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Introduction
● A mapping presents a way to study the behavior of nonlinear 

dynamical systems 
● Semi-analytical method
● Advantages over numerical integration:

– Computing time
– Accuracy

● Phase space topology of the mapping and the actual dynamical 
system has to be the same



  

Basic recipe
Take a nearly integrable Hamiltonian system:

0. The R3BP 
1. construct the disturbing function
2.  average the DF
3.  expand the Hamiltonian around the resonance
4.  introduce semi-cartesian coordinates & center shifting
5.  construct the mapping equations
6.  find a suitable Surface of Section



  

0. The elliptic restricted 3BP
● We consider a system of 2 massive bodies (primary and 

secondary) and a third massless body
● Good approximation for asteroid motion
● 3BP is not solvable analytically, but it can be represented by a 

nearly integrable Hamiltonian system
● Equations of motion of the test particle consist of an 

unperturbed, Keplerian part due to the gravitational attraction of 
the central body, and a perturbed part due to the attraction of the 
second body (planet etc.)



  

1. The Disturbing Function
●

● Express r, r', Δ in terms of Keplerian elements
● Use the following relations

● Bessel functions:



  

1. The Disturbing Function
● Mean motion resonance 

● Taylor series expansion of all expressions up to the q-th order 
in e

●

●



  

2. Averaging
● Introduce modified Delaunay variables

(after Tsiganis, 2007)

● Averaging the disturbing function over the motion of the 
disturbing body (= planet) λ'

● Construct Hamiltonian



  

3. Expansion around the resonance

● location of the resonance

● resonant canonical variables

● resonant angle

● New momentum
● Hamiltonian



  

4. Semi-cartesian coordinates
● Introduce coordinates x,y

● Center shift
– Check if Hamiltonian is centered
– Translate coordinate system if necessary

=> centered in origin of coordinate system
y

x X

Y



  

4. Mapping Equations

Hadjidemetriou's method (1993)
● Create generating function
● Mapping equations

●



  

5. Surface of Section
● We consider only the elliptical 2dimensional case
● The resulting mapping is 4dimensional
● To represent the 4D phase space on a 2D surface, a Poincaré 

surface of section has to be found
● Difficulty: finding the ideal section

– First criterion (Tsiganis , 2007)

– Second criterion



  

5. Surface of Section
● Define the S.o.S. criterion
● Neglect 3rd  dimension 
●

● Write Hamiltonian in the form

●



  

Projections into 3D and 2D

Jupiter 7:4 MMR

Jupiter 3:1 MMR



  

S.o.S. Jupiter 3:1 MMR



  

S.o.S. Venus 5:3 MMR 



  

Some preliminary results...

Neptune 2:3 outer MMR 

3D projection (X,Y,J)

2D projection (X,Y)
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