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Felix Klein Meets Napoléon'
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Monica Klein, Haifa (Israel)

Abstract: In this article we will show how, by teaching our
students geometric transformations, we can help them see the
way to the solution when faced with a challenging geometric
problem. In this way they will understand that they should not
let themselves be restricted by the tools they use.

Kurzreferat: Felix Klein trifft Napoleon. Im Rahmen der Ab-
bildungsgeometrie zeigen wir, wie wir unseren Schiilern helfen
konnen, den Losungsweg zu sehen, wenn sie mit einer heraus-
fordernden Aufgabe konfrontiert sind. Auf diese Weise werden
sie verstehen, dass sie sich nicht selbst durch die Werkzeuge
einschrianken, die sie benutzen.

ZDM-Classification: G40, G50

1. Introduction

Transformation geometry is aimed at liberating the teach-
ing of geometry from domination by Euclid. The Eu-
clidean geometry style in teaching is distinguished by em-
phasis on rigid figures: rigid congruences of triangles are
considered to be the main method of proof in elementary
geometry.

The notion of transformation gives a central concept
to modern geometry teaching, and instead of the static
treatment of Euclid we have a dynamic geometry.

Students should be taught not only transformation ge-
ometry but also shown how a geometric transformation, or
a series of geometric transformations, can help the prob-
lem solver see the way to the solution, and not let himself
be restricted by the tools he uses.

We would like to cite a phrase from [1]: ““ ... algebraic
proofs are superior to geometric proofs which may con-
tain errors based on mere geometric intuition”. Indeed, the
geometric proofs appear to show their weaknesses when
required to handle “non-standard” problems.

In this paper we first lay out and construct our tools
in the Basics. Then we apply them by taking a common
matriculation problem, given in Israel at the 5 point math-
ematics examination, and we solve the problem in a dy-
namic way. By comparison, one can easily solve the same
problem in a rigid way, as it is being done in high school.

Finally, in Old problems new solutions we present well
known problems [2]—[7] and some problems from mathe-
matical olympiads, and we solve them with the tools we
have constructed in Basics.

Since 1983 I have been teaching at the University of
Haifa, Israel. In the classroom, in different courses, my
students have had to cope with problems similar to the
matriculation problem mentioned above. When given a
generalized problem (a regular n-polygon with n > 4)
they often complained, saying the solution is a nightmare.
We felt much better when a new method was presented to
solve these problems, using a powerful tool — the dynamic
conception. As a result the obstacles were reduced so that
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the solutions become shorter and easier.

The reader can follow the challenge and hopefully may
be stimulated to continue using the central ideas which
have been presented in this paper.

2. Basics

a. If P = (z,y) is a point in R? than the image of P
under a rotation about the origin with an angle o, in a
direction opposite to the classic watch, is given by:

poa(P) = [oe ine] [7] @

and the image of a point P under a rotation around a point
M = (e, f) with an angle « is:

pra(P) = [a el ool 5] (@

b. If T : R? — R? is a linear transformation given by mul-
tiplication with a matrix D = [Z Z] ,det Dpr = A #£0,

then the image of a line Ax+By+C =0, |A|+|B| #0
under 7', is a line of equation:

2(Ad — Be) + y(—Ab+ Ba)+ CA =0.  (3)

From (3) we obtain that the equation of a line ¢ after a
rotation by an angle «, about a point M = (e, f) is:

p(0): (x —e)(Acosa — Bsina) + (y — f)(Asina+

+Bcosa)=0if M € ¢ (4)

and
p(0): (x — e)(Acosa — Bsina) + (y — f)-

(Asina+Bcosa)+Ae+Bf+C=0if M ¢l (5)

¢. As in [1] we denote by A% an affine plane. From [1]
page 12, Theorem 1.4.4, we know that: For every two
given triangles X1 X> X3 and YY5Y3 in A2, there exists
an affinity in A% which maps X; on Y; (j = 1,2,3).
We will use this result in order to find the matrix D7 of
the linear transformation T': R? ~— R2, such that given two
triangles OX; X5 and OY1Y,, T'(X;) = Y1, T(X5) = Ys.

We denote Dy = [Z Z}’Xl = (21, 11); X2 = (2, y2),
Y1 = (a1,01); Ya = (a2, b2).

By solving a linear system in unknowns a, b, c, d, we
obtain:

ar Y1 x1 a1
1 a2 Y2 x2 a2
Dr = (6)
T1 Y1 b1 y1| |z1 b1
T2 Y2 bz y2 | | x2 b2

d. Let B = {#1,72} and B’ = {1, U2} be two bases
of R2.
If

Uy = Q1101 + Q1Vg,
Uy = (1201 + Q2V2,

we denote by N the matrix: N = |

ail 0612]
a1 a2z J°
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Theorem 1: Let [0]p be the coordinates of a vector ¥
within respect to the basis B and [] 5 be the coordinates
of a vector ¢ with respect to the basis B’. Then, for every
7 € R?,

[0]5 = N[v]p . (7)

3. A matriculation problem

The point M = (5,2) is the point of intersection of the
diagonals in a square. One of the vertices is the point
A = (2, —4). Find the equations of the sides.

Observation: The above problem can be generalized in the
following manner:

Let M = (a,b) be the center of a regular n-polygon.
One of the vertices is the point A = (¢, d). Find the equa-
tion of the sides.

No such problem was asked, according to my best knowl-
edge, in any matriculation examination for n > 4, for the
obvious reason: the treatment of the problem with rigid
geometry Euclid+ Descartes results in great difficulties,
as an understatement, while, with dynamic geometry the
above generalized problem can be easily solved.

Solution — the dynamic method

b
C
D
\ w
0 bl
\/\B
A
Fig. 1

According to equation (2):
T 0 -1 -3 5 11
[ | =m0 = [ [ 2]+ [3] = [ 5]
(AB):x — 3y —14=0.
BC' is obtained from AB by rotation of AB about the

point M with an angle of 90°.
We use (5) and obtain:

(BC):y = —3z + 32.

The equations of the other sides can be obtained in the
same way.

Observation: The same treatment for the generalized case,
with o = 360° /n, can be applied if M is the center of a
regular n-polygon and A is one of its vertices.
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4. Old problems, new solutions
Some geometrical problems would be easier to solve if the
figures involved would be in canonical position relatively
to the Cartesian system.

For example an equilateral triangle is in ideal position
if two of its vertices are on the x-axis and y-axis is its

symmetry axis.

Fig. 2

Problem 1 (Problem 22 (a), Napoléon’s theorem [7]):

Construct equilateral triangles on the sides of an arbi-
trary triangle ABC), exterior to it. Prove that the centers
01, 02, O3 of these triangles themselves form the vertices
of an equilateral triangle.

Does the assertion of this exercise remain correct if the
equilateral triangles are not constructed exterior to triangle
ABC, but on the same side of its sides as the triangle
itself?

Problem 2 (Theorem 3.38, [2]):
The outer and inner Napoléon triangles of any triangle
ABC differ in area by the area of ABC.

Problem 3 (Problem 4, [2], page 65):
The outer and inner Napoléon triangles have the same
centers.

Solution: We choose the ox axis to be on the side BC' of
the triangle, the oy axis to be on the altitude AD and the
origin O = AD N BC.

Fig. 3

We choose the coordinates A = (0, 6a), B = (—6b,0),
C = (6¢,0) for the points A, B and C, and denote by
M, N, P the middle points of the triangle and choose three
orthonormal (cartesian) coordinate frames S1, So, S3 on its
sides, as shown in the figure.
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Let C1, Co, C3 be, respectively, the centers of the three
equilateral triangles constructed on the sides of the trian-
gle ABC exterior to it and C7, C%, C% the centers of the
equilateral triangles constructed on the same side of its
sides as the triangle itself.

Then from (7)

]

ey | @2 1c2 \Ja2+tc2 [ 0 ]+

2 +c2 \Ja2tc2
+ 3c| _ av/3+3c
3a cV3+3a

i

2] - [ZE 72 Lt +

’ —a c 2 2,
Y'ey To Tos VaZ+cZ /3
4| 3e| = | —avB+3e
3a —C\/§+3a

7| Lt s+

+ ] = ]

and

z'c _ | av3-3b Teg | 3c—3b
[y/j] - [—b\/§+3a} ’ [yg} - [—(c+b)\/§} ’

z'es] _ [ 3c—3b
Yoy |~ [ (VB "
We will show now that the triangle C, Cy, C's is equilat-

eral.
Let 7 be the translation taking C5 to (0,0). We obtain:

7(C1) = (a3 + 3b,2¢v/3 + bV/3 + 3a),

7(Cy) = (—aV3 = 3¢,20V3 + ¢v/3 + 3a),  7(Cs) = 0.

We use (6) and compute the matrix D of a linear trans-
formation 7" such that:

T(T(Cl)> = X; where X; = (1,\/5),
T(T(Cg)) = X5 where X = (-1, \/5),
and obtain:

Dy = 1 [6a+3b\/§+36\/§ 3b—3c
23 3c—3b 6a+3bv/3+3cV3 |’

which is a similarity.

We denote by ONT the outer Napoléon triangle, by
INT the inner Napoléon triangle and by S4pc the area
of triangle ABC.

Solution of Problem 2

(C1C5)? = 12a” + 120 4 12¢+
+ 12abV/3 + 12acV/3 + 12be,

(C'1C"5)? = 124® + 12b* + 12¢% — 12ab\/3—
— 12a¢V/3 + 12be,

3
Sowt — Sive = (€G- L2 (02

= ?(24)(@ +ac)V3 = 18(ab + ac) = Saapc.

V3
4
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Solution of Problem 3
As we have seen the point G of ONT is given by:

XG =2c— 2b, YG = 2a.

The vertices of INT are:

C! = (aV3 + 3¢, —eV/3 + 3a),

¢ = (av/3 — 3b, —bv/3 + 3a),

C4 = (3¢ — 3b, (c 4 b)V/3).
Then

Xe=2c—-2b=1zg, Y:=2a=yc.

Problem 4 (Midpoint symmetric triangles areas [5]):

A triangle is drawn and the midpoints of its sides are
found. Pairs of points are placed on each side of the trian-
gle (P;, Q;), symmetric about the midpoint of the side (i.e.
three free points and three dependent points). Correspond-
ing points are joined to form two triangles P P P3 and
Q1Q2Qs3 as in Fig, 4. Investigate the relationship between
their areas.

Solution:
4
s A°
Q,
L N
P,
@,
X
8 R M Q, ¢
Fig. 4

We choose for the points A, B and C the coordinates
A = (0,2a), B = (—2b,0), C = (2¢,0) and denote by
L, M, N the middle points of the sides AB, BC, CA
respectively, and PobN = t, PPM = ¢, LP; = m. We
choose the same three systems of coordinates S1, Sz, S5 as
in the solution of Problem 1. Then the coordinates of Py,
Q1 with respect to Sy are P, = (—¢,0), Q1 = (£,0), the
coordinates of P», Q2 with respect to So are P» = (—t,0),
Q2 = (t,0), and the coordinates of P3, Q3 with respect
to S3 are P3 = (m,0), Q3 = (—m,0).

We use Theorem 1 in order to compute the coordinates
of P; and Q; (i = 1, 3) with respect to XOY system of

coordinates. Then:
Plz(c—b—f,()); Q11(67b+£,0),

= | G+ ) =

=

—a C

L Va2+c2 Va24c2 |
r te ~ —tc
_ Va2+c2 ’”Qz} _ | Va2+e2 +e
— v =

== dal? )

. -
I:ZPS:| | Va2 VaZ4p2 [m] n [—b} .
= a b

—
8
v
w0
[E—

ma o v —ma
i '_a2+b2+ Q3 PErTS] +a
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Then, denoting d = Va2 + b2, e = Va? + ¢2:

Area Q1Q2Q3 = %

c—b+/ 0 1
det | =5+c Z+a 11| =
%"_b_b —ma a1

1| 4td + fme + ctm + ed + btm + bed
=—la
2 ed ’
1 c—b—¢ 0 1
AreaPngPg—det{%”‘C Tat"'al:H
2 mb_p mayqg ]
1| ¢td + ¢me + ctm + ed + btm + bed
=—la
2 ed ’

Therefore Area P; P, P3 = Area Q1(Q2Qs.

Problem 5 (Based on a question from the 1975 Mathe-
matical Olympiad):

ABC is an arbitrary triangle and points P, @), R are such
as to yield the angles shown in the figure below. Show
that ZQPR = 90° and QR = RP.

Solution
First we compute the coordinates of the points P, @) and
R using the techniques that we described in Basics, and
then we will show that pgggo (P) = @ which implies
RP = RQ and RP 1 RQ.

The equation of the line AC is: ax + cy = ac. AQ is
obtained from AC' by a rotation of an angle 45° about C,
therefore with (4) we obtain:

(AQ):z(a — ¢) +y(la+c¢) = ala+ ¢).

The equation of QC' is obtained in a similar way.
The coordinates of @) are the solution of the system:

z(a—c)+yla+c)=ala+c)

{ (a3 +¢) + y(—a + v/3) = c(aV/3 +¢) N

_a+c
. RTTTR
7a\/§+c
=TI

The coordinates of P are the solution of the system:

cf\/gb

{(PC):y(tan?)Oo)(xc) TR
(PB):y=—(z+1b) _ —(b+¢)
I
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In order to find the coordinates of R, which is obtained
by constructing an isosceles triangle, the best technique is
to use (7)

N

a
YR \/aZ—W W VaZ1b2- tan215o

_b —a(3-1)
4 = l Va1
g] 2 [ 2D v ]
_|0-1 Tp—TR TR | _
pQOO,R(P) - [1 0 :| |:'!JP—'!JR:| + |:ij| -

_ | —ypt+yrt+zr | __ | %TQ

| zp—zrtyr | = |YQ |~
From the solution of this problem we can learn that (4)
and (5) can be successfully used when we construct trian-

gles on the sides of a polygon, and (7) works well when
isosceles triangles are constructed.

Problem 6 ([6]):

The midpoints and vertices of a square are joined as indi-
cated in Fig. 6 to make a series of triangles which enclose
an octagon. Is it equilateral? Is it regular?

Solution
Q i P
AR
v & s
o x
)
-3
R
o N

Fig. 6: Moorish Design from Toledo

Let M N PQ be the square of the problem, with center at
O = (0,0) and sides parallel to the axes. It is clear that
the octagon ABCDEFGH is symmetric to the axes, and
therefore is regular if
po,—a5°(A) = B, po,—a50(B) =C.

We compute the coordinates of A, B and C.
A:=VPnNOy

(VP): |2 y;a} =0= (VP):iz—2y+a=0,

A:(O,%).

B:=QSNTN

(QS):z+2y—a=0 _(a a
(TN):2x+ya0.}:>B (5’5)’

C:=PRNOx

(PR):z+2y—a=0=C = (%,0).

Il

Now
2

S
Faeda

po,—ase (A) = { 2

2

}#B.

N ©
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It follows that the octagon ABCDEFGH is not regular.
It is equilateral, i.e. AB=BC =...= AH.

Problem 7: (The XIX International Mathematical Olym-
piad, July 4,5, 1977):

Equilateral triangles ABK, BCL, CDM, DAN are con-
structed inside the square ABC'D. Prove that the mid-
points of the four segments KL, LM, MN, NK and
the midpoints of the eight segments AK, BK, BL, CL,
CM, DM, DN, AN are the twelve vertices of a regular
dodecagon.

Fig. 7

Solution

Let ABCD be the square of the problem, with center
(0,0) and sides parallel to the axes. It is clear that the
dodecagon is symmetric with respect to the axes, therefore
A1 AsAs ... Aps is regular if

p—30°,0(A12) - Al, p—3OO,O(A1) = 1427

*
p—30°,0(A2) = A3, p_300,0(A3) = A4. *)
The coordinates of the points K, L, M, N are:
K =(0,a(vV3-1)), L= (-a(v3-1),0),
M = (0,-a(vV3-1)), N=(a(v3-1),0).
Therefore the coordinates of A1, As, A3, A4, A1o are
Al - <a(2\/§) 7g>7
2 2
(a(\/ﬁ 1) a(v3- 1))
A2 - ’ 3
2 2
A3<E7a(2\/§)>7 A <g7a(2\/§)>7
2 2 2 2
—a(2 -3
A12 - < a( \/_) 7E>
2 2

A simple computation shows that indeed the relations ()
take place. But then A; A5 A3 ... Ay is regular.

Problem §:

We know from Problem 24 [7] that if on the sides of an ar-
bitrary parallelogram ABC'D squares are constructed, ly-
ing exterior to it, their centers My, My, M3, M, are them-
selves the vertices of a square.

Analyses

The new problem: If with the notation from Fig. 8 we
build new squares AlAngBl, A2A3B3B2, A4B4B5A5,
A7 AgBr Bg, their centers Cy, Cy, C3, Cy form a paral-
lelogram whose center is the same as the center of the
parallellogram ABC' D and the square My, My, M3, My.

bg 'I 8y
B/ 0 [N %
—— Ca,
ks
3 ° By,
AS
Ay
Bg ° A Y
G I By
A, AN Y
By B,
Fig. 8

Proof:
Let the coordinates of O, A, B, C be:

0 =(0,0),
B = (2b+ 2a,2c),

A = (2q,0),
C = (2b,2¢).

Then the coordinates of Aj, Ao, Az, Ay, A5, Ag, A7, Ag
are:

Al = (07 72&)7 A2 = (2&, 72&)7
As = (2b+2a,2¢+2a), A; = (2b,2c+ 2a),

KV 0 1] 2 2a
_yA:_ :p—QOO,A(B) = [_1 0_ [26:| + [ O:| =

_ZAS

yAS: = pooe,0(C) = [2—01} [;b} —

. -26—‘1-2(1
| -2 |
EZVa _[o=17[-2b 2b+2a ]
Kz = pove,B(A) = [1 0 ] _—2c} +[ 2¢ ] -
_ [2c+2b+2a
| —2b+2¢ |
EZCE o 1] [-2b] 26| _
| va7 | = p-900,0(0) = [—1 0| [—2c_ + [2c} -
[ —2c+2b
T 2b42¢ |

]

B2 = P—90°,A, (A3) = (4CL — 2b, —2c — 2&)

C1, the center of the square Ay A3B3B7 is the middle
point of ByAs, therefore C; = (3a —b+¢,—a — b — ¢).

TA7 | | —2a+4b—-2c
[’!JA7:| = pooe,4,(As) = [ tot2D }

= A7 = (—2a + 4b — 2¢,4c + 2b).

=

(35 is the center of A; AgBg By therefore Cs = (3b—a—c,

3c+a+b).

We denote by ) the middle point of C7Cj5, then

Q= (a+bc).
Now

T —2b—2a
Lo | = pooeas () = [ 50750 | =

= By = (—2b— 2a, —2c — 2a).
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Cy is the center of square B; A3 AgBg. We obtain Cy =
(—ra—b—c,—a+b—c).

E: 4a+4b
[y§::| = P90°,45 (A4) - [46—7-_2a:| =
= Bs = (4a + 4b,4c + 2a)

(5 is the center of square A5 Bs A4 By, Co = (c+3a+3b,
3c+a—0b). Now it can be easily seen that the middle point
of CyCy is Q, therefore C1C>C3CYy is a parallelogram.
The other assertions of the problem now easily follow.

Many other problems and theorems in which similar con-
structions are involved can be proved using the tools ex-
posed in Basics. For example: Some of the problems of the
Olympiad corner from the Canadian Journal Crux Mathe-
maticorum, the examples and theorems from [3], problems
8.3.5, 8.3.13-8.3.17 from [5].
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Vorschau auf Analysethemen der
nichsten Hefte

Fiir die Analysen der Jahrgénge 31 (1999) bis 32 (2000)

sind folgende Themen geplant:

— TIMSS

— Computergestiitztes Losen offener Probleme im Mathe-
matikunterricht

— Mathematikdidaktische Forschung im Primarbereich

— Mathematik an Hochschulen lehren und lernen

— Analysis an Hochschulen

— Mathematik in der Ingenieurausbildung

— Theoretische Betrachtungen zu Schulbuchanalysen.

Vorschlige fiir Beitrige zu o.g. Themen erbitten wir an
die Schriftleitung.

Outlook on Future Topics

The following subjects are intended for the analysis sec-

tions of Vol.31 (1999) to Vol. 32 (2000):

— TIMSS

— Computer-aided solution of open problems in mathe-
matics teaching

— Research in primary mathematics education

— Teaching and learning mathematics at university level

— Calculus at universities

— Mathematics and engineering education

— Concepts and issues in textbook analyses.

Suggestions for contributions to these subjects are wel-
come and should be addressed to the editor.



