Adaptive Lie-integration

5th Austrian-Hungarian Workshop on Trojans and Related Topics

9 - 10 April, 2010

Ordinary differential equations

Problem: let's solve the equation

$$\dot{x}_i = f_i(\mathbf{x}) \tag{1}$$

where $\mathbf{x} : \mathbb{R} \to \mathbb{R}^N$ ($\mathbf{x} = (x_1, \dots, x_N)$). Note: all non-autonomous equation can be transformed into such a form by introducing a new variable. Numerical methods for solving such equations:

- classic explicit methods (e.g. RKn, MMID, BS);
- symplectic mappings (for special /Hamiltonian/ problems, e.g. Leap-Frog);
- implicit methods (e.g. modified Euler);
- Lie-integration: the power series expansion of the solution is computed and the coefficients are then summed appropriately.

Adatptive integration methods

Basic problem: the numerical solution is performed with a given stepsize, however, it is not obvious what is the "optimal" stepsize in order to obtain a certain (relative or absolute) precision:

- analytic estimations for this optimal stepsize; or
- direct variations (until the desired precision is obtained).

With the exception of the Euler method, all of the explicit methods must compute the right-hand side of the ODE in instances that depend on the stepsize \Rightarrow if it turns out to be too small or too large, stepsize variation yields CPU time loss.

Lie-integration

Formally, the solution of the differential equation

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}) \tag{2}$$

(where $\mathbf{f}:\mathbb{R}^N o\mathbb{R}^N$) can be written as

$$\mathbf{x}(t + \Delta t) = \exp(\Delta t L)\mathbf{x}(t), \tag{3}$$

where $L = \sum_{i=1}^{N} f_i D_i$ and $D_i = \frac{\partial}{\partial x_i}$ (*L* is the so-called Lie-operator). The exponential function can be expanded as:

$$\exp(\Delta tL) = \sum_{k=0}^{\infty} \frac{\Delta t^k}{k!} L^k.$$
(4)

The Lie-integration is the finite approximation of the sum in equation (4) (see, e.g., Hanslmeier & Dvorak, 1984, A&A).

Properties of the Lie-integration

Advantages:

- yields the coefficients of the Taylor-expansion (of course, these can be exploited for other purposes as well, example: transit light curve asymmetries due to an eccentric orbit: $M \le 3...5$);
- the coefficients are computed using recurrence relations: the derivatives $L^{n+1}x_i$ are written as the functions of the derivatives L^kx_j ($0 \le k \le n$);
- if the coefficients are known \Rightarrow the computation of the sum is extremely fast, for <u>arbitrary</u> values of Δt
- all in all: a very fast method

Disadvantages:

• For each problem (differential equation), we need a different set of recurrence relations that should be derived independently. It is highly not obvious and such a derivation requires some sort of intuition.

All in all, the Lie-integration is not a widespread method, although it is definitely more effective than the other techniques.

Linearized equations

The original set of ODEs $(\mathbf{x} : \mathbb{R} \to \mathbb{R}^N)$ and its linearized $(\xi : \mathbb{R} \to \mathbb{R}^N)$:

$$\dot{x}_i = f_i(\mathbf{x}),$$

$$\dot{\xi}_i = \sum_{m=1}^N \xi_m \frac{\partial f_i(\mathbf{x})}{\partial x_m}.$$

Using the notations introduced earlier:

$$L = L_0 + L_\ell = f_i D_i + \xi_m D_m f_i \partial_i, \tag{5}$$

where $D_m = \frac{\partial}{\partial x_m}$ and $\partial_i = \frac{\partial}{\partial \xi_i}$ (thus, $L_0 = f_i D_i$ and $L_\ell = \xi_m D_m f_i \partial_i$). This extension of the original ODE does not modify the formal solution of equation (3), since $L_0 \xi_i \equiv 0$ for all i = 1, ..., N.

Solving the linearized equations

We can write the solution similarly to the original equations (see Pál & Süli 2007, MNRAS):

$$\xi(t + \Delta t) = \exp(\Delta t L)\xi(t).$$
(6)

It has been proven that the derivatives $L^n \xi_k = (L_0 + L_\ell)^n \xi_k$ can be computed in a simpler manner, namely:

$$L^n \xi_k = \xi_m D_m L^n x_k = \xi_m D_m L_0^n x_k.$$
⁽⁷⁾

On the right-hand side, there are only functions of the D_m derivatives (in practice, in the form of $D_m L_0^n$).

Adaptive integration – I.

An example: the Taylor-expansion of a periodic function:

The expansion of the sine function up to the order of 61.

To obtain a certain precision, the integration order is roughly proportional to the integration stepsize.

Adaptive integration – II.

Simple algorithm: let us define a minimal and maximal integration (polynomial) order: M_{\min} and M_{\max}

- 1. the integration (i.e. the computation of the coefficients and the summation) is performed for a given Δt stepsize.
- 2. if the desired precision (δ) is reached earlier (so, $M < M_{\min}$), then Δt is multiplied by M_{\max}/M_{\min} and the sum of the power series is calculated again (including the computation of the subsequent Lie-derivatives). This step might have to be repeated until M reaches M_{\min} .
- 3. If the precision δ is not obtained before the order M_{max} , then Δt is multiplied (decreased) by $M_{\text{min}}/M_{\text{max}}$ and the sum is computed (like above, this step is repeated until convergence).
- 4. If the given precision is reached between M_{\min} and M_{\max} , we proceed with the next integration step.

In practice, even the machine precision ($\delta \approx 2 \cdot 10^{-16}$, for IEEE 64 bit numbers, double types) can be reached without any additional tricks!

Adaptive integration – III.

Some hints:

- Choices for M_{\min} and M_{\max} : make the integration as fast as possible.
- Of course, it depends on the problem, the actual implementation and the value of δ . In practice, $M_{\rm min} \approx 16$ and $M_{\rm max} \approx 20$ is a good choice for the N-body problem and for machine precision.

Applications:

- Time series analysis: the model function can be threated as an analytical function even if it can be derived only as a solution of an ODE;
- For this analysis, one needs: time series <u>and</u> the parametric derivatives (see, e.g.: linear regression, nonlinear Levenberg-Marquardt fit, error propagation and estimation of the uncertainties using Fisher analysis).

Adaptive integration -IV - the N-body problem

Propertites of a "regular" planetary system: almost circular orbits; no orbital intersections and regular motion on shorter timescales.

How can the adaptive Lie-integration be made more efficient:

- the integration order is not the same for the bodies;
- inner planets: higher orders for a certain stepsize (the orbital curveture is larger, see the figure about the sine function), outer planets: a smaller order is adequate;
- "crosstalk" between the coefficients: terms related to the interaction between the central body and the given planet have to be computed up to a higher order than the terms related to mutual interactions.
- $1 \ll N$ -body systems: although the initialization of the integration requires $\mathcal{O}(N^2)$ operation, we might save CPU time during the computation of the $1 \leq k$ Lie-coefficients by employing such an algorithm, thus such an implementation might be an $\mathcal{O}(N^p)$ one (where $1 \leq p < 2$).

To be done, under construction, ongoing study, etc ...

Applications

Analytical investigations of ODE solutions: there is a quantity Q that depends on the solution itself: $Q \equiv Q(\mathbf{x}(t))$. Problem: what are the parametric derivatives of Q with respect to the initial conditions $(\mathbf{x}^0 \equiv \mathbf{x}|_{t=0})$? These are:

$$\frac{\partial Q}{\partial x_{\ell}^{0}} = \mathcal{Z}_{\ell k} \frac{\partial Q}{\partial x_{k}},\tag{8}$$

while $\mathcal{Z}_{\ell k}$ is the solution of the full linearized set of equations:

$$\dot{\mathcal{Z}}_{\ell k} = \mathcal{Z}_{\ell m} \frac{\partial f_k(\mathbf{x})}{\partial x_m},\tag{9}$$

with the initial conditions of $\mathcal{Z}_{\ell k}|_{t=0} = \delta_{\ell k}$.

Additionally, the chain rule can be applied if it is neccessary.

Applications – analysis of RV curves

Radial velocity variations caused by multiple planetary companions:

- *N*-body problem;
- ordinary differential equations, Lie-series are known;
- parameters: orbital elements and the observed RV amplitude (chain rule: it is not so simple to apply)
- observed quantity (denoted as Q earlier): radial velocity: the classic solution is the linear combination of each component (thus, the derivatives $\partial Q/\partial x_k$ can be computed easily);

Therefore: the previously introduced algorithms and methods can be applied for RV analysis. In other words, an RV time series can be treated as simple as any well-known ordinary analytical function (linear function, trigonometric, etc.)

Applications – HD 73526 – I.

- Two planets, nearly 2:1 mean motion resonance.
- A simple question: can the orbital inclination be derived purely from RV data? Parameters:

 $N \times \{\mathcal{K}, n, \lambda_0, e \cos \omega, e \sin \omega\}, M_\star, \sin i.$

- Small inclination \Rightarrow larger masses (i.e. $m \sin i$ is given) \Rightarrow stronger perturbations.
- The whole RV tiem series is treated and modelled as an analytical function. Important: it is <u>independent</u> from stability studies!
- It is good if the uncertainty of $\sin i$ is smaller than 1.
- Methods: fit of the orbital elements, RV amplitudes and $\sin i$, and uncertainty estimations: Monte-Carlo (MCMC). An independent estimation for the uncertainties: Fisher-analysis.

Applications – HD 73526 – II.

Monte-Carlo (MCMC) distribution for $\sin i$:

Fisher analysis: $\Delta(\sin i) \approx 0.19 \Rightarrow$ the two methods yield the roughly the same values!

Implementation – I.

Basic implementation on an UNIX-like system:

- "Normal" implementation: C code with ≈3.5 kloc (including a simple user interface that parses simple configuration files, some basic chaos detection algorithms, full implementation of the adaptive integration).
- Number of basic arithmetic operations (addition, subtraction, multiplication): $N^2 \mathcal{O}(M^2)$, number of more complex operations (division, exponential and power, square root): N^2 .
- Problems related to stability investigations: independent ODEs for each initial condition → parallel computations.

Implementation – II.

Implementation on a (GP)GPU architecture:

- Can be made very effective:
 - no need for complex operations at the most of the time; and
 - no interaction between the various initial conditions.
- Memory: although the Lie-integration requires "more" memory than a normal (RK, BS, ...) integration:
 - data still fit into the registers(!) of the GPU;
 - additionally, no need for the global (DRAM) memory at all (only for communicating with the CPU and/or system DRAM); and
 - only minimal SRAM (higher level cache) is needed (for global constants /masses, physical constants/ and some initialization values required by the algorithm; such as ρ_{ij}^{-2} and so on).
- Non-trivial issues: computation on different threads yields different integration times and computing times as well.

To be done, under construction, ongoing study, etc ...

Summary

- Lie-integration: very effective, can be applied easily and without losing (expensive) computation time as an adaptive integration scheme, but there is no general form (i.e. algorithm or implementation).
- Linearized equations: derived almost automatically.
- Possibilites for analytical investigations if the model function is a result of an ordinary differential equation.
- Applications: RV analysis, uncertainty estimations.
- Implementation: normal (CPU) code, GPU code; rather complex, but...

Thank you