Dynamics of possible Uranus Trojans

Bazsó Ákos

Institute of Astronomy, University of Vienna

5th Austrian-Hungarian Workshop April 2010

Outline

2 Dynamical Model & Methods

3 Analysis

- Cuto thro
- Outs through L4/L5
- Libration width
- Long-time integration
- Frequency analysis

Trojans in the Solar System

Planets with known Trojan asteroids^a:

+ Mars:

$$L_4 = 1, L_5 = 3$$

- + Jupiter: $L_4 = 2603, L_5 = 1473$
- Saturn: 0
- Uranus: 0
- + Neptune: $L_4 = 6, L_5 = 0$

^asource: IAU Minor Planet Center, list dated from 2010 Feb. 12,

http://www.cfa.harvard.edu/iau/lists/Trojans.html

Jupiter Trojans (source from: Wikipedia)

Trojans in the Solar System Goals for investigation

Dynamically stable zone for Uranus Trojans?

- Murray & Holman (1999): overlap of MMR in OSS
- Nesvorný & Dones (2002): population depleted by factor 100
- Zhou et al. (2009): Neptune Trojans at high inclinations

Trojans in the Solar System Goals for investigation

- Dynamically stable zone for Uranus Trojans?
- ② Timescale for stability?

Trojans in the Solar System Goals for investigation

- Dynamically stable zone for Uranus Trojans?
- ② Timescale for stability?
- Dependence on inclination?

Trojans in the Solar System Goals for investigation

- Dynamically stable zone for Uranus Trojans?
- ② Timescale for stability?
- Dependence on inclination?
- Perturbations by resonances?

Dynamical Model

- OSS: Sun Jupiter Saturn Uranus Neptune
- restricted problem: swarm of massless Trojan asteroids
- Newtonian framework
- equilateral triangle equilibrium points *L*₄, *L*₅ dynamically symmetric

Methods

- numerical integration of equations of motion: Lie Integrator
- integration time: $10^6 5 \times 10^9$ years
- grid of initial conditions:
 - changed $a = a_U \pm m \times 0.007$ AU (1 $\leq m \leq$ 50)
 - changed $i_U \leq i \leq 60^\circ$
 - $\omega_T = \omega_U \pm 60^\circ$
- (e, Ω, M) identical to Uranus
- cuts through equilibrium points (supposed values)

Tools for analysis

- maximum eccentricity: *e*_{max}
- 2 libration width: $\sigma = \lambda \lambda_U$
- escape times
- frequency analysis: proper frequencies

Cuts through L4/L5 Libration width Long-time integration Frequency analysis

Stability of L₄ cut in semi-major axis

Bazsó Ákos

Dynamics of possible Uranus Trojans

Cuts through L4/L5 Libration width Long-time integration Frequency analysis

Stability of L₄

Bazsó Ákos

Dynamics of possible Uranus Trojans

2

Cuts through L4/L5 Libration width Long-time integration Frequency analysis

Stability of L₅ cut in semi-major axis

Bazsó Ákos

Dynamics of possible Uranus Trojans

Cuts through L4/L5 Libration width Long-time integration Frequency analysis

Stability of L₅

Bazsó Ákos

Dynamics of possible Uranus Trojans

2

Cuts through L4/L5 Libration width Long-time integration Frequency analysis

Libration Width (1/3)

Bazsó Ákos Dynamics of possible Uranus Trojans

3

Cuts through L4/L5 Libration width Long-time integration Frequency analysis

Libration Width (2/3)

Cuts through L4/L5 Libration width Long-time integration Frequency analysis

Libration Width (3/3)

Cuts through L4/L5 Libration width Long-time integration Frequency analysis

Comparison of Libration Widths

Cuts through L4/L5 Libration width Long-time integration Frequency analysis

Comparison of Methods for $T = 10^8$ yrs.

Cuts through L4/L5 Libration width Long-time integration Frequency analysis

Trojan for 5 Ga (1/3)

Cuts through L4/L5 Libration width Long-time integration Frequency analysis

Trojan for 5 Ga (2/3)

Cuts through L4/L5 Libration width Long-time integration Frequency analysis

Trojan for 5 Ga (3/3)

Cuts through L4/L5 Libration width Long-time integration Frequency analysis

Frequency Analysis (1/4) About SIGSPEC

- Author: P. Reegen, A&A 467, 2007
- time series analysis by DFT
- spectral significance: accurate peak detection
- using secular variables:

 $k = e\cos(\omega + \Omega), q = \sin i \cos \Omega$

Cuts through L4/L5 Libration width Long-time integration Frequency analysis

Frequency Analysis (2/4)

Common frequencies in dynamical spectrum of Uranus

combination	periods [×10 ³ yrs]
g 5	305.2
g_6	45.7
g_7	419.2
g_8	1928.0
$g_7+s_7-s_8$	1650.6
$-g_5+2g_7$	666.8
2 <i>g</i> ₅ – <i>g</i> ₇	240.1
MMR 2:1 U/N	4.236

Cuts through L4/L5 Libration width Long-time integration Frequency analysis

Frequency Analysis (3/4)

Secular frequencies acting on Trojans

Bazsó Ákos

Dynamics of possible Uranus Trojans

Cuts through L4/L5 Libration width Long-time integration Frequency analysis

Frequency Analysis (4/4)

Secular frequencies acting on Trojans

Bazsó Ákos

Dynamics of possible Uranus Trojans

 Motivation
 Cuts through L4/L5

 Dynamical Model & Methods
 Libration width

 Analysis
 Long-time integration

 Results
 Frequency analysis

Comparison

 Motivation
 Cuts through L4/L5

 Dynamical Model & Methods
 Libration width

 Analysis
 Long-time integration

 Results
 Frequency analysis

Conclusions

- detected stable zones for at least up to 5×10^8 years
- lifetime for selected (low inclination) orbits 5 Ga
- secular resonances shaping stability zone