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The Geometry of M. C. Escher’s Circle-
Limit-Woodcuts!

Peter Herfort, Tiibingen

Abstract: Maurits Cornelis Escher has been impelled by the
idea of visualizing infinity within the finite region offered by the
frame of a normal picture. After some interesting attempts, which
did not at all satisfy him, he received inspiration from a printed
figure given in a paper on symmetry by the outstanding geome-
ter Harold Scott MacDonald (called Donald) Coxeter. This figure
served to illustrate a tessellation in the hyperbolic plane repre-
sented by the interior of a circle according to a geometric model
proposed by Jules Henri Poincaré. The points of the limiting cir-
cle (called Circle Limit in the theory of automorphic functions)
have infinite hyperbolic distance from the interior points of the
hyperbolic plane. As a consequence the tiles of the tessellation
appear to decrease infinitely when passing closer and closer to
the border. This was exactly the idea Escher needed in order
to make infinity visible. So in the years 1958 to 1960 he pro-
duced four woodcuts based on the idea of hyperbolic tilings and
patterns, though he claimed not to understand the mathematical
background of his pictures. The lecture presents a mathemat-
ical analysis joined by a computer-reconstruction of Escher’s
Circle-Limit-Woodcuts. The mystery of these pictures remains
untouched and the ingenuity of their invention and construction
emerges in even greater lucidness.

Kurzreferat: Die Geometrie von M.C. Eschers Kreislimit-
Holzschnitten. Maurits Cornelis Escher suchte intensiv nach
Moglichkeiten, mit graphisch-malerischen Mitteln unendliche
Wiederkehr in endlichen Figuren darzustellen. Nach einigen in-
teressanten Versuchen, die ihn jedoch nicht vollig befriedigten,
stie} er in einer Abhandlung iiber Symmetrie des bedeutenden
Geometers Harold Scott MacDonald (gen. Donald) Coxeter auf
eine Abbildung, die er fiir sein Vorhaben als Offenbarung emp-
fand. Die Abbildung zeigt eine Parkettierung der hyperbolischen
Ebene, die man sich — einer Idee von Jules Henri Poincaré fol-
gend — als das Innere eines Kreises vorstellen kann. Die Punkte
des Randes (in der Theorie der automorphen Funktionen als
Grenzkreis bezeichnet) haben in dieser Geometrie unendlichen
Abstand von den inneren Punkten der hyperbolischen Ebene. In-
folgedessen scheinen die Pflastersteine des Parketts zum Kreis-
rand hin unauthaltsam zu schrumpfen, obwohl sie in der hyper-
bolischen Geometrie kongruent sind. Escher erkannte hier ein
Prinzip, das er fiir seine Vorstellungen von der Visualisierung des
Unendlichen in einer endlichen Figur fiir hervorragend geeignet
hielt. So entstanden in den Jahren 1958 bis 1960 die vier soge-
nannten Kreislimit-Holzschnitte, in denen er hyperbolische Par-
kettierungen realisierte, wobei er stets betonte, den mathemati-
schen Hintergrund seiner Bilder nicht zu verstehen.

Im folgenden wird eine mathematische Analyse der Kreislimit-
Holzschnitte gegeben und mit dem Versuch einer Computer-
Rekonstruktion verkniipft. Das Geheimnis dieser Bilder wird
dadurch nicht angetastet. Vielmehr tritt die konstruktive Phan-
tasie Eschers mit umso groferer Deutlichkeit hervor.

ZDM-Classification: G90, M80

1. Introduction

The Dutch artist M.C. Escher was fascinated by esthetic
objects giving an idea of infinity (Locher 1984; Ernst
1978; Escher 1971). Plane Euclidean ornaments for in-
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stance represent such objects. In these ornaments the per-
ception has to be strongly supported by imagination, be-
cause infinity is suggested by the repetition of a motif.
Physically this repetition can be done only a finite num-
ber of times. It therefore has to be performed in mind
thus initiating a meditative process. Escher intended to
improve the evidence in visualisations of infinity. So he
started several attempts to show infinity in a finite re-
gion. He achieved his final success after he had seen a
diagram which Donald Coxeter, the outstanding British-
Canadian geometer, had used in a mathematical paper on
hyperbolic geometry. Here 1 have reconstructed this di-
agram (Fig. 1) by methods of fractal geometry (Herfort
1993, Herfort/Klotz 1997).

Fig. 1: Coxeter’s Diagram (reconstruction)
which inspired Escher

Stimulated by this mathematical diagram (Fig. 1) Escher
produced four very exciting woodcuts between 1958 and
1960 (Fig.2).

2. Features of hyperbolic geometry

Analysing these pictures leads on one hand to possibilities
of reconstruction, on the other hand to new constructions
of similar pictures according to the same principle. In the
classroom this fact could be used as a stimulation and
motivation to look at the geometry behind these woodcuts.
So the aim of this paper is to show along which lines the
argumentation might go, if pupils are to get some insight
into non-Euclidean geometry. Of course there is no need
to develop a complete course on hyperbolic geometry. But
the concept of reflection in a circle is important.

2.1 The concept of reflection in a circle
As Coxeter has exemplarily shown (Coxeter 1963) this
matter can be treated by elementary construction. Even
global properties as the conservation of angle and of cir-
cles can be derived without algebraic tools as for instance
complex-number-calculations. Besides these conservation
laws students should know some analogies between re-
flection in a circle and reflection in a line:

— Reflecting a reflected point in the same reflecting mani-
fold (line or circle) results in the original point. (In other
words: Reflections are involutions.)

— The reflecting manifold (line or circle) consists of fixed
points.
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Circle Limit ITI

Circle Limit TV

Fig. 2: M. C. Escher, Circle Limit I-IV, Woodcuts 1958-1960 (¢) 1999 Cordon Art B.V.-Baarn-Holland. All rights reserved.

— The orientation of a closed curve is changed by reflec-
tion.

— Reflections are homeomorphisms. (Even more they are
isometries, if the metric is properly defined. As we
do not propose to introduce a hyperbolic metric in the
classroom-situation, we confine ourselves to the prop-
erties of a topological mapping. We can do so, as only
topological properties are needed for the games we want
to introduce later.)

The Coxeter-diagram suggests that triangles will be the
matters of our main interest. But the concept of triangle
has to be extended. Now the sides of a triangle are circular
arcs. There is however a small exception: triangles having
the center of the surrounding circle as one of its corners are
bordered by two ordinary sides and only one circular arc.
All the triangle-sides are part of a circle, which intersects
the surrounding circle under an angle of 90°. We may
regard the straight lines through the center as circles with
center at infinity. For a better distinction from ordinary
triangles we shall use the notion of hyperbolic triangle
for these triangles within the surrounding circle.

Having the Coxeter-diagram in mind we are looking at
a so called tessellation of the circular region (bounded
by the surrounding circle) with hyperbolic triangles. That
means: Every point of the circular region belongs to at

least one triangular region (including the boundary) and
the triangles are not overlapping. That means: If a point
belongs to more than one triangular region it lies on the
boundaries of these regions.

What happens to a hyperbolic triangle from the tessella-
tion when it is reflected in one of its circular sides? From
the knowledge listed above about circular reflection stu-
dents will be able to conclude that the image of the triangle
is again a hyperbolic triangle which is equiangular with
the original one. They will notice that this reflected trian-
gle belongs to the tessellation. Thus it can be conjectured,
that the whole tessellation can be generated by continued
reflection beginning with one particular triangle.

2.2 Tiling of a circular region by hyperbolic triangles
The particular starting-triangle may be ABC'. Reflection
in AC will be symbolized by 1; reflection in AB by 2
and finally reflection in BC' by 3.

The whole tessellation now can be generated by contin-
ued application of these 3 reflections composing them in
all possible orders. The symbol 3212132 for instance may
be interpreted as:

Apply 2, then apply 3, then apply 1, ..., then apply 3
It should be read from the right to the left.
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Fig. 3: Basic hyperbolic rotations, centers A, B and C'

In order to achieve good practice in recognition of the
generating process and to become familiar with the coding,
I propose two games A and B:

(A) Write down an arbitrary sequence of the figures 1,2,3
and find out the hyperbolic triangle into which the tri-
angle ABC is transported when the application meant
by the given sequence is performed.

(B) Pick up an arbitrary triangle from the tessellation and
find out which application maps the triangle ABC
into the given one. There are many ways to do this.
Find a good — that means a “short” — way.

Some results of these games should be summarized as
shortening rules:

(1) A sequence containing 11 or 22 or 33 can be short-
ened by simply discarding these figures; due to the
involutary character of reflections.

(ii) Obviously the map 12 symbolizes an anticlockwise
rotation with center A. The angle of rotation is twice
the angle occuring in the tringle at point A. Perform-
ing the rotation 12 six times 121212121212 brings
the triangle ABC' back to itself. So if such a piece
occurs in a sequence it can be discarded.

(iii) A similar phenomenon emerges in the points B and
C. But here the composition 31 (resp. 23) is not a
rotation in the Euclidean sense. It has nevertheless all
important properties of a rotation. So we shall call it
here an anticlockwise hyperbolic rotation with center
C (resp. B). The angle of rotation is twice the angle
at point C (resp. point B). We find:

(a) If a sequence contains a piece 31313131 it can
be canceled.

(b) If a sequence contains a piece 2323 it can be
canceled.

We call A, B and C' centers of rotation. The minimal
number of repetition necessary to “come back™ to the orig-
inal triangle ABC' we shall call the order of the center of
rotation. So in this case

A has order 6,

B has order 2,

C has order 4.

By the order of the points A, B, C the angles at A, B

and C' are uniquely determined, and so is the structure

of the set of mappings generated by the three hyperbolic
reflections 1, 2, 3, where the basic hyperbolic rotations
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12, 31, 23 are subject to the relations
(12)¢ = id,
(31)* =id,
(23)? = id.

This set is called the hyperbolic reflection group T* (6,2, 4).
If we only regard the applications which are generated
by the basic rotations 12, 31, 23 and which are repre-
sented by all sequences with an even number of digits,
we denote this set as the Ayperbolic rotation-generated
subgroup T(6,2,4).

As became clear the group 7%(6,2,4) generates the
Coxeter-tessellation with hyperbolic triangles, which are
all images of the fundamental region, the triangle ABC.
Also the subgroup T'(6,2,4) generates a tessellation of
the circular region. In this case however the fundamental
region has double size. A union of ABC with one of the
neighbouring hyperbolic triangles can be regarded as fun-
damental region if the subgroup 7'(6,2,4) shall generate
a tessellation.

If k, I, m are integers satisfying the so-called condition
of hyperbolicity % + % + % < 1 there can be constructed
a triangle ABC within the circular region, which can act
as a fundamental region for a triangular tessellation gener-
ated by the reflection group T7*(k, [, m). Again the union
of ABC with an adjacent triangle can act as a fundamental
region for the corresponding rotation-generated subgroup
T'(k,l,m). As aunion of two adjacent triangles this funda-
mental region in general is a quadrangle and so in general
we get a tessellation with quadrangles.

There exists an infinite manifold of hyperbolic tessel-
lations from which M.C. Escher could have started. Let
us now look from which groups he started producing the
4 woodcuts. Knowing the group and the design of the
single motif filling the fundamental region the hyperbolic
Escher-ornament can be reconstructed fairly well.

3. Analysis of the Circle-Limit-Woodcuts

3.1 Circle Limit 1

In the case of Circle Limit I Escher refers to the Coxeter-
tessellation. Therefore we superpose the picture (Fig. 4)
with the net of the Coxeter-tessellation. Now we see, that
the picture may be built up beginning with the weakly

Fig. 4: Reconstruction of Circle Limit I, triangular tessellation
generated by T*(6,2,4), fundamental region of T(6,2,4) high-
lighted



ZDM 99/5

shaded part of the central area, which can be regarded as a
fundamental region of the group 7(6, 2,4). But neither the
group T'(6,2,4) is “acting” here, nor the reflection group
T+%(6,2,4). Rather a subgroup of T7(6,2,4) generated
by the rotation 1212, the reflection 1 and the rotation 23
builds up the whole picture from the coloured motif.

It should be annotated, that the fundamental region of
this generating subgroup used by Escher emerges from a
very inventive deformation of its fundamental region.

3.2 Circle Limit 11

With some practice in looking at those hyperbolic orna-
ments students should notice that Circle Limit II has a
center of rotation at A of order 4 and two centers of ro-
tation of order 3. So it seems to be self-evident, that we
superimpose the net of the triangular tessellation generated
by T*(4, 3, 3) (Fig. 5).
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Fig. 5: Reconstruction of Circle Limit II, triangular tessella-
tion generated by 7* (4, 3, 3), fundamental region of 7'(4, 3, 3)
highlighted

Those parts of the central area which are weakly shaded
may be regarded as the motif of the hyperbolic ornament.
The rotation-generated group 7'(4,3,3) produces the or-
nament when applied to this highlighted region. Again it
is obvious that a quadrangular fundamental region of the
group 7'(4,3,3) has to be deformed in a sophisticated
manner in order to gain this motif.

There occur three kinds of crosses distinguished by their
colouring. Crosses of the same type can be generated by
applying a particular subgroup of 7'(4,3,3) to a special
one of those crosses, while crosses of the two other types
are gained by applying the two different cosets to the same
special cross (Herfort/Klotz 1997).

Remark: As in Circle Limit IV also a slightly different
“larger” group can be seen acting here. Using the obvious
symmetry in the central cross we can produce this hyper-
bolic ornament by application of a subgroup of 7%*(8, 2, 3)
to a fundamental region gained by cutting off half of the
highlighted region. The correct subgroup is then generated
by 2, 1212 and 31.

3.3 Circle Limit II1

As in the case of Circle Limit II the trained student will
notice a center of rotation of order 4 in the center of the
circular region (Fig. 6). Besides he will discover two cen-

Analyses

ters of order 3. So the tessellation he will superimpose
ought to be again 7*(4, 3, 3).

Fig. 6: Reconstruction of Circle Limit III, triangular tessella-
tion generated by 7 (4, 3, 3), fundamental region of 7'(4, 3, 3)
highlighted

Undoubtedly Escher appreciated this picture in a partic-
ular manner. He presented one of the imprints to Coxeter
proudly emphasizing that he himself had invented its ba-
sic symmety system. Indeed it seems to be the most inter-
esting one among the four Circle-Limit-woodcuts. As in
the case of Circle Limit Il its colouring presents an addi-
tional mathematical structure. A particular subgroup and
its cosets may again be regarded as responsible for the
four different colours (Herfort/Klotz 1997). But there is a
mystery: The white fishbones forming a circular line along
which the equicoloured fishes are swimming cause irrita-
tion and mislead the viewer. Escher believed that these
lines intersect the surrounding circle under an angle of
90° (Locher 1984). He obviously thought, that they be-
long to the net of the tessellation. But surprisingly they do
not as can be seen from the given reconstruction. Coxeter
(1996) disproved Escher’s assumption.

Again the motif is highlighted by changing here the
strength of its shading. The dark fish can be regarded as a
fundamental region of the group 7'(4, 3, 3) for it emerges
by a very clever deformation from two adjacent trian-
gles belonging to the tessellation related to 7*(4, 3, 3).
Indeed the total ornament is generated by application of
the rotation-generated group 7'(4, 3, 3).

3.4 Circle Limit IV

Now in his last woodcut Circle Limit IV Escher returns
to a unicoloured design (Fig. 7). This does not happen by
accident, I believe. On first glance the ornament seems to
be generated by the group 7(3,4,4). So we shall super-
impose the net of the triangular tessellation generated by
T7%(3,4,4).

Here the union of an angle with a devil can be regarded
as a fundamental region of the tessellation, and it is obvi-
ous that this figure again arises from two adjacent trian-
gles by a clever deformation. Indeed the group 7'(3,4,4)
generates the hyperbolic ornament when applied to this
figure.
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Fig. 7: Reconstruction of Circle Limit IV, triangular tessella-
tion generated by 7 (3, 4, 4), fundamental region of 7'(3, 4,4)
highlighted

But critically revising our result we notice that there is
still a symmetry in the figure which has not been used
in the production of this ornament. So a “larger” group
could be more adapted for its description. In fact we may
describe it as generated by 7*(6,2,4). But then we have
to choose the subgroup generated by 1212, 2, 13. In this
case the fundamental region would shrink to half an angle
plus half a devil. It is more likely that Escher based his
construction on this group because he could use the same
principle of construction as in Circle Limit 1. Maybe that
in both cases he did not find a sufficiently interesting
subgroup for colouring.

4. Final remark

The method by which these hyperbolic Escher-ornaments
— and completely new hyperbolic ornaments as well — can
be generated originates from the theory of lferated Func-
tion Systems (IFS), a particular part of fractal geometry.
The IFS-method is famous as well for its esthetical output
as for its practical use in the field of image-compression.
The motif of the hyperbolic ornament — that means its re-
striction to the fundamental region of its symmetry group
— is designed as the attractor of an IFS. This motif-
generating IFS has to be hierarchized by the symmetry-
group. A set of generators of this group is treated as an
IFS though being a set of “hyperbolic isometries” and not
a set of contracting mappings (For details of the method
cf. Herfort/Klotz 1997).
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