Depth for classical Coxeter groups

Riccardo Biagioli (Lyon 1)

Eli Bagno, Mordechai Novick (Jerusalem College of Tech.)
and Alexander Woo (U. Idaho)

SLC 75 and IICA 20
Bertinoro, 9 settembre 2015
One can imagine various “machines” that can sort permutations (to the identity) by swapping pairs of entries.

Machine \(\ell \): Can only swap adjacent entries, and every move costs 1.

Machine \(a \): Can swap arbitrary pairs of entries, and every move costs 1.

Machine \(d \): Can swap arbitrary pairs of entries, and a move costs the distance between the entries.

Question: Can we look at a permutation and easily tell the minimum cost to sort it?
Inversions

For Machine ℓ, the answer is called the **length** of the permutation, and it is equal to the **number of inversions**. One optimal algorithm is to always swap the rightmost descent.

For $w = 2537146$, we have

\[
2537146 \rightarrow 2531746 \rightarrow 2531476 \rightarrow 2531467 \rightarrow 2513467 \\
\rightarrow 2153467 \rightarrow 2135467 \rightarrow 2134567 \rightarrow 1234567
\]

So $\ell(w) = 8$, and we have $1 + 3 + 1 + 3 = 8$ inversions.
Inversions

For Machine ℓ, the answer is called the **length** of the permutation, and it is equal to the **number of inversions**. One optimal algorithm is to always swap the rightmost descent.

For $w = 2537146$, we have

$$
2537146 \to 2531746 \to 2531476 \to 2531467 \to 2513467 \\
\quad \to 2153467 \to 2135467 \to 2134567 \to 1234567
$$

So $\ell(w) = 8$, and we have $1 + 3 + 1 + 3 = 8$ inversions.
Inversions

For Machine ℓ, the answer is called the **length** of the permutation, and it is equal to the **number of inversions**. One optimal algorithm is to always swap the rightmost descent.

For $w = 2537146$, we have

\[
2537146 \rightarrow 2531746 \rightarrow 2531476 \rightarrow 2531467 \rightarrow 2513467 \\
\quad \rightarrow 2153467 \rightarrow 2135467 \rightarrow 2134567 \rightarrow 1234567
\]

So $\ell(w) = 8$, and we have $1 + 3 + 1 + 3 = 8$ inversions.
Cycles

For Machine a, the answer is called the **absolute length** or **reflection length**, and it is equal to n minus the number of cycles.

One optimal algorithm (called “straight selection sort” by Knuth) is to always swap the largest misplaced entry to its correct location.

For $w = 2537146$, we have

\[
2537146 \rightarrow 2536147 \rightarrow 2534167 \rightarrow 2134567 \rightarrow 1234567
\]

So $a(w) = 4$. We have $n = 7$ and 3 cycles, since $w = (125)(476)(3)$.
Cycles

For Machine a, the answer is called the **absolute length** or **reflection length**, and it is equal to n minus the number of cycles.

One optimal algorithm (called “straigh selection sort” by Knuth) is to always swap the largest misplaced entry to its correct location.

For $w = 2537146$, we have

$$2537146 \to 2536147 \to 2534167 \to 2134567 \to 1234567$$

So $a(w) = 4$. We have $n = 7$ and 3 cycles, since $w = (125)(476)(3)$.
For Machine a, the answer is called the **absolute length** or **reflection length**, and it is equal to n minus the number of cycles.

One optimal algorithm (called “straigh selection sort” by Knuth) is to always swap the largest misplaced entry to its correct location.

For $w = 2537146$, we have

$$2537146 \rightarrow 2536147 \rightarrow 2534167 \rightarrow 2134567 \rightarrow 1234567$$

So $a(w) = 4$. We have $n = 7$ and 3 cycles, since $w = (125)(476)(3)$.

Riccardo Biagioli (Lyon 1) Eli Bagno, Mordechai Novick (Jerusalem College of Tech.) and Alexander Woo (U. Idaho)

Depth for classical Coxeter groups
Sum of the sizes of exceedances

For Machine d, the answer is called the **depth**, and Petersen–Tenner showed it is equal to the sum of the sizes of exceedances, i.e.

$$d(w) = \sum_{w(i) > i} (w(i) - i).$$

One optimal algorithm is to always swap the rightmost exceedance with the leftmost sub-exceedance to its right.

For $w = 2537146$, we have

$$2537146 \xrightarrow{1} 2531746 \xrightarrow{1} 2531476 \xrightarrow{1} 2531467 \xrightarrow{2} 2135467 \xrightarrow{1} 2134567 \xrightarrow{1} 1234567$$

So $d(w) = 7$, and the sum of sizes of exceedances is

$$1 + 3 + 0 + 3 + 0 + 0 + 0 + 0 = 7.$$
Sum of the sizes of exceedances

For Machine d, the answer is called the depth, and Petersen–Tenner showed it is equal to the sum of the sizes of exceedances, i.e.

$$d(w) = \sum_{w(i) > i} (w(i) - i).$$

One optimal algorithm is to always swap the rightmost exceedance with the leftmost sub-exceedance to its right.

For $w = 2537146$, we have

$$
\begin{align*}
2537146 &\rightarrow 2531746 \\
&\rightarrow 2531476 \\
&\rightarrow 2513467 \\
&\rightarrow 2134567 \\
&\rightarrow 1234567
\end{align*}
$$

So $d(w) = 7$, and the sum of sizes of exceedances is

$$1 + 3 + 0 + 3 + 0 + 0 + 0 + 0 = 7.$$
Sum of the sizes of exceedances

For Machine \(d \), the answer is called the **depth**, and Petersen–Tenner showed it is equal to the **sum of the sizes of exceedances**, i.e.

\[
d(w) = \sum_{w(i) > i} (w(i) - i).
\]

One optimal algorithm is to always swap the rightmost exceedance with the leftmost sub-exceedance to its right.

For \(w = 2537146 \), we have

\[
2537146 \xrightarrow{1} 2531746 \xrightarrow{1} 2531476 \xrightarrow{1} 2531467 \xrightarrow{2} 2135467 \xrightarrow{1} 2134567 \xrightarrow{1} 1234567
\]

So \(d(w) = 7 \), and the sum of sizes of exceedances is

\[
1 + 3 + 0 + 3 + 0 + 0 + 0 = 7.
\]
Petersen and Tenner observed that

\[a(w) \leq \frac{a(w) + \ell(w)}{2} \leq d(w) \leq \ell(w). \]

- The permutations for which \(d(w) = \ell(w) \) are the 321 avoiding permutations. (Petersen–Tenner)
- The permutations for which \(d(w) = a(w) \) (and hence \(a(w) = \ell(w) \)) are the 321 and 3412 avoiding permutations. (Tenner)
- It seems like a hard problem to characterize the permutations for which \(d(w) = (a(w) + \ell(w))/2 \) by pattern avoidance.
Cost Coincidences

Petersen and Tenner observed that

\[a(w) \leq \frac{a(w) + \ell(w)}{2} \leq d(w) \leq \ell(w). \]

- The permutations for which \(d(w) = \ell(w) \) are the 321 avoiding permutations. (Petersen–Tenner)
- The permutations for which \(d(w) = a(w) \) (and hence \(a(w) = \ell(w) \)) are the 321 and 3412 avoiding permutations. (Tenner)
- It seems like a hard problem to characterize the permutations for which \(d(w) = (a(w) + \ell(w))/2 \) by pattern avoidance.
Cost Coincidences

Petersen and Tenner observed that

\[a(w) \leq \frac{a(w) + \ell(w)}{2} \leq d(w) \leq \ell(w). \]

- The permutations for which \(d(w) = \ell(w) \) are the 321 avoiding permutations. (Petersen–Tenner)
- The permutations for which \(d(w) = a(w) \) (and hence \(a(w) = \ell(w) \)) are the 321 and 3412 avoiding permutations. (Tenner)
- It seems like a hard problem to characterize the permutations for which \(d(w) = (a(w) + \ell(w))/2 \) by pattern avoidance.
Petersen and Tenner observed that

\[a(w) \leq \frac{a(w) + \ell(w)}{2} \leq d(w) \leq \ell(w). \]

- The permutations for which \(d(w) = \ell(w) \) are the 321 avoiding permutations. (Petersen–Tenner)

- The permutations for which \(d(w) = a(w) \) (and hence \(a(w) = \ell(w) \)) are the 321 and 3412 avoiding permutations. (Tenner)

- It seems like a hard problem to characterize the permutations for which \(d(w) = \frac{(a(w) + \ell(w))}{2} \) by pattern avoidance.
The group B_n

A signed permutation is a permutation w on the set \{±1, . . . , ±n\} with the property that $w(-i) = -w(i)$ for all i.

It suffices to specify $w(i)$ for $i > 0$, so we can think of a signed permutation as a permutation with the additional property that some of the entries have a negative sign.

We denote $\text{neg}(w)$ the number of negative entries of w.

For example, we might have $w = 2\bar{4}3\bar{1}\bar{7}\bar{5}6$. (To save space, we draw the negative signs on top of the numbers.)
Machines for B_n

- Machine ℓ can swap two adjacent entries or change the sign of the leftmost entry (each costs 1).

- Machine a can (each costs 1):

 Shuffling: swap a pair of entries at positions i and j

 Double unsigning: swap a pair of entries at positions i and j and change both signs

 Single unsigning: change the sign of the entry at position i

- Machine d costs

 Shuffling: $j - i$ (as for permutations)

 Double unsigning: $i + j - 1$

 Single unsigning: i
Length for B_n

The cost for machine ℓ is the total count of the following:

- Positions $i < j$ with $w(i) > w(j)$
- Positions $i < j$ with $w(i) + w(j) < 0$
- Positions i with $w(i) < 0$

For $w = 2\bar{4}3\bar{1}\bar{7}\bar{5}6$, we have

$$\ell(w) = (3 + 1 + 2 + 1 + 2) + (2 + 3 + 1 + 1) + 3 = 19,$$

with sorting algorithm:

$$2\bar{4}3\bar{1}\bar{7}\bar{5}6 \rightarrow 2\bar{4}3\bar{1}\bar{5}\bar{7}6 \rightarrow 2\bar{4}3\bar{5}\bar{1}\bar{6}7 \rightarrow \cdots \rightarrow 5\bar{4}\bar{1}\bar{2}\bar{3}\bar{6}7 \rightarrow 5\bar{4}\bar{1}\bar{2}\bar{3}\bar{6}7 \rightarrow \cdots \rightarrow 1234567$$
Oddness of a signed permutation

We can have a sum \oplus of signed permutations and sum decompositions defined by ignoring the signs. For example, $2\bar{4}3\bar{1}7\bar{5}\bar{6} = 2\bar{4}3\bar{1} \oplus 3\bar{1}2$ is the sum decomposition.

Given a signed permutation w, define the oddness of w to be the number of blocks in the sum decomposition with an odd number of signed elements, denoted $o(w)$.

The negative identity $\bar{1} \cdots \bar{n}$ is the oddest element, with oddness n.
Oddness of a signed permutation

We can have a sum \oplus of signed permutations and sum decompositions defined by ignoring the signs. For example, $2\bar{4}3\bar{1}7\bar{5}\bar{6} = 2\bar{4}3\bar{1} \oplus 3\bar{1}2$ is the sum decomposition.

Given a signed permutation w, define the **oddness** of w to be the number of blocks in the sum decomposition with an odd number of signed elements, denoted $o(w)$.

The negative identity $\bar{1} \cdots \bar{n}$ is the oddest element, with oddness n.
Depth for a signed permutation

Theorem [BBNW, 2015]
We have the following formula for depth for B_n

$$d(w) = \left(\sum_{w(i) > i} (w(i) - i) \right) + \left(\sum_{w(i) < 0} |w(i)| \right) + \left(\frac{o(w) - \text{neg}(w)}{2} \right).$$

Single unsigning moves are slightly expensive, and $o(w)$ counts how many times they need to be used.
Algorithm for signed permutations

To sort a signed permutation w using the minimum depth, we do the following to each block in the sum decomposition:

1. If possible apply a shuffling move to positions i and j, where $x = w(i)$ is the largest positive entry in w with $x > i$, and $y = w(j)$ is the smallest entry in w with $i < j \leq x$. Repeat this step until there is no positive entry $x = w(i)$ with $x > i$.

2. If there are at least two negative entries, apply a double unsigning move at positions i and j, where $x = w(i)$ and $y = w(j)$ are the two negative entries of largest absolute value in w, and go back to Step 1.

3. If there is one negative entry, apply a single unsigning move the negative entry, and go back to Step 1.
Algorithm for signed permutations

To sort a signed permutation w using the minimum depth, we do the following to each block in the sum decomposition:

1. If possible apply a shuffling move to positions i and j, where $x = w(i)$ is the largest positive entry in w with $x > i$, and $y = w(j)$ is the smallest entry in w with $i < j \leq x$. Repeat this step until there is no positive entry $x = w(i)$ with $x > i$.

2. If there are at least two negative entries, apply a double unsigning move at positions i and j, where $x = w(i)$ and $y = w(j)$ are the two negative entries of largest absolute value in w, and go back to Step 1.

3. If there is one negative entry, apply a single unsigning move to the negative entry, and go back to Step 1.
Algorithm for signed permutations

To sort a signed permutation w using the minimum depth, we do the following to each block in the sum decomposition:

1. If possible apply a shuffling move to positions i and j, where $x = w(i)$ is the largest positive entry in w with $x > i$, and $y = w(j)$ is the smallest entry in w with $i < j \leq x$. Repeat this step until there is no positive entry $x = w(i)$ with $x > i$.

2. If there are at least two negative entries, apply a double unsigning move at positions i and j, where $x = w(i)$ and $y = w(j)$ are the two negative entries of largest absolute value in w, and go back to Step 1.

3. If there is one negative entry, apply a single unsigning move the negative entry, and go back to Step 1.
Algorithm for signed permutations

To sort a signed permutation w using the minimum depth, we do the following to each block in the sum decomposition:

1. If possible apply a shuffling move to positions i and j, where $x = w(i)$ is the largest positive entry in w with $x > i$, and $y = w(j)$ is the smallest entry in w with $i < j \leq x$. Repeat this step until there is no positive entry $x = w(i)$ with $x > i$.

2. If there are at least two negative entries, apply a double unsigning move at positions i and j, where $x = w(i)$ and $y = w(j)$ are the two negative entries of largest absolute value in w, and go back to Step 1.

3. If there is one negative entry, apply a single unsigning move the negative entry, and go back to Step 1.
Algorithm example

For $w = 2\bar{4}3\bar{1}7\bar{5}6 = [2\bar{4}3\bar{1}] \oplus [3\bar{1}2]$, the formula gives $d(w) = (1 + 2) + (4 + 1 + 5) + (1 - 3)/2 = 12$

$2\bar{4}3\bar{1}_7\bar{5}6 \xrightarrow{1} 2\bar{4}3\bar{1}_5\bar{7}6 \xrightarrow{1} 2\bar{4}3\bar{1}_567 \xrightarrow{5} 2\bar{4}3\bar{1}_567 \xrightarrow{1} 423\bar{1}_567 \xrightarrow{4} 1234567$
The group D_n

Consider

$$D_n = \{ w \in B_n \mid \text{neg}(w) \equiv 0 \pmod{2} \}. $$

- Machine ℓ:
The double unsigning move swapping the leftmost entries is now a move for Machine ℓ, single unsigning moves are banned!

- Machine d:
The costs for double unsigning moves for Machine d go down by 1, hence it is equal to $i + j - 2$.
For D_n, we need to distinguish between two types of sum decompositions. A **type D decomposition** requires that each block have an even number of negative entries, while a **type B decomposition** does not.

If $w = \overline{21345786}$, then $w = \overline{21345} \oplus \overline{231}$ is the **type D decomposition**, $w = \overline{21} \oplus \overline{1} \oplus \overline{1} \oplus \overline{1} \oplus \overline{231}$ is the **type B decomposition**.

Define **oddness** in type D (denoted $o^D(w)$) as the number of type B blocks minus the number of type D blocks (so $o^D(w) = 3$).
Sum decompositions for D_n

For D_n, we need to distinguish between two types of sum decompositions. A type D decomposition requires that each block have an even number of negative entries, while a type B decomposition does not.

If $w = \overline{21345786}$, then

$w = \overline{21345} \oplus \overline{231}$ is the type D decomposition,

$w = \overline{21} \oplus 1 \oplus 1 \oplus \overline{1} \oplus \overline{231}$ is the type B decomposition.

Define oddness in type D (denoted $o^D(w)$) as the number of type B blocks minus the number of type D blocks (so $o^D(w) = 3$).
Sum decompositions for D_n

For D_n, we need to distinguish between two types of sum decompositions. A **type D decomposition** requires that each block have an even number of negative entries, while a **type B decomposition** does not.

If $w = 2134\overline{5786}$, then
$w = 2134\overline{5} \oplus 231$ is the **type D decomposition**,
$w = 21 \oplus 1 \oplus 1 \oplus 1 \oplus 231$ is the **type B decomposition**.

Define **oddness** in type D (denoted $o_D(w)$) as the number of type B blocks minus the number of type D blocks (so $o_D(w) = 3$).
Theorem [BBNW, 2015]
We have the following formula for depth for D_n

$$d(w) = \left(\sum_{w(i) > i} (w(i) - i) \right) + \left(\sum_{w(i) < 0} |w(i)| \right) + \left(o^D(w) - \text{neg}(w) \right).$$

The D-oddness counts the “wasted” moves that are needed to join type B blocks so that we can perform the needed double unsigned moves.
Minimizing over products

Let \((W, S)\) be a Coxeter group, and \(T\) its set of reflections

\[T := \{ wsw^{-1} \mid s \in S, w \in W \} \]

We can rephrase the definition of \(\ell(w)\) and \(a(w)\) as

\[\ell(w) = \min\{ k \in \mathbb{N} \mid w = s_1 \cdots s_k \text{ for } s_i \in S \} \]

and

\[a(w) = \min\{ k \in \mathbb{N} \mid w = t_1 \cdots t_k \text{ for } t_i \in T \} \]
Depth in terms of roots

Let $\Phi = \Phi^+ \cup \Phi^-$ be the root system for (W, S).
The depth $dp(\beta)$ of a positive root $\beta \in \Phi^+$ is defined as

$$dp(\beta) = \min \{ k \mid s_1 \cdots s_k(\beta) \in \Phi^-, s_j \in S \}.$$

There is a bijection between positive roots and reflections, and denote by t_β the reflection corresponding to the root β.

For any $w \in W$ Petersen and Tenner defined

$$d(w) = \min \left\{ \sum_{i=1}^k dp(\beta_i) \mid w = t_{\beta_1} \cdots t_{\beta_k}, \ t_{\beta_i} \in T \right\}.$$
Since for any reflection one has

\[d(t_\beta) = dp(\beta) = \frac{1 + \ell(t_\beta)}{2}, \]

(these are the costs of the machines \(d\))

then

\[d(w) = \min \left\{ \sum_{i=1}^{k} \frac{1 + \ell(t_i)}{2} \mid w = t_1 \cdots t_k \text{ for } t_i \in T \right\}. \]
Algebraic meaning and algebraic motivation

Since for any reflection one has
\[d(t_\beta) = dp(\beta) = \frac{1 + \ell(t_\beta)}{2}, \]
(these are the costs of the machines \(d \))

then

\[d(w) = \min \left\{ \sum_{i=1}^{k} \frac{1 + \ell(t_i)}{2} \mid w = t_1 \cdots t_k \text{ for } t_i \in T \right\}. \]
Undirected paths in the weighted Bruhat order

This means that the depth of w is equal to the minimal cost of an undirected path going from e to w in the Bruhat graph of W where each edge is labeled by

$$t \rightarrow (1 + \ell(t))/2$$

$e = 123$

1

$s_2 = 132$

$s_2s_1 = 312$

$s_1s_2s_1 = s_2s_1s_2 = 321$

$s_1s_2 = 231$

$s_1 = 213$

$s_2 = 132$

$s_2s_1 = 312$

$s_1s_2 = 231$

$s_1 = 213$

$s_2 = 132$

$s_1s_2s_1 = s_2s_1s_2 = 321$

1

$s_1 = 213$

$s_2 = 132$

$s_2s_1 = 312$

$s_1s_2 = 231$

$s_1 = 213$

$s_2 = 132$

$s_2s_1 = 312$

$s_1s_2 = 231$

$s_1 = 213$

$s_2 = 132$

$s_2s_1 = 312$

$s_1s_2 = 231$

$s_1 = 213$
Increasing paths, reduced factorizations, and weak order

Our algorithms provide factorizations

\[w = t_1 \cdots t_k \] such that

\[d(w) = d(t_1) + \cdots + d(t_k) \]

with the properties that:

\begin{itemize}
 \item \(\ell(w) = \ell(t_1) + \cdots + \ell(t_k) \). When this happens we say that the depth is \textbf{realized by a reduced factorization}.
 \item Hence we can restrict our checking only to \textbf{increasing paths} in the Bruhat graph.
 \item Moreover \(e \prec t_1 \prec t_1 t_2 \prec \cdots \prec t_1 t_2 \cdots t_k \), where \(\prec \) denotes the \textbf{weak Bruhat order}.
\end{itemize}
Directed paths in the weighted Bruhat order

\[s_1 s_2 s_1 = s_2 s_1 s_2 = 321 \]

\[s_2 s_1 = 312 \]
\[s_1 s_2 = 231 \]
\[s_2 = 132 \]
\[s_1 = 213 \]
\[e = 123 \]

DIRECTED BRUHAT GRAPH OF \(S_3 \)

\[s_2 s_1 = 312 \]
\[s_1 s_2 = 231 \]
\[s_1 = 213 \]
\[s_2 = 132 \]
\[e = 123 \]

WEAK BRUHAT ORDER OF \(S_3 \)
Reduced reflection length

Define the **reduced reflection length** $a'(w)$ as

$$a'(w) = \min \left\{ k \in \mathbb{N} \mid w = t_1 \cdots t_k \text{ for } t_i \in T \text{ with } \ell(w) = \sum_{i=1}^{k} \ell(t_i) \right\}$$

Since in classical Coxeter groups, depth can always be realized by a reduced factorization, we have

$$d(w) = \min_{t_1 \cdots t_k} \frac{\sum_i 1 + \ell(t_i)}{2} = \frac{a'(w) + \ell(w)}{2}.$$
Reduced reflection length

Define the **reduced reflection length** \(a'(w)\) as

\[
a'(w) = \min \left\{ k \in \mathbb{N} \mid w = t_1 \cdots t_k \text{ for } t_i \in T \text{ with } \ell(w) = \sum_{i=1}^{k} \ell(t_i) \right\}
\]

Since in classical Coxeter groups, depth can always be realized by a reduced factorization, we have

\[
d(w) = \min \frac{\sum_i 1 + \ell(t_i)}{2} = \frac{a'(w) + \ell(w)}{2}.
\]
An element in a Coxeter group \((W, S)\) is \textbf{short-braid-avoiding} if no reduced decomposition (product of simple reflections realizing \(w\)) has a consecutive subexpression \(s_i s_j s_i\), with \(s_i, s_j \in S\).

Theorem [BBNW, 2015]

\[d(w) = \ell(w) \] if and only if the depth of \(w\) is realized by a reduced factorization and \(w\) is short-braid-avoiding.

Since the depth is always realized by a reduced factorization in \(S_n\), \(B_n\), and \(D_n\), this shows that \(d(w) = \ell(w)\) in those groups if and only if \(w\) is short-braid-avoiding.
An element in a Coxeter group (W, S) is **short-braid-avoiding** if no reduced decomposition (product of simple reflections realizing w) has a consecutive subexpression $s_is_js_i$, with $s_i, s_j \in S$.

Theorem [BBNW, 2015]

$d(w) = \ell(w)$ if and only if the depth of w is realized by a reduced factorization and w is short-braid-avoiding.

Since the depth is always realized by a reduced factorization in S_n, B_n, and D_n, this shows that $d(w) = \ell(w)$ in those groups if and only if w is short-braid-avoiding.
Comparing length and depth

An element in a Coxeter group \((W, S)\) is **short-braid-avoiding** if no reduced decomposition (product of simple reflections realizing \(w\)) has a consecutive subexpression \(s_is_js_i\), with \(s_i, s_j \in S\).

Theorem [BBNW, 2015]

\[d(w) = \ell(w) \] if and only if the depth of \(w\) is realized by a reduced factorization and \(w\) is short-braid-avoiding.

Since the depth is always realized by a reduced factorization in \(S_n\), \(B_n\), and \(D_n\), this shows that \(d(w) = \ell(w)\) in those groups if and only if \(w\) is short-braid-avoiding.
Short-braid-avoidance in B_n and D_n

For permutations, this reproves the Petersen–Tenner theorem that $d(w) = \ell(w)$ if and only if w is fully commutative, which is characterized by Billey-Jockusch-Stanley avoiding 321.

In B_n, short-braid-avoiding is equivalent to Stembridge’s notion of fully commutative top-and-bottom, which is characterized by avoiding $1\bar{2}, \bar{1}2, 2\bar{1}, 321, 3\bar{2}1,$ and 321.

In D_n (and any simply-laced group), short-braid-avoiding is equivalent to being fully commutative, which is characterized by Billey-Postnikov avoiding 321. (This is avoiding 321 as a permutation of $\{\pm 1, \ldots, \pm n\}$, not allowing the simultaneous use of opposite entries.)
The elements for which $a(w) = d(w)$ (and hence both are equal to $\ell(w)$) are the **boolean elements**, where no reduced decomposition has any simple reflection more than once. These are characterized by avoiding 10 patterns for B_n and 20 for D_n (Tenner).

The more general question of when $d(w) = (a(w) + \ell(w))/2$ seems hard and is not characterized by pattern avoidance.
Problems

- How many elements of B_n and D_n have depth k?
- Find the generating function for depth in B_n or D_n (See Guay-Paquet–Petersen for S_n)
- Characterize depth for affine Coxeter groups.
- Is depth realized by a reduced factorization into reflections for all elements in all Coxeter groups?
- Is there a characterization or a formula for the reduced absolute length $a'(w)$ for general Coxeter groups?
Thank you for your attention!