Nonself-Adjoint Degenerate Differential-Operator Equations of Higher Order

Liparit Tepoyan*

Yerevan State University, A. Manoogian str. 1, 0025, Yerevan, Armenia
(Received September 30, 2012; Revised October 23, 2013; Accepted December 12, 2013)

This article deals with the Dirichlet problem for a degenerate nonself-adjoint differential-operator equation of higher order. We prove existence and uniqueness of the generalized solution as well as establish some analogue of the Keldysh theorem for the corresponding one-dimensional equation.

Keywords: Differential equations in abstract spaces, Degenerate equations, Weighted Sobolev spaces, Spectral theory of linear operators.

AMS Subject Classification: 34G10, 34L05, 35J70, 46E35, 47E05.

1. Introduction

The main object of the present paper is the degenerate differential-operator equation

$$ Lu \equiv (-1)^m (t^\alpha u^{(m)})^{(m)} + A(t^{\alpha-1}u^{(m)})^{(m-1)} + Pt^\beta u = f(t), $$

(1)

where $m \in \mathbb{N}$, t belongs to the finite interval $(0,b)$, $\alpha \geq 0, \alpha \neq 1, 3, \ldots, 2m-1$, $\beta \geq \alpha - 2m$, A and P are linear operators (in general unbounded) in the separable Hilbert space H, $f \in L_{2,\beta}((0,b),H)$, i.e.,

$$ \|f\|_{L_{2,\beta}((0,b),H)}^2 = \int_0^b t^{-\beta} \|f(t)\|_H^2 dt < \infty. $$

We suppose that the operators A and P have common complete system of eigenfunctions $\{\varphi_k\}_{k=1}^\infty$, $A\varphi_k = a_k \varphi_k$, $P\varphi_k = p_k \varphi_k$, $k \in \mathbb{N}$, which form a Riesz basis in H, i.e., for any $x \in H$ there is a unique representation

$$ x = \sum_{k=1}^\infty x_k \varphi_k $$

* Email: tepoyan@yahoo.com

ISSN: 1512-0082 print
© 2013 Tbilisi University Press
and there are constants \(c_1, c_2 > 0 \) such that

\[
c_1 \sum_{k=1}^{\infty} |x_k|^2 \leq ||x||^2 \leq c_2 \sum_{k=1}^{\infty} |x_k|^2.
\]

If \(m = 1 \), the operator \(A \) is a multiplication operator, \(Au = au, a \in \mathbb{R}, a \neq 0 \) and \(Pu = -u_{xx}, x \in (0, c) \) then we obtain the degenerate elliptic operator in the rectangle \((0, b) \times (0, c)\). The dependence of the character of the boundary conditions with respect to \(t \) for \(t = 0 \) on the sign of the number \(a \) was first observed by M.V. Keldish in [5] and next generalized by G. Jaiani in [4] (thus the statement of the boundary value problem depends on the “lower order” terms). The case \(m = 1, \beta = 0, 0 \leq \alpha < 2 \) was considered in [2], [6] (here \(A = 0 \)) and the case \(m = 2, \beta = 0, 0 \leq \alpha \leq 4 \) in [8]. In [9] the self-adjoint case of higher order degenerate differential-operator equations for arbitrary \(\alpha \geq 0, \alpha \neq 1, 3, \ldots, 2m - 1 \) has been considered.

Our approach is based on the consideration of the one-dimensional equation (1), when the operators \(A \) and \(P \) are multiplication operators by numbers \(a \) and \(p \) respectively, \(Au = au, Pu = pu, a, p \in \mathbb{C} \) (see [3]).

Observe that this method suggested by A.A. Dezin (see [3]) has been used for the degenerate self-adjoint operator equation on the infinite interval \((1, +\infty)\) in [12] and with arbitrary weight function on the finite interval in [11].

2. One-dimensional case

2.1. Weighted Sobolev spaces \(\tilde{W}_\alpha^m(0, b) \)

Let \(\tilde{C}^m[0, b] \) denote the functions \(u \in C^m[0, b] \), which satisfy the conditions

\[
u^{(k)}(0) = u^{(k)}(b) = 0, k = 0, 1, \ldots, m - 1.
\]

Define \(\tilde{W}_\alpha^m(0, b) \) as the completion of \(\tilde{C}^m[0, b] \) in the norm

\[
||u||^2_{\tilde{W}_\alpha^m(0, b)} = \int_0^b t^\alpha |u^{(m)}(t)|^2 dt.
\]

Denote the corresponding scalar product in \(\tilde{W}_\alpha^m(0, b) \) by \(\{u, v\}_\alpha = (t^\alpha u^{(m)}, v^{(m)}) \), where \((\cdot, \cdot) \) stands for the scalar product in \(L_2(0, b) \).

Note that the functions \(u \in \tilde{W}_\alpha^m(0, b) \) for every \(t_0 \in (\varepsilon, b] \), \(\varepsilon > 0 \) have the finite values \(u^{(k)}(t_0), k = 0, 1, \ldots, m - 1 \) and \(u^{(k)}(b) = 0, k = 0, 1, \ldots, m - 1 \) (see [1]).

For the proof of the following propositions we refer to [9] and [10].

Proposition 2.1: For the functions \(u \in \tilde{W}_\alpha^m(0, b), \alpha \neq 1, 3, \ldots, 2m - 1 \) we have the following estimates

\[
|u^{(k)}(t)|^2 \leq C t^{2m-2k-1-\alpha} ||u||^2_{\tilde{W}_\alpha^m(0, b)}, k = 0, 1, \ldots, m - 1.
\]

It follows from Proposition 2.1 that in the case \(\alpha < 1 \) (weak degeneracy) \(u^{(j)}(0) = 0 \) for all \(j = 0, 1, \ldots, m - 1 \), while for \(\alpha > 1 \) (strong degeneracy) not all \(u^{(j)}(0) = 0 \).
More precisely, for $1 < \alpha < 2m - 1$ the derivatives at zero $u^{(j)}(0) = 0$ only for $j = 0, 1, \ldots, s_\alpha$, where $s_\alpha = m - 1 - \lfloor \frac{\alpha + 1}{2} \rfloor$ (here $[a]$ is the integral part of the a) and for $\alpha > 2m - 1$ all $u^{(j)}(0)$, $j = 0, 1, \ldots, m - 1$ in general may be infinite.

Denote $L_{2,\beta}(0,b) = \left\{ f, \int_0^b t^\beta |f(t)|^2 \, dt < +\infty \right\}$. Observe that for $\alpha \leq \beta$ we have $L_{2,\alpha}(0,b) \subset L_{2,\beta}(0,b)$.

Proposition 2.2: For $\beta \geq \alpha - 2m$ we have a continuous embedding

$$\hat{W}_\alpha^m(0,b) \subset L_{2,\beta}(0,b),$$

which is compact for $\beta > \alpha - 2m$.

Note that the embedding (4) in the case of $\beta = \alpha - 2m$ is not compact while for $\beta < \alpha - 2m$ it fails.

Denote $d(m,\alpha) = 4^{-m}(\alpha - 1)^2(\alpha - 3)^2 \cdots (\alpha - (2m - 1))^2$. In Proposition 2.2 using Hardy inequality (see [7]) it was proved that

$$\int_0^b t^\alpha |u^{(m)}(t)|^2 \, dt \geq d(m,\alpha) \int_0^b t^{\alpha - 2m} |u(t)|^2 \, dt. \tag{5}$$

Note that here $d(m,\alpha)$ is the exact number. Now it is easy to check that for $\beta \geq \alpha - 2m$

$$\|u\|_{\hat{W}_\alpha^m(0,b)}^2 \geq b^{\alpha - 2m - \beta} d(m,\alpha) \|u\|_{L_{2,\beta}(0,b)}^2. \tag{6}$$

2.2. Nonself-adjoint degenerate equations

In this subsection we consider one-dimensional version of equation (1)

$$Su \equiv (-1)^m (t^\alpha u^{(m)})^{(m)} + a(t^{\alpha - 1} u^{(m)})^{(m-1)} + pt^\beta u = f(t), \tag{7}$$

where $\alpha \geq 0, \alpha \neq 1, 3, \ldots, 2m - 1$, $\beta \geq \alpha - 2m$, $f \in L_{2,-\beta}(0,b)$, $a \neq 0$ and p are real constants.

Definition 2.3: A function $u \in \hat{W}_\alpha^m(0,b)$ is called a generalized solution of equation (7), if for arbitrary $v \in \hat{W}_\alpha^m(0,b)$ we have

$$\{u,v\}_\alpha + a(-1)^{m-1}(t^{\alpha - 1} u^{(m)}, v^{(m-1)}) + p(t^\beta u, v) = (f,v). \tag{8}$$

Theorem 2.4: Let the following condition be fulfilled

$$a(\alpha - 1)(-1)^m > 0, \quad \gamma = b^{\alpha - 2m - \beta} (d(m,\alpha) + a(\alpha - 1)(-1)^m d(m - 1, \alpha - 2)) + p > 0. \tag{9}$$

Then the generalized solution of equation (7) exists and is unique for every $f \in L_{2,-\beta}(0,b)$.

Proof: Uniqueness. To prove the uniqueness of the solution we set in equality (8) $f = 0$ and $v = u$. Let $\alpha > 1$ (in the case $\alpha < 1$ the proof is similar and we use
Hence using inequality (6) we obtain
\[
\left(t^{\alpha-1}u^{(m-1)}(t)\right)_{t=0} = 0, \text{ which follows from Proposition 2.1}. \text{ Then integrating by parts we obtain}
\[
\left(t^{\alpha-1}u^{(m)}, u^{(m-1)}\right) = -\frac{1}{2} \left(t^{\alpha-1}|u^{(m-1)}(t)|^2\right)_{t=0} - \frac{\alpha - 1}{2} \int_0^b t^{\alpha-2}|u^{(m-1)}(t)|^2 \, dt.
\]
It follows from the inequality (3) for \(k = m-1\) that the value \(\left(t^{\alpha-1}|u^{(m-1)}(t)|^2\right)_{t=0}\) is finite. On the other hand, using inequality (5) we get
\[
\int_0^b t^{\alpha-2}|u^{(m-1)}(t)|^2 \, dt \geq d(m-1, \alpha - 2) \int_0^b t^{\alpha-2m}|u(t)|^2 \, dt.
\]
Hence using inequality (6) we obtain
\[
0 = \{u, u\}_\alpha + a(-1)^{m-1}\left(t^{\alpha-1}u^{(m)}, u^{(m-1)}\right) + p(t^\beta u, u)
\leq \frac{a}{2}(-1)^m\left(t^{\alpha-1}|u^{(m-1)}(t)|^2\right)_{t=0} + \gamma \int_0^b t^\beta|u(t)|^2 \, dt.
\]
Now uniqueness of the generalized solution follows from condition (9).

Existence. To prove the existence of the generalized solution define a linear functional \(l_f(v) = (f, v), v \in \dot{W}^m_\alpha(0, b)\). From the continuity of the embedding (4) it follows that
\[
|l_f(v)| \leq \|f\|_{L_2, \alpha(0, b)} \|v\|_{L_2, \alpha(0, b)} \leq c\|f\|_{L_2, \alpha(0, b)} \|v\|_{\dot{W}^m_\alpha(0, b)},
\]
therefore the linear functional \(l_f(v)\) is bounded on \(\dot{W}^m_\alpha(0, b)\). Hence it can be represented in the form \(l_f(v) = (f, v) = \{u^*, v\}, u^* \in \dot{W}^m_\alpha(0, b)\) (this follows from the Riesz theorem on the representation of the linear continuous functional). The last two terms in the left hand-side of equality (8) also can be regarded as a continuous linear functional relative to \(u\) and represented in the form \(\{u, Kv\}_\alpha, Kv \in W^m_\alpha(0, b)\). In fact, using inequality (5) we may write
\[
|a(-1)^{m-1}\left(t^{\alpha-1}u^{(m)}, v^{(m-1)}\right) + p(t^\beta u, v)|
\leq |a(t^\alpha u^{(m)}, t^\beta v^{(m-1)})| + |p(t^\beta u, t^\beta v)|
\leq c_1\|u\|_{\dot{W}^m_\alpha(0, b)} \left\{ \int_0^b t^{\alpha-2}|v^{(m-1)}(t)|^2 \, dt \right\}^{1/2}
+ c_2\|u\|_{L_2, \alpha-2m(0, b)} \|v\|_{L_2, \alpha-2m(0, b)}
\leq \frac{2c_1}{\alpha - 1}\|u\|_{\dot{W}^m_\alpha(0, b)} \|v\|_{\dot{W}^m_\alpha(0, b)} + c_3\|u\|_{\dot{W}^m_\alpha(0, b)} \|v\|_{\dot{W}^m_\alpha(0, b)}
= c\|u\|_{\dot{W}^m_\alpha(0, b)} \|v\|_{\dot{W}^m_\alpha(0, b)}.
\]
From equality (8) we deduce that for any \(v \in \dot{W}^m_\alpha(0, b)\) we have
\[
\{u, (I + K)v\}_\alpha = \{u^*, v\}_\alpha.
\]
Observe that the image of the operator $I + K$ is dense in $\tilde{W}_\alpha^m(0, b)$. Indeed, if we have some $u_0 \in \tilde{W}_\alpha^m(0, b)$ such that

$$\{u_0, (I + K)v\}_\alpha = 0$$

for every $v \in \tilde{W}_\alpha^m(0, b)$, we obtain $u_0 = 0$, since we have already proved uniqueness of the generalized solution for equation (7).

Assume that $0 < \sigma d(m, \alpha)b^{\alpha-2m-\beta} \leq \gamma$. Then we can write

$$\{u, (I + K)u\}_\alpha \geq \sigma\{u, u\}_\alpha + \left(b^{\alpha-2m-\beta}((1-\sigma)d(m, \alpha) + p) \int_0^b t^\beta |u(t)|^2 \, dt \right.$$

$$\left. + \frac{a}{2}(\alpha-1)(-1)^m d(m-1, \alpha-2) \right) \int_0^b t^\beta |u(t)|^2 \, dt$$

$$= \sigma\{u, u\}_\alpha + (\gamma - \sigma d(m, \alpha)b^{\alpha-2m-\beta}) \int_0^b t^\beta |u(t)|^2 \, dt$$

$$\geq \sigma\{u, u\}_\alpha.$$

Finally we get

$$\{u, (I + K)u\}_\alpha \geq \sigma\{u, u\}_\alpha. \quad (11)$$

From (11) it follows that $(I + K)^{-1}$ is defined on $\tilde{W}_\alpha^m(0, b)$ and is bounded. Consequently there exist operator $I + K^*$ and $(I + K^*)^{-1} = ((I + K)^{-1})^*$ (here K^* means the adjoint operator). Hence from (10) we obtain

$$u = (I + K^*)^{-1}u^*.$$

Define an operator $S : D(S) \subset \tilde{W}_\alpha^m(0, b) \subset L_{2,\beta}(0, b) \to L_{2,-\beta}(0, b)$.

Definition 2.5: We say that $u \in \tilde{W}_\alpha^m(0, b)$ belongs to $D(S)$ if there exists $f \in L_{2,-\beta}(0, b)$ such that equality (8) is fulfilled for every $v \in \tilde{W}_\alpha^m(0, b)$. In this case we write $Su = f$.

The operator S acts from the space $L_{2,\beta}(0, b)$ to $L_{2,-\beta}(0, b)$. It is easy to check that $S := t^{-\beta}S, D(S) = D(S), S : L_{2,\beta}(0, b) \to L_{2,\beta}(0, b)$ is an operator in the space $L_{2,\beta}(0, b)$, since if $f \in L_{2,\beta}(0, b)$ then $f_1 := t^{-\beta}f \in L_{2,\beta}(0, b)$ and $\|f\|_{L_{2,\beta}(0, b)} = \|f_1\|_{L_{2,\beta}(0, b)}$.

Proposition 2.6: Under the assumptions of Theorem 2.4 the inverse operator $S^{-1} : L_{2,\beta}(0, b) \to L_{2,\beta}(0, b)$ is continuous for $\beta \geq \alpha - 2m$ and compact for $\beta > \alpha - 2m$.

Proof: For the proof first observe that for $u \in D(S)$ we have

$$\|u\|_{L_{2,\beta}(0, b)} \leq c\|f\|_{L_{2,-\beta}(0, b)} = c\|f_1\|_{L_{2,\beta}(0, b)}.$$
considerations of Theorem 2.4, we get
\[
\sigma b^{\alpha - 2m - \beta} d(m, \alpha) \| u \|_{L^2_{\alpha, \beta}(0, b)}^2 \leq \sigma d(m, \alpha) \| u \|_{W^{m, \beta}(0, b)}^2 \\
\leq \{(I + K)u, u\}_\alpha = (f, u) \\
\leq \| f \|_{L^2_{\alpha, \beta}(0, b)} \| u \|_{L^2_{\alpha, \beta}(0, b)} \\
= \| f_1 \|_{L^2_{\alpha, \beta}(0, b)} \| u \|_{L^2_{\alpha, \beta}(0, b)}.
\]
Thus we obtain
\[
\| S^{-1} f_1 \|_{L^2_{\alpha, \beta}(0, b)} \leq c \| f_1 \|_{L^2_{\alpha, \beta}(0, b)},
\]
consequently the continuity of \(S^{-1} \) for \(\beta \geq \alpha - 2m \) is proved. To show the compactness of \(S^{-1} \) for \(\beta < \alpha - 2m \) it is enough to apply the compactness of the embedding (4) for \(\beta < \alpha - 2m \).

Let us consider the following equation
\[
Tv = \begin{pmatrix} -1 \end{pmatrix}^m \left(t^{\alpha} v^{(m)}(m) \right) - a(t^{\alpha - 1} v^{(m - 1)}(m) + pt^\beta v = g(t), \tag{13}
\end{align}
\]
where \(\alpha \geq 0, \alpha \neq 1, 3, \ldots, 2m - 1, \beta \geq \alpha - 2m, g \in L_{2, \beta}(0, b), a \neq 0 \) and \(p \) are real constants.

Definition 2.7: We say that \(v \in L^2_{\alpha, \beta}(0, b) \) is a generalized solution of equation (13), if for every \(u \in D(S) \) the following equality holds
\[
(Su, v) = (u, g). \tag{14}
\]

Let \(g_1 := t^{-\beta} g \). Definition 2.7 of the generalized solution as above defines an operator \(T : L^2_{\alpha, \beta}(0, b) \to L^2_{\alpha, \beta}(0, b) \), \(T := t^{-\beta} T \). Actually we have defined the operator \(\overline{T} \) as the adjoint to \(S \) operator in \(L^2_{\alpha, \beta}(0, b) \), i.e.,
\[
\overline{T} = S^*.
\]

Theorem 2.8: Under the assumptions of Theorem 2.4 the generalized solution of equation (13) exists and is unique for every \(g \in L_{2, \beta}(0, b) \). Moreover, the inverse operator \(\overline{T}^{-1} : L^2_{\alpha, \beta}(0, b) \to L^2_{\alpha, \beta}(0, b) \) is continuous for \(\beta \geq \alpha - 2m \) and compact for \(\beta > \alpha - 2m \).

Proof: Solvability of the equation \(Su = f_1 \) for any \(f_1 \in L^2_{-\beta}(0, b) \) (see Theorem 2.4) implies uniqueness of the solution of equation (13), while existence of the bounded inverse operator \(S^{-1} \) (see Proposition 2.6) implies solvability of (13) for any \(g \in L_{2, \beta}(0, b) \) (see, for instance, [13]). Since we have \((S^*)^{-1} = (S^{-1})^*\), boundedness and compactness of the operator \(S^{-1} \) imply boundedness and compactness of the operator \(\overline{T}^{-1} \) for \(\beta \geq \alpha - 2m \) and \(\beta > \alpha - 2m \) respectively (see Proposition 2.6).

Remark 1: For \(\alpha > 1 \) and for every generalized solution \(v \) of equation (13) we
have
\[
\left(t^{\alpha-1} |u^{(m-1)}(t)|^2 \right) \big|_{t=0} = 0.
\] (15)

In fact, replacing \(g \) by \(Tv \) in equality (14), integrating by parts the second term and using equality (8) we obtain (15). Note also that for equation (7) the left-hand side of (15) is only bounded. This is some analogue of the Keldysh theorem (see [5]).

Remark 2: Note another interesting phenomenon connected with degenerate equations, namely appearing continuous spectrum. Assume that in equation (7) \(a = p = 0 \) and \(\beta = \alpha - 2m \). In [10] it was proved that the spectrum of the operator \(Bu := (−1)^m t^{2m−\alpha} (t^\alpha u^{(m)})^{(m)} \), \(B : L_{2,\alpha−2m}(0,b) \to L_{2,\alpha−2m}(0,b) \)

is purely continuous and coincides with the ray \([d(m,\alpha), +\infty)\). Note also that the spectrum of the operator \(Qu := (−1)^m t^{−\beta} (t^\alpha u^{(m)})^{(m)} \), \(Q : L_{2,\beta}(0,b) \to L_{2,\beta}(0,b) \)

for \(\beta > \alpha - 2m \) is discrete.

3. **Dirichlet problem for degenerate differential-operator equations**

In this section we consider the operator equation

\[
Lu \equiv (−1)^m (t^\alpha u^{(m)})^{(m)} + A(t^{\alpha-1} u^{(m)})^{(m-1)} + P t^\beta u = f(t),
\] (16)

where \(\alpha \geq 0, \alpha \neq 1, 3, \ldots, 2m - 1, \beta \geq \alpha - 2m \), \(A \) and \(P \) are linear operators in the separable Hilbert space \(H \), \(f \in L_{2,-\beta}((0,b),H) \).

By assumption linear operators \(A \) and \(P \) have common complete system of eigenfunctions \(\{\varphi_k\}_{k=1}^\infty \), \(A\varphi_k = a_k\varphi_k, \ P\varphi_k = p_k\varphi_k, k \in \mathbb{N}, \) which forms a Riesz basis in \(H \), i.e., we can write

\[
u(t) = \sum_{k=1}^\infty u_k(t)\varphi_k, \quad f(t) = \sum_{k=1}^\infty f_k(t)\varphi_k. \] (17)

Hence operator equation (16) can be decomposed into an infinite chain of ordinary differential equations

\[
L_k u_k \equiv (−1)^m (t^\alpha u_k^{(m)})^{(m)} + a_k(t^{\alpha-1} u_k^{(m)})^{(m-1)} + p_k t^\beta u_k = f_k(t), k \in \mathbb{N}. \] (18)

It follows from the condition \(f \in L_{2,-\beta}((0,b),H) \) that \(f_k \in L_{2,-\beta}(0,b), k \in \mathbb{N}. \) For one-dimensional equations (18) we can define the generalized solutions \(u_k(t), k \in \mathbb{N} \) (see Section 2).

Definition 3.1: A function \(u \in L_{2,\beta}((0,b),H) \) admitting representation

\[
u(t) = \sum_{k=1}^\infty u_k(t)\varphi_k,
\]
where \(u_k(t), k \in \mathbb{N} \) are the generalized solutions of the one-dimensional equations (18) is called a generalized solution of the operator equation (16).

Actually we have defined the operator \(L \) as the closure of the differential operation \(L(D) \) originally defined on all finite linear combinations of functions \(u_k(t)\varphi_k, k \in \mathbb{N} \), where \(u_k \in D(L_k) \).

The following result is a consequence of the general results of A.A. Dezin (see [3]).

Theorem 3.2: The operator equation (16) is uniquely solvable for every \(f \in L_{2,-\beta}((0, b), H) \) if and only if the equations (18) are uniquely solvable for every \(f_k \in L_{2,-\beta}(0, b), k \in \mathbb{N} \) and uniformly with respect to \(k \in \mathbb{N} \)

\[
\|u_k\|_{L_{2,\beta}(0, b)} \leq c\|f_k\|_{L_{2,-\beta}(0, b)}.
\]

Theorems 2.4 and 2.8 shows us that a sufficient condition for relations (19) are the conditions

\[
\gamma_k = t^{\alpha-2m-\beta}(d(m, \alpha) + \frac{a_k}{2}(\alpha-1)(-1)^m d(m-1, \alpha-2)) + p_k > \varepsilon > 0, k \in \mathbb{N}.
\]

Here we assume that \(a_k \neq 0, a_k \) and \(p_k \) are real for \(k \in \mathbb{N} \). Thus we get the following result.

Theorem 3.3: Let the condition (20) be fulfilled. Then operator equation (16) has a unique generalized solution for every \(f \in L_{2,-\beta}((0, b), H) \).

Proof: Since the system \(\{\varphi_k\}_{k=1}^{\infty} \) forms a Riesz basis in \(H \) then according to (19) we can write

\[
\|u\|_{L_{2,\beta}(0, b), H}^2 = \int_0^b t^\beta \|u(t)\|_H^2 \, dt
\leq c_1 \int_0^b t^\beta \sum_{k=1}^{\infty} |u_k(t)|^2 \, dt
\leq c_2 \sum_{k=1}^{\infty} \|f_k\|_{L_{2,-\beta}(0, b)}^2
\leq C \|f\|_{L_{2,-\beta}((0, b), H)}.
\]

(21)

It follows from inequality (21) that the inverse operator \(L^{-1} : L_{2,-\beta}((0, b), H) \to L_{2,\beta}((0, b), H) \) is bounded for \(\beta \geq \alpha - 2m \). In contrast to the one-dimensional case (see Proposition 2.6 and Theorem 2.8) this operator for \(\beta > \alpha - 2m \) will not be compact (it will be a compact operator only in case when the space \(H \) is finite-dimensional). The operator \(L \) acts from the space \(L_{2,\beta}((0, b), H) \) to the space \(L_{2,-\beta}((0, b), H) \). As in one-dimensional case define an operator acting in the same space, which is necessary to explore spectral properties of the operators. Set \(f = t^\beta g \). Then \(\|f\|_{L_{2,-\beta}((0, b), H)} = \|g\|_{L_{2,\beta}((0, b), H)} \). Hence the operator \(L = t^{-\beta}L \) is an operator in the space \(L_{2,\beta}((0, b), H) \). As a consequence of Theorem 3.3 we can state that \(0 \in \rho(L) \), where \(\rho(L) \) is the resolvent set of the operator \(L \).
Remark 1: The simplest example of the operators described in Introduction consists of the operators on the n-dimensional cube $V = [0, 2\pi]^n$, generated by differential expressions of the form

$$L(-iD)u \equiv \sum_{|\alpha| \leq m} a_\alpha D^\alpha u$$

with constant coefficients. Here $\alpha \in \mathbb{Z}_+^n$ is a multi-index. This class of operators is at the same time quite a large class. Let \mathcal{P}^∞ be the set of smooth functions that are periodic in each variable. Let $s \in \mathbb{Z}^n$. To every differential operation $L(-iD)$ we can associate a polynomial $A(s)$ with constant coefficients such that

$$A(-iD) e^{ix} = A(s) e^{ix}, \quad s \cdot x = s_1 x_1 + s_2 x_2 + \ldots + s_n x_n.$$

We define the corresponding operator $A : L^2(V) \to L^2(V)$ to be the closure in $L^2(V)$ of the differential operation $A(-iD)$ first defined on \mathcal{P}^∞. Such operators are called Π-operators and have many interesting properties. The role of the functions $\{\varphi_k\}_{k=1}^\infty$ is played by the functions e^{ix}, $s \in \mathbb{Z}^n$. For details see the book of A.A. Dezin [3].

References

[1] V.I. Burenkov, Sobolev Spaces on Domains, Teubner, 1999