Inclined orbits in the HZ of multiplanetary systems

Barbara Funk
Eötvös University

AHW 2010 - Vienna, 09.04.2010

Table of contents

- Multiplanetary systems in the DASSC-Catalogue
- Calculating the HZ
- Model and Methods
- Kozai-Resonances

In the restricted 3 body problem

- Investigated Systems

Examples
47 Uma
HD 190360

- Summary

Multiplanetary systems in the DASSC

The DASSC (Darwin All Sky Target Star Catalogue) lists all stars suitable for the search for Earth like planets

Combined data from Hipparcos, 2MASS catalogue, Catalogue of Components of Double and Multiple stars (CCDM), and the ninth catalogue of spectroscopic binary orbits (SB9) were used
Then all F, G, K and M stars within 30 pc were selected
By using the HR Diagram, all main sequence stars were selected in the next step

- The resulting DASSC contains a sample of 2303 identified objects, of which 284 are F, $464 \mathrm{G}, 883 \mathrm{~K}$ and 672 M type stars.
- For Details see: Kaltenegger, L., Eiroa, C., Fridlund, M.: 2008, "Target star catalogue for Darwin: Nearby Stellar sample for a search for terrestrial planets", submitted to A \& A

Multiplanetary systems in the DASSC

HIP	HD	Planet Name	St. Mass	St. Spec. Type	PI. Mass	PI. Semi-axis	PI. Ecc	omega	HZ_I (AU)	HZ_O (AU)
			[MSun]		[MJup]					
40693	69830	HD 69830 b	0,86	K0 V	0,0330	0,0785	0,1	340	0,75	1,47
40693	69830	HD 69830 c	0,86	K0 V	0,0380	0,186	0,13	221	0,75	1,47
40693	69830	HD 69830 d	0,86	K0 V	0,0580	0,63	0,07	224	0,75	1,47
43587	75732	55 Cnc b	0,94	K0/G8 V	0,8240	0,115	0,014	248,9	0,66	1,30
43587	75732	55 Cnc c	0,94	K0/G8 V	0,1690	0,24	0,086	77,9	0,66	1,30
43587	75732	55 Cnc d	0,94	K0/G8 V	3,8350	5,77	0,025	181,3	0,66	1,30
43587	75732	55 Cnc e	0,94	K0/G8 V	0,0340	0,038	0,07	248,9	0,66	1,30
43587	75732	55 Cnc f	0,94	K0/G8 V	0,1440	0,781	0,2	181,1	0,66	1,30
47007	82943	HD 82943 b	1,15	G0	1,8400	1,18	0,18	237	1,03	2,04
47007	82943	HD 82943 c	1,15	G0	1,8500	0,75	0,38	124	1,03	2,04
71395	128311	HD 128311 b	0,84	K0 V	2,1800	1,099	0,25	110,9	0,52	1,03
71395	128311	HD 128311 c	0,84	K0 V	3,2100	1,76	0,17	195,5	0,52	1,03
86796	160691	HD 160691 b	1,08	G3 IV-V	1,6760	1,497	0,128	22	1,10	2,18
86796	160691	HD 160691 c	1,08	G3 IV-V	0,0332	0,09094	0,172	212,7	1,10	2,18
86796	160691	HD 160691 d	1,08	G3 IV-V	0,5219	0,921	0,0666	189,6	1,10	2,18
86796	160691	HD 160691 e	1,08	G3 IV-V	1,8140	5,235	0,0985	57,6	1,10	2,18
98767	190360	HD 190360 b	1,04	G6 IV	1,5020	3,92	0,36	12,4	0,88	1,75
98767	190360	HD 190360 c	1,04	G6 IV	0,0570	0,128	0,01	153,7	0,88	1,75
53721	95128	47 Uma b	1,063	G0 V	2,5300	2,1	0,032	334	1,05	2,07
53721	95128	47 Uma c	1,063	G0 V	0,5400	3,6	0,098	295	1,05	2,07
53721	95128	47 Uma d	1,063	G0 V	1,6400	11,6	0,16	110	1,05	2,07
74995		Gl 581 e	0,31	M3	0,0061	0,03	0	0	0,08	0,17
74995		Gl 581 b	0,31	M3	0,0492	0,04	0	0	0,08	0,17
74995		Gl 581 c	0,31	M3	0,0169	0,07	0,17	250	0,08	0,17
74995		Gl 581 d	0,31	M3	0,0223	0,22	0,38	327	0,08	0,17
113020		Gl 876 b	0,334	M4 V	2,6400	0,211	0,029	275,52	0,14	0,28
113020		Gl 876 c	0,334	M4 V	0,8300	0,132	0,266	275,26	0,14	0,28
113020		Gl 876 d	0,334	M4 V	0,0198	0,021	0,139	170,6	0,14	0,28

Calculating the HZ

The HZ is defined as the region, where liquid water can exist on the surface of a terrestrial planet.

Depends on: Luminosity (L), Spectraltyp, Mass, Age,... of the Star
To calculate the inner and outer border of the HZ (d) we used the following formula (based on a climate model, for Details: Kaltenegger et al. 2008)

$$
d=\sqrt{\frac{L}{\frac{L_{\text {Sun }}}{S_{e f f}}}}
$$

Where $S_{\text {eff }}$ is the normalized solar flux factor that takes the wavelength dependent intensity distribution of the spectrum of dierent spectral classes into account

Spectral-Type	Inner boarder	Outer boarder
F	1.90	0.46
G	1.41	0.36
K	1.05	0.27
M	1.05	0.27

Calculating the HZ

Additional the possibility for life on a terrestrial planet depends on:

- The orbits of the known planets
- The orbit of the terrestrial planet
- Mass,
- Atmosphere,... of the terrestrial planet

Model and Methods

Configuration: Multiple planetary system around a single star

Dynamical model: Additional to the known components of these systems we calculated test-planets inside the HZ. Therefore we used:

- the restricted \mathbf{n}-body problem consisting of the star, the discovered planets and massless test-planets in the same plane and on inclined orbits

Model and Methods - Initial conditions

Initial conditions for the test-planets:

	Test-planets
a	$\mathrm{HZ}, \Delta \mathrm{a}=0.05$ or 0.01 AU
e	0
i	$i=0^{\circ}$ to $60^{\circ}, \Delta i=5^{\circ}$
ω, Ω, M	0°

Model and Methods - Integration and analysis

Integrators:

Lie-Series Integration Method

- Integration - Time: 500000 years
- Analysis:

The maximum eccentricity
The escape time

Kozai-Resonances

- Characterized by a libration of ω around 90° or 270°
- Coupling of the eccentricity and the inclination
- Earlier Investigations:

Restricted 3 body problem

	gas giant	test-planet
Semi-major axis [AU]	1.0	$0.01,0.02, \ldots, 0.99$
Eccentricity	$0.0,0.1, \ldots 0.9$	0.0
Inclination [deg]	0	$0,5, \ldots, 60$
$\mu=\frac{M_{\text {planet }}}{M_{\text {star }}+M_{\text {planet }}}$	$0.0005,0.001,0.003$	
Integration time	100,000 years	

$\omega, \Omega, M=0^{\circ}$

Kozai-Resonances

- Some examples in the restricted 3 body problem:

Kozai-Resonances

Investigated Systems

Investigated Systems - 47 Uma

Name	\mathbf{M}	Spec. Type	$\mathbf{a}[A U]$	\mathbf{e}	$\boldsymbol{\omega}$	$\mathbf{i}\left[{ }^{\circ}\right]$	HZ [AU]
47 Uma	$1.063 \mathrm{M}_{\text {Sun }}$	G0 V	-	-	-	-	$1.05-2.07$
47 Uma b	$2.53 \mathrm{M}_{\text {Jup }}$	-	2.1	0.032	334	-	-
47 Uma c	$0.54 \mathrm{M}_{\text {Jup }}$	-	3.6	0.098	295	-	-
47 Uma d	$1.64 \mathrm{M}_{\text {Jup }}$	-	11.6	0.16	110	-	-
47 Uma - TP	0	-	$1.05-2.07$ $\Delta a=0.05$	0	0	$0-60$ $\Delta \mathrm{i}=5$	-

$$
\begin{gathered}
\mathrm{a}_{\mathrm{TP}}=1.24 \mathrm{AU} \stackrel{\stackrel{-}{-}}{\mathrm{i}_{\mathrm{TP}}}=30^{\circ}
\end{gathered}
$$

Investigated Systems - HD 190360

Name	M	Spec. Type	$\mathbf{a}[A U]$	\mathbf{e}	\boldsymbol{w}	$\mathbf{i}\left[{ }^{\circ}\right]$	HZ [AU]
HD 190360	1.04 M $_{\text {Sun }}$	G6 IV	-	-	-	-	$0.85-1.8$
HD 190360 b	$1.502 \mathrm{M}_{\text {Jup }}$	-	3.92	0.36	12.4	-	-
HD 190360 c	$0.057 \mathrm{M}_{\text {Jup }}$	-	0.128	0.01	153.7	-	-
HD $190360-$ TP	0	-	$0.85-1.8$ $\Delta a=0.05$	0	0	$0-60$	-

$\mathrm{a}_{\mathrm{TP}}=1.36 \mathrm{AU}$
$\mathrm{i}_{\mathrm{TP}}=35^{\circ}$

Summary

- (partly) stable habitable zone:

47 Uma
HD 190360
55 Cnc
HD 69830

- Stabilising Effect of Kozai Resonances

Allready shown for the restricted 3 body problem
Despite the perdurbing influence of additional planets, still visible in multiplanetary system
\rightarrow The Kozai-Resonance can protect terrestrial planets with inclinations between $\sim 30^{\circ}$ and 35°

