T. Borkovits ${ }^{1}$

Transit timing variations in hierarchical triple (exoplanetary) systems

- an analytic study
${ }^{1}$ Baja Astronomical Observatory, Baja
borko@alcyone.bajaobs.hu

MOTIVATION

- Increasing number of exoplanetary systems
- Lengthening time interval of the observations

- Larger sample of dynamically interesting systems (e.g. inclined axis)
- Detection of longer period systems (several months)
- Longer data series \rightarrow possible detection of variations (perturbations)
- More personal motivation:
the same effects (and calculations) applied for eclipsing binaries
in hierarchical triple stellar systems is interesting for a very few specialists only

MOTIVATION

- Increasing number of exoplanetary systems
- Lengthening time interval of the observations

- Larger sample of dynamically interesting systems (e.g. inclined axis)
- Detection of longer period systems (several months)
- Longer data series \rightarrow possible detection of variations (perturbations)
- More personal motivation:
the same effects (and calculations) applied for eclipsing binaries
in hierarchical triple stellar systems is interesting for a very few specialists only

I know, you unterstand what I say

NEW POSSIBILITIES IN O-C ANALYSIS

Detectability of the short period perturbations

o Borkovits et al., 2003: If $P^{\prime} / P<=100 P$ even the short period perturbations in the eclipsing $\mathrm{O}-\mathrm{C}$ diagram (i.e. the time-delay in the occurence of the eclipsing minima) may reach 0.001 days \rightarrow theoretically can be detected by ground-based photometry (Perhaps IU Aur?)

The short-term perturbations in the O-C curve produced from a numeric integration of the IU Aur triple system

This valid for an eclipsing binary with typical period of a few days But recently we know transiting exoplanets with periods of months!

NEW POSSIBILITIES IN O-C ANALYSIS

Analytical study on long-term perturbations in hierarchical triple systems with (and without) distorted components

Final purpose:

- Analytical form of the Transit Timing Variation (eclipsing O-C)!

- We must calculate the perturbations in the observational and NOT only in the dynamical frame of reference DO NOT CONFUSE THE TWO!!!
- Our final independent variable is the true longitude (u) measured from the intersection of the binary's orbital plane and the sky, as in the mid-eclipse moment

NEW POSSIBILITIES IN O-C ANALYSIS

Analytical study on long-term perturbations in hierarchical

 triple systems with (and without) distorted components- For the analytical form of O-C:

Kepler-equation-"like" =>

$$
\begin{aligned}
\int_{t_{0}}^{t_{N}} \mathrm{~d} t & =\int_{\pi / 2}^{2 N \pi+\pi / 2} \frac{a^{3 / 2}}{\mu^{1 / 2}} \frac{\left(1-e^{2}\right)^{3 / 2}}{[1+e \cos (u-\omega)]^{2}} \frac{\mathrm{~d} u}{1-\frac{\rho_{1}^{2}}{c_{1}} \dot{\Omega} \cos i} \\
& \approx \int \frac{a^{3 / 2}}{\mu^{1 / 2}} \frac{\left(1-e^{2}\right)^{3 / 2}}{[1+e \cos (u-\omega)]^{2}}\left(1+\frac{\rho_{1}^{2}}{c_{1}} \dot{\Omega} \cos i\right) \mathrm{d} u .
\end{aligned}
$$

$\Delta e \sim e\left(\frac{P}{P^{\prime}}\right)^{2} u$,

$$
\bar{P}_{I}=\frac{P}{2 \pi}\left[2 \arctan \left(\sqrt{\frac{1-e}{1+e}} \frac{\cos \omega}{1+\sin \omega}\right)-\left(1-e^{2}\right)^{1 / 2} \frac{e \cos \omega}{1+e \sin \omega}\right]
$$

$\Delta \omega \sim \omega\left(\frac{P}{P^{\prime}}\right)^{2} u$,

$$
\bar{P}_{I I}=\frac{P}{2 \pi}\left[2 \arctan \left(\sqrt{\frac{1-e}{1+e}} \frac{-\cos \omega}{1-\sin \omega}\right)+\left(1-e^{2}\right)^{1 / 2} \frac{e \cos \omega}{1-e \sin \omega}\right]
$$

$u \approx \pm \frac{\pi}{2}+2 k \pi$

$$
\begin{aligned}
\bar{P}_{I, I I}= & P_{\mathrm{s}} E+\frac{P}{2 \pi}\left[\pm \frac{1}{2} \pi \mp 2 e \cos \omega+\left(\frac{3}{4} e^{2}+\frac{1}{8} e^{4}\right) \sin 2 \omega\right. \\
& \left. \pm\left(\frac{1}{3} e^{3}+\frac{1}{8} e^{5}\right) \cos 3 \omega-\frac{5}{32} e^{4} \sin 4 \omega \mp \frac{3}{40} e^{5} \cos 5 \omega\right]
\end{aligned}
$$

PERTURBATION EQUATIONS - short-term terms

at least some of them:

$$
\begin{aligned}
\frac{d \overline{u_{1}}}{d \overline{w_{2}}} & =\frac{\tilde{w}_{1}^{1 / 2}}{a_{1}^{3 / 2}} \frac{\rho_{2}^{2}}{\left.\sqrt{w_{2} \alpha_{2}\left(1-\varepsilon_{2}^{2}\right.}\right)}-\frac{d \overline{Q_{1}}}{d \overline{v_{2}}} \cos i_{1} \\
& \approx \frac{P_{2}}{P_{1}} \frac{\left(1-\varepsilon_{2}^{2}\right)^{3 / 2}}{\left(1+\varepsilon_{2} \cos v_{2}\right)^{2}}-\frac{d \Omega_{1}}{d v_{2}} \cos i_{1}
\end{aligned}
$$

$$
\begin{aligned}
\frac{d \varepsilon_{1}}{d v_{2}}= & 0 \\
\frac{d \varepsilon_{1}}{d v_{2}}= & A_{1} \varepsilon_{1}\left(1+\varepsilon_{2} \cos v_{2}\right)\left[\left(1-I^{2}\right) \sin 2 \xi 1\right. \\
& -\frac{1}{2}(1+I)^{2} \sin \left(2 v_{2}-2 v_{2 \Omega}-2 \xi_{1}\right) \\
& \left.+\frac{1}{2}(1-I)^{2} \sin \left(2 v_{2}-2 v_{2 \pi}+2 \xi 1\right)\right]
\end{aligned}
$$

$$
\frac{d \omega_{1}}{d v_{2}}=A_{L}\left(1+\varepsilon_{2} \cos v_{2}\right)\left(\frac{3}{5}\left(I^{2}-\frac{1}{3}\right)\right.
$$

$$
+\left(1-I^{2}\right)\left[\cos 2 \xi 1+\frac{3}{5} \cos \left(2 v_{2}-2 v_{2 \Omega}\right)\right]
$$

$$
+\frac{1}{2}(1+I)^{2} \cos \left(2 v_{2}-2 v_{2 n}-2 \xi 1\right)
$$

$$
\left.+\frac{1}{2}(1-I)^{2} \cos \left(2 v_{2}-2 v_{2 \pi}+2 \xi 1\right)\right\}
$$

$$
-\frac{d \Omega_{1}}{d v_{2}} \cos i_{1}
$$

PERTURBATION EQUATIONS - short-term terms

and, finally, the direct temns are as follows:

$$
\begin{align*}
\frac{\mu_{1}^{1 / 2}}{a_{1}^{3 / 2}}\left(\dot{u}_{\mathrm{F}}\right)_{\mathrm{dir}}^{-1}= & A_{\mathrm{L}}\left(1+\varepsilon_{2} \cos \nu_{2}\right)\left\{\frac{4}{S}\left(I^{2}-\frac{1}{3}\right) f_{1}\left(\varepsilon_{1}\right)\right. \\
& +\frac{S 1}{20}\left(1-I^{2}\right) \varepsilon_{1}^{2} f_{2}\left(e_{1}\right) \cos 2 \xi_{1} \\
& +\frac{4}{S}\left(1-I^{2}\right) f_{1}\left(e_{1}\right) \cos \left(2 v_{2}-2 v_{2 \Omega}\right) \\
& +\frac{S 1}{40}(1+I)^{2} e_{1}^{2} f_{2}\left(e_{1}\right) \cos \left(2 v_{2}-2 v_{2 \mathrm{a}}-2 \xi_{1}\right) \\
& \left.+\frac{S 1}{40}(1-I)^{2} \varepsilon_{1}^{2} f_{2}\left(e_{1}\right) \cos \left(2 v_{2}-2 v_{2 \Omega}+2 \xi_{1}\right)\right\}, \tag{15}
\end{align*}
$$

where
$A_{\mathrm{L}}=\frac{15}{8} \frac{m_{3}}{m_{123}} \frac{P_{1}}{P_{2}} \frac{\left(1-\varepsilon_{1}^{2}\right)^{1 / 2}}{\left(1-\varepsilon_{2}^{2}\right)^{3 / 2}}$,
and
$f_{1}(\varepsilon)=1+\frac{25}{8} e^{2}+\frac{15}{8} e^{4}+\frac{95}{64} e^{6}$,
$f_{2}(e)=1+\frac{31}{51} e^{2}+\frac{23}{48} e^{4}$.
Furthermore, i_{n} denotes the nutual inclination of the two orbital planes, while
$I=\cos i_{m}$,
and m_{123} stands for the total mass of the systemn.

and the result:

$$
\begin{align*}
& O-C_{P_{2}}=\frac{P_{1}}{2 \pi} A_{\mathrm{L}}\left\{\left(I^{2}-\frac{1}{3}\right) \frac{4}{5}\left(1 \mp \frac{3}{2} \varepsilon_{1} \sin \omega_{1}\right) M\right. \\
& +\left(1-I^{2}\right) \frac{2}{S}\left(1 \mp \frac{3}{2} e_{1} \sin \omega_{1}\right) S\left(2 \nu_{2}-2 \nu_{2 m}\right) \\
& \mp\left(1-I^{2}\right) 2 \varepsilon_{1} \sin \left(\omega_{1}-2 g_{1}\right) M \\
& \pm(1+I)^{2} \frac{1}{2} \varepsilon_{1} C\left(2 v_{2}-2 v_{2 m}+\omega_{1}-2 \xi_{1}\right) \\
& \mp(1-I)^{2} \frac{1}{2} \varepsilon_{1} C\left(2 v_{1}-2 v_{2 m}-\omega_{1}+2 \xi_{1}\right) \\
& +\cot i_{1} \sin i_{\pi}\left[-I \frac{2}{5}\left(1 \mp 2 e_{1} \sin \omega_{1}\right) \cos u_{1 m} M\right. \\
& +(1+I) \frac{1}{10}\left(1 \mp 2 \varepsilon_{1} \sin \omega_{1}\right) S\left(2 \nu_{2}-2 \nu_{2 m}+u_{1 m}\right) \\
& \left.\left.-(1-I) \frac{1}{10}\left(1 \mp 2 \varepsilon_{1} \sin \omega_{1}\right) S\left(2 v_{2}-2 v_{2 m}-u_{1 m}\right)\right]\right\} \\
& +O\left(\varepsilon_{1}^{2}\right), \tag{20}
\end{align*}
$$

where

$$
\begin{align*}
M & =\int 1+e_{2} \cos \nu_{2} d \nu_{2} \\
& =\nu_{2}-l_{2}+e_{2} \sin \nu_{2} \tag{21}\\
& =3 \varepsilon_{2} \sin \nu_{2}-\frac{3}{4} e_{2}^{2} \sin 2 \nu_{2}+\frac{1}{3} \varepsilon_{2}^{3} \sin 3 e_{2}+O\left(e_{2}^{4}\right), \tag{22}
\end{align*}
$$

furthermore,
$S(x)=\sin (x)+e_{2} \sin \left(x-\nu_{2}\right)+\frac{1}{3} e_{2} \sin \left(x+\nu_{2}\right)$,
$C(x)=\cos (x)+\varepsilon_{2} \cos \left(x-\nu_{2}\right)+\frac{1}{3} \varepsilon_{2} \cos \left(x+\nu_{2}\right)$.

DISCUSSION - with illustration on COROT-9B

Combination of short-period dynamic and pure geometric (LITE) effects on the O-C curve of CoRoT-9b

$$
\begin{gathered}
\mathrm{m}_{\text {star }}=0.99 \mathrm{~m}_{\text {Sun }} \mathrm{m}_{\text {planet }}=0.0008 \mathrm{~m}_{\text {Sun }} \\
\mathrm{P}_{1}=95^{\mathrm{d}} \quad \mathrm{P}_{2}=10,000^{\mathrm{d}}
\end{gathered}
$$

$$
\mathrm{m}_{3}=1.0 \mathrm{~m}_{\text {Sun }}
$$

$$
\mathrm{m}_{3}=0.01 \mathrm{~m}_{\text {Sun }}
$$

Physical and orbital parameter of CoRoT-9b and its host star from Deeg et al. 2010, Nature

PERTURBATION EQUATIONS - long-term terms

$$
\begin{aligned}
& \frac{d u_{1}}{d \xi_{1}}=\frac{1}{A+B \cos 2 \xi_{1}}-\frac{d \Omega_{1}}{d \xi_{1}} \cos i_{1}, \\
& \frac{\mathrm{~d} a_{1}}{\mathrm{~d} \xi_{1}}=0 \text {, } \\
& \frac{1}{\varepsilon_{1}} \frac{d \varepsilon_{1}}{d \xi 1}=\frac{A_{1} \sin 2 \xi}{A+B \cos 2 \xi} \text {, } \\
& \frac{d k_{1}}{d \xi_{1}}=-\frac{1}{\cos j_{1}} \frac{A_{\mu_{1}}-A_{n_{2}} \cos 2_{\xi}}{A+B \cos 2_{\xi}}, \\
& \cot j 1 \frac{d_{1}}{d \xi 1}=\frac{-A_{n^{2}} \sin 2 \xi}{A+B \cos 2 \xi}, \\
& \frac{d \omega_{1}}{d \xi_{1}}=1+\frac{d k_{1}}{d \xi 1} \cos j_{1}-\frac{d \Omega_{1}}{d \xi_{1}} \cos i_{1}, \\
& \frac{d \Omega_{1}}{d \xi_{1}}=\frac{d h_{1}}{d \xi_{1}} \frac{\sin j_{1}}{\sin i_{1}} \cos u_{\mathrm{m}}+\frac{d j_{1}}{d \xi_{1}} \frac{1}{\sin i_{1}} \sin u_{m_{1}}, \\
& \frac{d d_{1}}{d \xi 1}=-\frac{d k_{1}}{d \xi 1} \sin j_{1} \sin u_{m}+\frac{d j_{1}}{d \xi 1} \cos u_{m}, \\
& \text { while for the direct term } \\
& \frac{\mu_{1}^{1 / 2}}{a_{1}^{3 / 2}}\left(\dot{u}_{1}\right)_{\mathrm{dir}}^{-1}=\frac{A_{\mathrm{d}}+E_{\mathrm{d}} \cos 2 \xi}{A+B \cos 2_{\xi}} \text {, } \\
& \text { where } \\
& A=A_{\mathrm{G}}\left(1-\varepsilon_{1}^{2}\right)^{-1}\left[I^{2}-\frac{1}{5}\left(1-\varepsilon_{1}^{2}\right)+\frac{2}{5}\left(1+\frac{3}{2} \varepsilon_{1}^{2}\right) \frac{G_{1}}{G_{2}^{*}} I\right], \\
& B=A_{\sigma}\left(1-\varepsilon_{1}^{2}\right)^{-1}\left[1-\varepsilon_{1}^{2}-I^{2}-\varepsilon_{1}^{2} \frac{G_{1}}{G_{2}^{\prime}} I\right] \text {, }
\end{aligned}
$$

PERTURBATION EQUATIONS - long-term terms

Solutions:

Restrictions:

-Second order perturbing function (in $\mathrm{a}_{1} / \mathrm{a}_{2}$ ratio)
-Very strong hierarchicity (i. e. $\mathrm{G}_{1} / \mathrm{G}_{2}$ is negligible)
-Point masses

$$
1
$$

The Hamiltonian does not depend on neither any of the elements of the third companion, nor H_{l}.

$$
\begin{aligned}
& \begin{aligned}
(1-5 \cos 2 \xi)(\eta-1)\left(\eta-\theta^{2}\right) & +4 \frac{\theta^{2}}{\eta_{1 / 5}}\left(\eta_{1 / f 5}-\eta\right)=0, \\
\eta & =1-e^{2}, \\
\text { where } & =\frac{H_{1}}{L_{1}} .
\end{aligned}
\end{aligned}
$$

PERTURBATION EQUATIONS - long-term terms

Solutions:

Analytical solution of:

$$
\frac{d \zeta}{d u}=\mp A_{G} \frac{2}{5} \sqrt{6} \sqrt{4 \zeta^{3}-\xi_{u} \zeta-\xi_{3}}
$$

is Weierstrass elliptic funtion.

$$
\text { where: } \begin{aligned}
\zeta & =\eta-\frac{1}{9}\left(5+5 \theta^{2}+\eta_{0}\right) \\
g_{2} & =\frac{20}{3}\left[\left(\frac{5}{9}\left(1+\theta^{2}\right)-\frac{7}{9} \eta_{0}\right)\left(1+\theta^{2}\right)+\frac{19}{44} \eta_{0}^{2}-\theta^{2}\right], \\
g_{3} & \left.=\frac{1000}{729}\left(1+\theta^{2}\right)^{3}-\frac{70}{243} \eta_{0}\left(1+\theta^{2}\right)^{2}+\frac{20}{27}\left(\frac{11}{9} r_{0}^{2}-5 \theta^{2}\right)^{2}\right)\left(1+\theta^{2}\right)+\frac{32}{27}\left(s \theta^{2}+\frac{7}{27} \eta_{0}^{2}\right) \eta_{0}
\end{aligned}
$$

(See Kozai 1962, Söderhjelm 1982 for details)

PERTURBATION EQUATIONS - long-term terms

Solutions:

Approximative solution for some centuries:

$$
\begin{aligned}
& \eta=\frac{1}{2}\left(1+\theta^{2}\right)+\frac{1}{2} \frac{Z}{x}-\frac{1}{2 x} \sqrt{[Z-(X+Y) x]^{2}-4 X Y X\left(x-x_{0}\right)}, \quad \text { where: } \quad \begin{array}{l}
X=\eta_{g_{0}}-1, \\
Y=\eta_{g^{0}}-\theta^{2},
\end{array} \\
& \square \\
& Z=\frac{4}{S} \frac{\theta^{2}}{\eta_{1 / 5}}=\frac{X Y}{\eta_{g 0}-\eta_{1 / 5}} x_{0} \\
& \eta^{1 / 2}=\eta_{g_{0}}^{1 / 2}+\frac{1}{2} \eta_{g_{0}}^{-1 / 2} \frac{X Y}{B\left(x_{0}\right)}\left(x-x_{0}\right)+\frac{1}{8} \eta_{g_{0}}^{-3 / 2} \frac{X Y}{B\left(x_{0}\right)} \frac{4 \eta_{g_{0}} X Y x_{0}+\left[4 \eta_{g_{0}}(X+Y)-X Y\right] B\left(x_{0}\right)}{B\left(x_{0}\right)^{2}}\left(x-x_{0}\right)^{2}+\ldots, \\
& \varepsilon=\varepsilon_{g_{0}}-\frac{1}{2} \varepsilon_{g_{0}}^{-1} \frac{X Y}{B\left(x_{0}\right)}\left(x-x_{0}\right)-\frac{1}{8} e_{g_{0}}^{-3} \frac{X Y}{B\left(x_{0}\right)} \frac{4 e_{g_{0}}^{2} X Y x_{0}+\left[4 e_{g_{0}}^{2}(X+Y)+X Y\right] B\left(x_{0}\right)}{B\left(x_{0}\right)^{2}}\left(x-x_{0}\right)^{2}+\ldots, \\
& A_{G} \frac{d u}{d g}=\frac{\eta_{g^{0}}^{1 / 2}}{B\left(x_{0}\right)}+\frac{1}{2} \eta_{g_{0}}^{-1 / 2} \frac{4 \eta_{g_{0}} X Y x_{0}+\left[X Y+2 \eta_{g_{0}}(X+Y)\right] B\left(x_{0}\right)}{B\left(x_{0}\right)^{3}}\left(x-x_{0}\right) \\
& +\frac{1}{8} \eta_{g_{0}}^{-3 / 2}\left\{\frac{48 \eta_{g_{0}}^{2} X^{2} Y^{2} x_{0}^{2}+\left[48 \eta_{g_{0}}^{2}(X+Y) X Y x_{0}+12 \eta_{g_{0}} X^{2} Y^{2} x_{0}\right] B\left(x_{0}\right)}{B\left(x_{0}\right)^{5}}\right. \\
& \left.+\frac{\left[8 \eta_{g_{0}}^{2}(X+Y)^{2}+16 \eta_{80}^{2} X Y-X^{2} Y^{2}+8 X Y \eta_{g_{0} 0}(X+Y)\right] B\left(x_{0}\right)^{2}}{B\left(x_{0}\right)^{5}}\right\}\left(x-x_{0}\right)^{2}
\end{aligned}
$$

PERTURBATION EQUATIONS - long-term terms

Solutions:

Approximative solution for some centuries:

$u-u_{0}=\left(\mu_{0}+\mu_{2}+\mu_{1} \cos 2 g_{0}+\frac{1}{2} \mu_{2} \cos 4 g 0\right)\left(g-g_{0}\right)-\frac{1}{2}\left(\mu_{1}+2 \mu_{2} \cos 2 g_{0}\right)\left(\sin 2 g-\sin 2 g_{0}\right)+\frac{1}{8} \mu_{2}(\sin 4 g-\sin 4 g 0)$
\pm

$$
\Pi^{-1}=\mu_{0}+\mu_{2}+\mu_{1} \cos 2 g_{0}+\frac{1}{2} \mu_{2} \cos 4 g_{0}+\ldots
$$

$\mathscr{G}=\Pi u=\xi+\gamma_{2} \sin 2 \xi+\gamma_{4} \sin 4 \xi+\ldots$, where: $\quad=\frac{1}{A_{c}} \frac{\eta_{s}^{1 / 2}}{B\left(x_{0}\right)}\left\{1+\frac{1}{2} \eta_{g_{0}-1} \frac{4 \eta_{0} X Y x_{0}+\left[X Y+2 \eta_{0}(X+Y)\right] E\left(x_{0}\right)}{E\left(x_{0}\right)^{2}} \cos 2 g_{0}\right.$
$\xi=\xi+\sigma_{2} \sin 2 \xi+\sigma_{4} \sin 4 \xi+\ldots$

$$
\begin{aligned}
& +\frac{1}{8} \eta_{r_{0}^{2}}^{-2}\left\{\frac{48 \eta_{\eta_{0}^{2}}^{2} X^{2} Y^{2} x_{0}^{2}+12 \eta_{0} X Y_{x_{0}}\left[4 \eta_{0}(X+Y)+X Y\right] B\left(x_{0}\right)}{B\left(x_{0}\right)^{4}}\right. \\
& \left.\left.+\frac{\left[8 \eta_{20}^{2}(X+Y)^{2}+16 \eta_{20}^{2} X Y-X^{2} Y^{2}+8 X Y \eta_{\eta_{0} 0}(X+Y)\right] B\left(x_{0}\right)^{2}}{E\left(x_{0}\right)^{4}}\right\}\left\{1+\frac{1}{2} \cos 480\right)\right\}+\ldots,
\end{aligned}
$$

where:
$G_{n}=\frac{1}{\pi} \int_{0}^{2 \pi}(\xi-\xi) \sin n \xi(\xi) \frac{d \xi}{d \xi} \mathrm{~d} \xi$

$$
\begin{aligned}
& \gamma_{2}=-\frac{1}{2} \Pi^{-1}\left(\mu_{1}+2 \mu_{2} \cos 2 g_{0}\right), \\
& \gamma_{4}=\frac{1}{8} \Pi^{-1} \mu_{2} .
\end{aligned}
$$

PERTURBATION EQUATIONS - long-term terms, distorted components

Solutions:

Restrictions:

-Second order perturbing function (in $\mathrm{a}_{1} / \mathrm{a}_{2}$ ratio)
-Radial tidal forces in the close binary, mass-point ternary

- Constant angular velocity vectors

As far as the orbital elements on the r.h.s. of perturbation eqs. can be treated as constants, there closed form solutions.

$$
\begin{aligned}
& g=\arctan \left[\sqrt{\frac{1+E_{0}}{1-E_{0}}} \tan \left(W_{0}+\Pi_{0} u\right)\right], \\
& e=e_{0}+\frac{1}{2} e_{0} \frac{A_{\mathrm{rlt}}}{B} \ln \left[\frac{1-E_{0} \cos \left(2 W_{0}+2 \Pi_{0} u\right)}{1-E_{0} \cos 2 W_{0}}\right], \\
& h=h_{0}+2 \pi \chi_{0} u+\kappa_{0}\left\{\arctan \left[\sqrt{\frac{1+E_{0}}{1-E_{0}}} \tan \left(W_{0}+\Pi_{0} u\right)\right]-\arctan \left[\sqrt{\frac{1+E_{0}}{1-E_{0}}} \tan W_{0}\right]\right\}, \\
& \\
& u-u_{0}=\frac{1}{2 \pi} \frac{1}{A_{0} \sqrt{1-E_{0}^{2}}}\left(W-W_{0}\right)
\end{aligned}
$$

PERTURBATION EQUATIONS - long-term terms, distorted components

Solutions:

- For large mutual inclination the eccentricity cannot be treated as constant. At a relatively close system with medium eccentricity the convergence is very weak, so we need to calculate for higher orders. E.g. here I give the form of the angular velocity of the apsidal motion up to fifth order in e:


```
    +[\frac{7}{32}\frac{\mp@subsup{F}{0}{}}{1-\mp@subsup{E}{0}{2}}(1-\mp@subsup{N}{0}{}\mp@subsup{)}{}{3}+\frac{19}{128}\frac{\mp@subsup{F}{0}{}}{1-\mp@subsup{E}{0}{2}}\mp@subsup{X}{1}{}(1-\mp@subsup{N}{0}{}\mp@subsup{)}{}{2}+\frac{3}{64}\frac{\mp@subsup{F}{0}{}}{1-\mp@subsup{E}{0}{2}}\mp@subsup{X}{1}{2}(1-\mp@subsup{N}{0}{})+\frac{3}{512}\frac{\mp@subsup{F}{0}{}}{1-\mp@subsup{E}{0}{2}}\mp@subsup{X}{1}{3}}-\frac{19}{128}\frac{\mp@subsup{G}{0}{}}{1-\mp@subsup{E}{0}{2}}(1-\mp@subsup{N}{0}{}\mp@subsup{)}{}{2}
    - }\frac{9}{64}\frac{\mp@subsup{G}{0}{}}{1-\mp@subsup{E}{0}{2}}\mp@subsup{X}{1}{(1-N
```



```
    -\frac{1}{2}\frac{\mp@subsup{F}{0}{2}}{1-\mp@subsup{E}{0}{2}}(1-\mp@subsup{N}{0}{\prime})-\frac{5}{16}
    - - }\mp@subsup{x}{4}{\prime}\mp@subsup{Y}{2}{\prime}-\frac{3}{32}\frac{\mp@subsup{F}{0}{3}}{1-2,\mp@subsup{E}{0}{3})}-\frac{1}{16
```



```
    +{-\frac{1}{8}
    - - 憱
    - +\frac{G}{48}
```



```
+[-\frac{13}{344}\frac{\mp@subsup{F}{0}{\prime}}{1-\mp@subsup{E}{0}{2}}\mp@subsup{x}{1}{(1-N}
```



```
- }\frac{7}{1536
```


PERTURBATION EQUATIONS－long－term terms，distorted components

Solutions：

－Perturbed form of O－C：

$$
\int \frac{a^{3 / 2}}{\mu^{1 / 2}} \frac{\left(1-e^{2}\right)^{3 / 2}}{[1+e \cos (u-\omega)]^{2}} \mathrm{~d} u
$$

Includes long－term perturbations in all the orbital elements，as well as direct perturbations in mean motion

```
\frac{2\pi}{P}O-C=\mp@subsup{V}{100}{}\operatorname{cos}[\mp@subsup{\omega}{0}{}+(1+\mathcal{U})\Pi(u-\mp@subsup{u}{0}{})]+\mp@subsup{V}{200}{}\operatorname{sin}[2\mp@subsup{\omega}{0}{}+(2+2\mathcal{U})\Pi(u-\mp@subsup{u}{0}{})]+\mp@subsup{V}{300}{}\operatorname{cos}[3\mp@subsup{\omega}{0}{}+(3+3\mathcal{U})\Pi(u-\mp@subsup{u}{0}{})]+
    +V V101 }\operatorname{cos}[\mp@subsup{\omega}{0}{}+\mp@subsup{h}{0}{}+(1+\mathcal{U}+\mathcal{H})\Pi(u-\mp@subsup{u}{0}{})]+\mp@subsup{V}{10-1}{}\operatorname{cos}[\mp@subsup{\omega}{0}{}-\mp@subsup{h}{0}{}+(1+\mathcal{U}-\mathcal{H})\Pi(u-\mp@subsup{u}{0}{})]
    +V}\mp@subsup{V}{102}{}\operatorname{cos}[\mp@subsup{\omega}{0}{}+2\mp@subsup{h}{0}{}+(1+\mathcal{U}+2\mathcal{H})\Pi(u-\mp@subsup{u}{0}{})]+\mp@subsup{V}{10-2}{}\operatorname{cos}[\mp@subsup{\omega}{0}{}-\mp@subsup{h}{0}{}+(1+\mathcal{U}-2\mathcal{H})\Pi(u-\mp@subsup{u}{0}{})]
    +V V VO3 父[\mp@subsup{\omega}{0}{}+3\mp@subsup{h}{0}{}+(1+\mathcal{U}+3\mathcal{H})\Pi(u-\mp@subsup{u}{0}{})]+\mp@subsup{V}{10-3}{}\operatorname{cos}[\mp@subsup{\omega}{0}{}-3\mp@subsup{h}{0}{}+(1+\mathcal{U}-3\mathcal{H})\Pi(u-\mp@subsup{u}{0}{})]+
    +V V20}\operatorname{cos}[3\mp@subsup{\omega}{0}{}-\mp@subsup{u}{\textrm{m}0}{}+(3+\mathcal{U})\Pi(u-\mp@subsup{u}{0}{})]+\mp@subsup{V}{1-20}{}\operatorname{cos}[\mp@subsup{\omega}{0}{}-2\mp@subsup{u}{\textrm{m}0}{}+(1-\mathcal{U})\Pi(u-\mp@subsup{u}{0}{})]
    +V V121 }\operatorname{cos}[3\mp@subsup{\omega}{0}{}-\mp@subsup{u}{\textrm{m}0}{}+\mp@subsup{h}{0}{}+(3+\mathcal{U}+\mathcal{H})\Pi(u-\mp@subsup{u}{0}{})]+\mp@subsup{V}{12-1}{}\operatorname{cos}[3\mp@subsup{\omega}{0}{}-\mp@subsup{u}{\textrm{m}0}{}-\mp@subsup{h}{0}{}+(3+\mathcal{U}-\mathcal{H})\Pi(u-\mp@subsup{u}{0}{})]
    +V V-21 }\operatorname{cos}[\mp@subsup{\omega}{0}{}-2\mp@subsup{u}{\textrm{m}0}{}-\mp@subsup{h}{0}{}+(1-\mathcal{U}-\mathcal{H})\Pi(u-\mp@subsup{u}{0}{})]+\mp@subsup{V}{1-2-1}{}\operatorname{cos}[\mp@subsup{\omega}{0}{}-2\mp@subsup{u}{\textrm{m}0}{}+\mp@subsup{h}{0}{}+(1-\mathcal{U}+\mathcal{H})\Pi(u-\mp@subsup{u}{0}{})]
    +V}\mp@subsup{V}{122}{}\operatorname{cos}[3\mp@subsup{\omega}{0}{}-\mp@subsup{u}{\textrm{m}0}{}+2\mp@subsup{h}{0}{}+(3+\mathcal{U}+2\mathcal{H})\Pi(u-\mp@subsup{u}{0}{})]+\mp@subsup{V}{12-2}{}\operatorname{cos}[3\mp@subsup{\omega}{0}{}-\mp@subsup{u}{\textrm{m}0}{}-2\mp@subsup{h}{0}{}+(3+\mathcal{U}-2\mathcal{H})\Pi(u-\mp@subsup{u}{0}{})]
    +V V-22 效[\mp@subsup{\omega}{0}{}-2\mp@subsup{u}{\textrm{m}0}{}-2\mp@subsup{h}{0}{}+(1-\mathcal{U}-2\mathcal{H})\Pi(u-\mp@subsup{u}{0}{})]+\mp@subsup{V}{1-2-2}{}\operatorname{cos}[\mp@subsup{\omega}{0}{}-2\mp@subsup{u}{\textrm{m}0}{}+2\mp@subsup{h}{0}{}+(1-\mathcal{U}+2\mathcal{H})\Pi(u-\mp@subsup{u}{0}{})]+
    +V V23}\operatorname{cos}[3\mp@subsup{\omega}{0}{}-\mp@subsup{u}{\textrm{m}0}{}+3\mp@subsup{h}{0}{}+(3+\mathcal{U}+3\mathcal{H})\Pi(u-\mp@subsup{u}{0}{})]+\mp@subsup{V}{12-3}{}\operatorname{cos}[3\mp@subsup{\omega}{0}{}-\mp@subsup{u}{\textrm{m}0}{}-2\mp@subsup{h}{0}{}+(3+\mathcal{U}-3\mathcal{H})\Pi(u-\mp@subsup{u}{0}{})]
    +V V-23}\operatorname{cos}[\mp@subsup{\omega}{0}{}-2\mp@subsup{u}{\textrm{m}0}{}-3\mp@subsup{h}{0}{}+(1-\mathcal{U}-3\mathcal{H})\Pi(u-\mp@subsup{u}{0}{})]+\mp@subsup{V}{1-2-3}{}\operatorname{cos}[\mp@subsup{\omega}{0}{}-2\mp@subsup{u}{\textrm{m}0}{}+3\mp@subsup{h}{0}{}+(1-\mathcal{U}+3\mathcal{H})\Pi(u-\mp@subsup{u}{0}{})]
    +V}\mp@subsup{V}{140}{}\operatorname{cos}[5\mp@subsup{\omega}{0}{}-\mp@subsup{u}{\textrm{m}0}{}+(5+\mathcal{U})\Pi(u-\mp@subsup{u}{0}{})]+\mp@subsup{V}{1-40}{}\operatorname{cos}[3\mp@subsup{\omega}{0}{}-4\mp@subsup{u}{\textrm{m}0}{}+(3-\mathcal{U})\Pi(u-\mp@subsup{u}{0}{})]
    +V201 齐[2\mp@subsup{\omega}{0}{}+\mp@subsup{h}{0}{}+(2+2\mathcal{U}+\mathcal{H})\Pi(u-\mp@subsup{u}{0}{})]+\mp@subsup{V}{20-1}{}\operatorname{sin}[2\mp@subsup{\omega}{0}{}-\mp@subsup{h}{0}{}+(2\mp@subsup{O}{0}{}+2\mathcal{U}-\mathcal{H})\Pi(u-\mp@subsup{u}{0}{})]+
    +V V202 部[2\mp@subsup{\omega}{0}{}+2\mp@subsup{h}{0}{}+(2+2\mathcal{U}+2\mathcal{H})\Pi(u-\mp@subsup{u}{0}{})]+\mp@subsup{V}{20-1}{}\operatorname{sin}[2\mp@subsup{\omega}{0}{}-2\mp@subsup{h}{0}{}+(2+2\mathcal{U}-2\mathcal{H})\Pi(u-\mp@subsup{u}{0}{})]+
    +V203 贾[2\mp@subsup{\omega}{0}{}+3\mp@subsup{h}{0}{}+(2+2\mathcal{U}+3\mathcal{H})\Pi(u-\mp@subsup{u}{0}{})]+\mp@subsup{V}{20-1}{}\operatorname{sin}[2\mp@subsup{\omega}{0}{}-3\mp@subsup{h}{0}{}+(2+2\mathcal{U}-3\mathcal{H})\Pi(u-\mp@subsup{u}{0}{})]+
    +V220}\operatorname{sin}[4\mp@subsup{\omega}{0}{}-2\mp@subsup{u}{\textrm{m}0}{}+(4+2\mathcal{U})\Pi(u-\mp@subsup{u}{0}{})]+\mp@subsup{V}{2-20}{}\operatorname{sin}[2\mp@subsup{u}{\textrm{m}0}{}+2\mathcal{U}\Pi(u-\mp@subsup{u}{0}{})]+O(e,E\mp@subsup{)}{}{4}
    +V V000 \Pi(u-u}\mp@subsup{u}{0}{})+\mp@subsup{V}{001}{}\operatorname{sin}[\mp@subsup{h}{0}{}+\mathcal{H}\Pi(u-\mp@subsup{u}{0}{})]+\mp@subsup{V}{002}{}\operatorname{sin}[2\mp@subsup{h}{0}{}+2\mathcal{H}\Pi(u-\mp@subsup{u}{0}{})]+\mp@subsup{V}{003}{}\operatorname{sin}[3\mp@subsup{h}{0}{}+3\mathcal{H}\Pi(u-\mp@subsup{u}{0}{})]
    +V}\mp@subsup{V}{021}{}\operatorname{sin}[2\mp@subsup{\omega}{0}{}-2\mp@subsup{u}{\textrm{m}0}{}+\mp@subsup{h}{0}{}+(2+\mathcal{H})\Pi(u-\mp@subsup{u}{0}{})]+\mp@subsup{V}{0-21}{}\operatorname{sin}[\mp@subsup{\omega}{0}{}-\mp@subsup{u}{\textrm{m}0}{}-\mp@subsup{h}{0}{}+(2-\mathcal{H})\Pi(u-\mp@subsup{u}{0}{})]
    +V V22 }\operatorname{sin}[2\mp@subsup{\omega}{0}{}-2\mp@subsup{u}{\textrm{m}0}{}+2\mp@subsup{h}{0}{}+(2+2\mathcal{H})\Pi(u-\mp@subsup{u}{0}{})]+\mp@subsup{V}{0-22}{}\operatorname{sin}[\mp@subsup{\omega}{0}{}-\mp@subsup{u}{\textrm{m}0}{}-2\mp@subsup{h}{0}{}+(2-2\mathcal{H})\Pi(u-\mp@subsup{u}{0}{})]
    +V V23 }\operatorname{sin}[2\mp@subsup{\omega}{0}{}-2\mp@subsup{u}{\textrm{m}0}{}+3\mp@subsup{h}{0}{}+(2+3\mathcal{H})\Pi(u-\mp@subsup{u}{0}{})]+\mp@subsup{V}{0-23}{}\operatorname{sin}[\mp@subsup{\omega}{0}{}-\mp@subsup{u}{\textrm{m}0}{}-3\mp@subsup{h}{0}{}+(2-3\mathcal{H})\Pi(u-\mp@subsup{u}{0}{})]
    +V V411 }\operatorname{sin}[4\mp@subsup{\omega}{0}{}-4\mp@subsup{u}{\textrm{m}0}{}+\mp@subsup{h}{0}{}+(4+\mathcal{H})\mathcal{G}]+\mp@subsup{V}{0-41}{}\operatorname{sin}[4\mp@subsup{\omega}{0}{}-4\mp@subsup{u}{\textrm{m}0}{}-\mp@subsup{h}{0}{}+(4-\mathcal{H})\Pi(u-\mp@subsup{u}{0}{})]
    +V V42 部[4\mp@subsup{\omega}{0}{}-4\mp@subsup{u}{\textrm{m}0}{}+2\mp@subsup{h}{0}{}+(4+2\mathcal{H})\mathcal{G}]+\mp@subsup{V}{0-42}{}\operatorname{sin}[4\mp@subsup{\omega}{0}{}-4\mp@subsup{u}{m0}{}-2\mp@subsup{h}{0}{}+(4-2\mathcal{H})\Pi(u-\mp@subsup{u}{0}{})]+
    +V V43 }\operatorname{sin}[4\mp@subsup{\omega}{0}{}-4\mp@subsup{u}{\textrm{m}0}{}+3\mp@subsup{h}{0}{}+(4+3\mathcal{H})\mathcal{G}]+\mp@subsup{V}{0-43}{}\operatorname{sin}[4\mp@subsup{\omega}{0}{}-4\mp@subsup{u}{\textrm{m}0}{}-3\mp@subsup{h}{0}{}+(4-3\mathcal{H})\Pi(u-\mp@subsup{u}{0}{})]+.

PERTURBATION EQUATIONS - long-term terms, distorted components

Mutual inclination: 20 deg




\section*{PERTURBATION EQUATIONS - long-term terms, distorted components}

\section*{Mutual inclination: 60 deg}




\section*{PERTURBATION EQUATIONS - long-term terms, distorted components}

\section*{Mutual inclination: 89 deg}




\section*{PERTURBATION EQUATIONS - long-term terms, distorted components}

\section*{Analytical study on long-term perturbations in hierarchical triple systems with distorted components Conclusions, future steps}

Perturbations force significant variations in the apsidal motion period, as well as in eccentricity
\(\rightarrow\) new terms with large amplitude in the O-C curve, which should be considered at the determination of the speed of the apsidal motion (which sometimes determined simply from the slope of the observed short section of the \(O\)-C curve
\(\rightarrow\) variation of eccentricity can be determined from spectroscopy and/or accurate photometry. Combining these with the \(O-C\) the spatial orientation of the orbits might be calculated


Next step: to formulate the expressions for practical use (everything is ready for this).

\section*{THANK YOU FOR YOUR ATTENTION!}
```

