Inclined orbits in the HZ of multiplanetary systems

Barbara Funk Eötvös University

AHW 2010 - Vienna, 09.04.2010

Table of contents

- Multiplanetary systems in the DASSC-Catalogue
- Calculating the HZ
- Model and Methods
- Kozai-Resonances
 - In the restricted 3 body problem
- Investigated Systems
 - Examples
 - •47 Uma
 - HD 190360
- Summary

Multiplanetary systems in the DASSC

- The DASSC (Darwin All Sky Target Star Catalogue) lists all stars suitable for the search for Earth like planets
 - Combined data from Hipparcos, 2MASS catalogue, Catalogue of Components of Double and Multiple stars (CCDM), and the ninth catalogue of spectroscopic binary orbits (SB9) were used
 - Then all F, G, K and M stars within 30 pc were selected
 - By using the HR Diagram, all main sequence stars were selected in the next step
- The resulting DASSC contains a sample of 2303 identified objects, of which 284 are F, 464 G, 883 K and 672 M type stars.

For Details see: Kaltenegger, L., Eiroa, C., Fridlund, M.: 2008, "Target star catalogue for Darwin: Nearby Stellar sample for a search for terrestrial planets", submitted to A & A

Multiplanetary systems in the DASSC

HIP	HD	Planet Name	St. Mass	St. Spec. Type	PI. Mass	PI. Semi-axis	PI. Ecc	omega	HZ_I (AU)	HZ_O (AU)
			[MSun]	1	[MJup]			1.44		
40693	69830	HD 69830 b	0,86	K0 V	0,0330	0,0785	0,1	340	0,75	1,47
40693	69830	HD 69830 c	0,86	K0 V	0,0380	0,186	0,13	221	0,75	1,47
40693	69830	HD 69830 d	0,86	K0 V	0,0580	0,63	0,07	224	0,75	1,47
43587	75732	55 Cnc b	0,94	K0/G8 V	0,8240	0,115	0,014	248,9	0,66	1,30
43587	75732	55 Cnc c	0,94	K0/G8 V	0,1690	0,24	0,086	77,9	0,66	1,30
43587	75732	55 Cnc d	0,94	K0/G8 V	3,8350	5,77	0,025	181,3	0,66	1,30
43587	75732	55 Cnc e	0,94	K0/G8 V	0,0340	0,038	0,07	248,9	0,66	1,30
43587	75732	55 Cnc f	0,94	K0/G8 V	0,1440	0,781	0,2	181,1	0,66	1,30
47007	82943	HD 82943 b	1,15	G0	1,8400	1,18	0,18	237	1,03	2,04
47007	82943	HD 82943 c	1,15	G0	1,8500	0,75	0,38	124	1,03	2,04
71395	128311	HD 128311 b	0,84	K0 V	2,1800	1,099	0,25	110,9	0,52	1,03
71395	128311	HD 128311 c	0,84	K0 V	3,2100	1,76	0,17	195,5	0,52	1,03
86796	160691	HD 160691 b	1,08	G3 IV-V	1,6760	1,497	0,128	22	1,10	2,18
86796	160691	HD 160691 c	1,08	G3 IV-V	0,0332	0,09094	0,172	212,7	1,10	2,18
86796	160691	HD 160691 d	1,08	G3 IV-V	0,5219	0,921	0,0666	189,6	1,10	2,18
86796	160691	HD 160691 e	1,08	G3 IV-V	1,8140	5,235	0,0985	57,6	1,10	2,18
98767	190360	HD 190360 b	1,04	G6 IV	1,5020	3,92	0,36	12,4	0,88	1,75
98767	190360	HD 190360 c	1,04	G6 IV	0,0570	0,128	0,01	153,7	0,88	1,75
53721	95128	47 Uma b	1,063	G0 V	2,5300	2,1	0,032	334	1,05	2,07
53721	95128	47 Uma c	1,063	G0 V	0,5400	3,6	0,098	295	1,05	2,07
53721	95128	47 Uma d	1,063	G0 V	1,6400	11,6	0,16	110	1,05	2,07
74995		GI 581 e	0,31	M3	0,0061	0,03	0	0	0,08	0,17
74995		GI 581 b	0,31	M3	0,0492	0,04	0	0	0,08	0,17
74995		GI 581 c	0,31	M3	0,0169	0,07	0,17	250	0,08	0,17
74995		GI 581 d	0,31	M3	0,0223	0,22	0,38	327	0,08	0,17
113020		GI 876 b	0,334	M4 V	2,6400	0,211	0,029	275,52	0,14	0,28
113020		GI 876 c	0,334	M4 V	0,8300	0,132	0,266	275,26	0,14	0,28
113020		GI 876 d	0,334	M4 V	0,0198	0,021	0,139	170,6	0,14	0,28

Calculating the HZ

The HZ is defined as the region, where liquid water can exist on the surface of a terrestrial planet.

Depends on: Luminosity (L), Spectraltyp, Mass, Age,... of the Star

To calculate the inner and outer border of the HZ (d) we used the following formula (based on a climate model, for Details: Kaltenegger et al. 2008)

$$d = \sqrt{\frac{\frac{L}{L_{Sun}}}{S_{eff}}}$$

Where $S_{\rm eff}$ is the normalized solar flux factor that takes the wavelength dependent intensity distribution of the spectrum of dierent spectral classes into account

Spectral-Type	Inner boarder	Outer boarder		
F	1.90	0.46		
G	1.41	0.36		
К	1.05	0.27		
М	1.05	0.27		

Additional the possibility for life on a terrestrial planet depends on:

- The orbits of the known planets
- The orbit of the terrestrial planet
- Mass,
- Atmosphere,... of the terrestrial planet

Model and Methods

Configuration: Multiple planetary system around a single star

- Dynamical model: Additional to the known components of these systems we calculated test-planets inside the HZ. Therefore we used:
 - the restricted n-body problem consisting of the star, the discovered planets and massless test-planets in the same plane and on inclined orbits

Model and Methods – Initial conditions

Initial conditions for the test-planets:

	Test-planets					
а	HZ, ∆ <i>a</i> = 0.05 or 0.01 AU					
е	0					
i	$i = 0^\circ$ to 60° , $\Delta i = 5^\circ$					
ω, Ω, Μ	0°					

Model and Methods – Integration and analysis

Integrators:

○ Lie-Series Integration Method

Integration – Time: 500 000 years

Analysis:

- The maximum eccentricity
- The escape time

Kozai-Resonances

• Characterized by a libration of ω around 90° or 270°

- Coupling of the eccentricity and the inclination
- Earlier Investigations:

Restricted 3 body problem

M DI COMPANY	gas giant	test-planet
Semi-major axis [AU]	1.0	0.01, 0.02,, 0.99
Eccentricity	0.0, 0.1, 0.9	0.0
Inclination [deg]	0	0, 5,, 60
$\mu = \frac{M_{planet}}{M_{star} + M_{planet}}$	0.0005, 0.001, 0.003	444 (C. 10).
Integration time	100,000 years	

 \odot ω, Ω, M = 0°

Kozai-Resonances

Some examples in the restricted 3 body problem:

 $\mu = 0.0005$ $e_{GG} = 0.5$

For Details see: B. Funk, A.-S. Libert, Á. Süli, E. Pilat-Lohinger: On the influenze of Kozai resonances in the habitable zones of extrasolar planetary systems, A & A, in preparation

Kozai-Resonances

Investigated Systems

Investigated Systems – 47 Uma

Name	М	Spec. Type	a [AU]	е	ω	i [°]	HZ [AU]
47 Uma	1.063 M _{Sun}	G0 V	-	-		- /	1.05 - 2.07
47 Uma b	2.53 M _{Jup}	_	2.1	0.032	334		
47 Uma c	0.54 M _{Jup}	-	3.6	0.098	295	-	-
47 Uma d	1.64 M _{Jup}	-	11.6	0.16	110	-	-
47 Uma – TP	0	-	1.05 – 2.07 ∆a = 0.05	0	0	0 – 60 ∆i = 5	-
			$a_{TP} = 1.24$ $i_{TP} = 3$	4 AU 0°	a (Ibab) c - 1		

Investigated Systems – HD 190360

Name	М	Spec. Type	a [AU]	е	ω	i [°]	HZ [AU]
HD 190360	1.04 M _{Sun}	G6 IV	-	-	-	-	0.85 – 1.8
HD 190360 b	1.502 M _{Jup}		3.92	0.36	12.4		-
HD 190360 c	0.057 M _{Jup}	-	0.128	0.01	153.7	-	-
HD 190360 – TP	0	-	0.85 – 1.8 ∆a = 0.05	0	0	0 – 60 ∆i = 5	-

Summary

(partly) stable habitable zone:

- O 47 Uma
- O HD 190360
- 55 Cnc
- O HD 69830

Stabilising Effect of Kozai Resonances

- Allready shown for the restricted 3 body problem
- Despite the perdurbing influence of additional planets, still visible in multiplanetary system
- → The Kozai-Resonance can protect terrestrial planets with inclinations between ~ 30° and 35°