary polytopes are computable.
Further Coarsest Subdivisions

Theorem (H. 08)

k-splits are regular.

- How does polytopes look like whose subdivisions are all induced by k-splits?
- Classification of these polytopes could lead to new interesting classes of polytopes whose secondary polytopes are computable.
Thanks for your attention!