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Ordinary di�erential equationsProblem: let's solve the equation
ẋi = fi(x) (1)where x : R → R

N (x = (x1, . . . , xN)). Note: all non-autonomousequation an be transformed into suh a form by introduing anew variable. Numerial methods for solving suh equations:
• lassi expliit methods (e.g. RKn, MMID, BS);
• sympleti mappings (for speial /Hamiltonian/ problems, e.g. Leap-Frog);
• impliit methods (e.g. modi�ed Euler);
• Lie-integration: the power series expansion of the solution is omputedand the oe�ients are then summed appropriately.



Adatptive integration methodsBasi problem: the numerial solution is performed with a givenstepsize, however, it is not obvious what is the �optimal� stepsizein order to obtain a ertain (relative or absolute) preision:
• analyti estimations for this optimal stepsize; or
• diret variations (until the desired preision is obtained).With the exeption of the Euler method, all of the expliit meth-ods must ompute the right-hand side of the ODE in instanesthat depend on the stepsize ⇒ if it turns out to be too small ortoo large, stepsize variation yields CPU time loss.



Lie-integrationFormally, the solution of the di�erential equation
ẋ = f(x) (2)(where f : R

N → R
N) an be written as

x(t + ∆t) = exp(∆tL)x(t), (3)where L =
N∑

i=1

fiDi and Di = ∂
∂xi

(L is the so-alled Lie-operator).The exponential funtion an be expanded as:
exp(∆tL) =

∞∑

k=0

∆tk

k!
Lk. (4)The Lie-integration is the �nite approximation of the sum inequation (4) (see, e.g., Hanslmeier & Dvorak, 1984, A&A).



Properties of the Lie-integrationAdvantages:
• yields the oe�ients of the Taylor-expansion (of ourse, these an beexploited for other purposes as well, example: transit light urve asym-metries due to an eentri orbit: M ≤ 3 . . . 5);
• the oe�ients are omputed using reurrene relations: the derivatives

Ln+1xi are written as the funtions of the derivatives Lkxj (0 ≤ k ≤ n);
• if the oe�ients are known ⇒ the omputation of the sum is extremelyfast, for arbitrary values of ∆t

• all in all: a very fast methodDisadvantages:
• For eah problem (di�erential equation), we need a di�erent set of re-urrene relations that should be derived independently. It is highly notobvious and suh a derivation requires some sort of intuition.All in all, the Lie-integration is not a widespread method, al-though it is de�nitely more e�etive than the other tehniques.



Linearized equationsThe original set of ODEs (x : R → R
N) and its linearized (ξ : R →

R
N):

ẋi = fi(x),

ξ̇i =

N∑

m=1

ξm

∂fi(x)

∂xm

.Using the notations introdued earlier:
L = L0 + Lℓ = fiDi + ξmDmfi∂i, (5)where Dm = ∂

∂xm

and ∂i = ∂
∂ξi

(thus, L0 = fiDi and Lℓ = ξmDmfi∂i).This extension of the original ODE does not modify the formalsolution of equation (3), sine L0ξi ≡ 0 for all i = 1, . . . , N .



Solving the linearized equationsWe an write the solution similarly to the original equations (seePál & Süli 2007, MNRAS):
ξ(t + ∆t) = exp(∆tL)ξ(t). (6)It has been proven that the derivatives Lnξk = (L0 +Lℓ)

nξk an beomputed in a simpler manner, namely:
Lnξk = ξmDmLnxk = ξmDmLn

0
xk. (7)On the right-hand side, there are only funtions of the Dm deriva-tives (in pratie, in the form of DmLn

0
).



Adaptive integration � I.An example: the Taylor-expansion of a periodi funtion:
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 0  5  10  15  20  25  30The expansion of the sine funtion up to the order of 61.To obtain a ertain preision, the integration order is roughlyproportional to the integration stepsize.



Adaptive integration � II.Simple algorithm: let us de�ne a minimal and maximal integra-tion (polynomial) order: Mmin and Mmax1. the integration (i.e. the omputation of the oe�ients and the summation)is performed for a given ∆t stepsize.2. if the desired preision (δ) is reahed earlier (so, M < Mmin), then ∆t ismultiplied by Mmax/Mmin and the sum of the power series is alulatedagain (inluding the omputation of the subsequent Lie-derivatives). Thisstep might have to be repeated until M reahes Mmin.3. If the preision δ is not obtained before the order Mmax, then ∆t is multiplied(dereased) by Mmin/Mmax and the sum is omputed (like above, this stepis repeated until onvergene).4. If the given preision is reahed between Mmin and Mmax, we proeed withthe next integration step.In pratie, even the mahine preision (δ ≈ 2 · 10−16, for IEEE 64bit numbers, double types) an be reahed without any additionaltriks!



Adaptive integration � III.Some hints:
• Choies for Mmin and Mmax: make the integration as fast as possible.
• Of ourse, it depends on the problem, the atual implementation and thevalue of δ. In pratie, Mmin ≈ 16 and Mmax ≈ 20 is a good hoie for the

N-body problem and for mahine preision.Appliations:
• Time series analysis: the model funtion an be threated as an analytialfuntion even if it an be derived only as a solution of an ODE;
• For this analysis, one needs: time series and the parametri derivatives(see, e.g.: linear regression, nonlinear Levenberg-Marquardt �t, error prop-agation and estimation of the unertainties using Fisher analysis).



Adaptive integration � IV � the N-body problemPropertites of a �regular� planetary system: almost irularorbits; no orbital intersetions and regular motion on shortertimesales.How an the adaptive Lie-integration be made more e�ient:
• the integration order is not the same for the bodies;
• inner planets: higher orders for a ertain stepsize (the orbital urvetureis larger, see the �gure about the sine funtion), outer planets: a smallerorder is adequate;
• �rosstalk� between the oe�ients: terms related to the interation be-tween the entral body and the given planet have to be omputed up toa higher order than the terms related to mutual interations.
• 1 ≪ N-body systems: although the initialization of the integration requires
O(N2) operation, we might save CPU time during the omputation ofthe 1 ≤ k Lie-oe�ients by employing suh an algorithm, thus suh animplementation might be an O(Np) one (where 1 ≤ p < 2).To be done, under onstrution, ongoing study, et . . .



AppliationsAnalytial investigations of ODE solutions: there is a quantity Qthat depends on the solution itself: Q ≡ Q(x(t)). Problem: whatare the parametri derivatives of Q with respet to the initialonditions (x0 ≡ x|t=0)? These are:
∂Q

∂x0

ℓ

= Zℓk

∂Q

∂xk

, (8)while Zℓk is the solution of the full linearized set of equations:
Żℓk = Zℓm

∂fk(x)

∂xm

, (9)with the initial onditions of Zℓk|t=0 = δℓk.Additionally, the hain rule an be applied if it is neessary.



Appliations � analysis of RV urvesRadial veloity variations aused by multiple planetary ompan-ions:
• N-body problem;
• ordinary di�erential equations, Lie-series are known;
• parameters: orbital elements and the observed RV amplitude(hain rule: it is not so simple to apply)
• observed quantity (denoted as Q earlier): radial veloity: thelassi solution is the linear ombination of eah omponent(thus, the derivatives ∂Q/∂xk an be omputed easily);Therefore: the previously introdued algorithms and methodsan be applied for RV analysis. In other words, an RV time seriesan be treated as simple as any well-known ordinary analytialfuntion (linear funtion, trigonometri, et.)



Appliations � HD 73526 � I.
• Two planets, nearly 2:1 mean motion resonane.
• A simple question: an the orbital inlination be derivedpurely from RV data? Parameters:

N × {K, n, λ0, e cosω, e sin ω} , M⋆, sin i.
• Small inlination ⇒ larger masses (i.e. m sin i is given) ⇒stronger perturbations.
• The whole RV tiem series is treated and modelled as an an-alytial funtion. Important: it is independent from stabilitystudies!
• It is good if the unertainty of sin i is smaller than 1.
• Methods: �t of the orbital elements, RV amplitudes and sin i,and unertainty estimations: Monte-Carlo (MCMC). An in-dependent estimation for the unertainties: Fisher-analysis.



Appliations � HD 73526 � II.Monte-Carlo (MCMC) distribution for sin i:
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Fisher analysis: ∆(sin i) ≈ 0.19 ⇒ the two methods yield theroughly the same values!



Implementation � I.Basi implementation on an UNIX-like system:
• �Normal� implementation: C ode with ≈3.5 klo (inluding a simple userinterfae that parses simple on�guration �les, some basi haos detetionalgorithms, full implementation of the adaptive integration).
• Number of basi arithmeti operations (addition, subtration, multiplia-tion): N2O(M2), number of more omplex operations (division, exponen-tial and power, square root): N2.
• Problems related to stability investigations: independent ODEs for eahinitial ondition → parallel omputations.



Implementation � II.Implementation on a (GP)GPU arhiteture:
• Can be made very e�etive:� no need for omplex operations at the most of the time; and� no interation between the various initial onditions.
• Memory: although the Lie-integration requires �more� memory than anormal (RK, BS, . . . ) integration:� data still �t into the registers(!) of the GPU;� additionally, no need for the global (DRAM) memory at all (only forommuniating with the CPU and/or system DRAM); and� only minimal SRAM (higher level ahe) is needed (for global on-stants /masses, physial onstants/ and some initialization valuesrequired by the algorithm; suh as ρ−2

ij and so on).
• Non-trivial issues: omputation on di�erent threads yields di�erent inte-gration times and omputing times as well.To be done, under onstrution, ongoing study, et . . .



Summary
• Lie-integration: very e�etive, an be applied easily andwithout losing (expensive) omputation time as an adap-tive integration sheme, but there is no general form (i.e.algorithm or implementation).
• Linearized equations: derived almost automatially.
• Possibilites for analytial investigations if the model funtionis a result of an ordinary di�erential equation.
• Appliations: RV analysis, unertainty estimations.
• Implementation: normal (CPU) ode, GPU ode; ratheromplex, but. . .



Thank you


