Stabilising relativistic fluids on slowly expanding cosmological spacetimes

Zoe Wyatt

CERS, 21 February 2022

Setting for today

Goal: understand the stability of particular cosmological spacetimes filled with idealised perfect fluids.

- CMP 2021, with Fajman (Vienna) and Oliynyk (Monash)
- arXiv:2107.00457 with Fajman and Ofner (Vienna)

Cosmological spacetimes

Interested in cosmological solutions to the Einstein equations

$$
\begin{equation*}
\operatorname{Ric}[g]_{\mu \nu}-\frac{1}{2} g_{\mu \nu} \mathrm{R}[g]+\Lambda g_{\mu \nu}=8 \pi T_{\mu \nu} \tag{1}
\end{equation*}
$$

Cosmological principle:

- fundamental oberservers whose timelines span the spacetime and whose proper time t_{c} is cosmic time
- at large scales, one sees the same distribution of matter regardless of
- direction (isotropic)
- location (homogeneous)

Cosmological spacetimes

Interested in cosmological solutions to the Einstein equations

$$
\begin{equation*}
\operatorname{Ric}[g]_{\mu \nu}-\frac{1}{2} g_{\mu \nu} \mathrm{R}[g]+\Lambda g_{\mu \nu}=8 \pi T_{\mu \nu} \tag{1}
\end{equation*}
$$

Cosmological principle:

- fundamental oberservers whose timelines span the spacetime and whose proper time t_{c} is cosmic time
- at large scales, one sees the same distribution of matter regardless of
- direction (isotropic)
- location (homogeneous)

Observations

Expect isotropy about every point

(WMAP, NASA) temperature range $\pm 200 \mu \mathrm{~K}$
Uniform radiation to roughly 1 part in 100,000.

Cosmological models

Spacetime splits as $\bar{M}=I \times M$ with metric

$$
\begin{equation*}
g=-d t_{c}^{2}+h \tag{2}
\end{equation*}
$$

where $h=h\left(t_{c}\right)$ is a Riemannian metric on M. Require (M, h) to be isotropic.

Cosmological models

Spacetime splits as $\bar{M}=I \times M$ with metric

$$
\begin{equation*}
g=-d t_{c}^{2}+h \tag{2}
\end{equation*}
$$

where $h=h\left(t_{c}\right)$ is a Riemannian metric on M. Require (M, h) to be isotropic.

Isotropy at a point $x \in M$ implies

- sectional curvature independent of choice of plane
- Riemann tensor takes the form

$$
\begin{equation*}
\operatorname{Riem}[g]_{a b c d}(x)=\kappa(x)\left(h_{a c} h_{b d}-h_{b c} h_{a d}\right)(x) \tag{3}
\end{equation*}
$$

Cosmological models

Spacetime splits as $\bar{M}=I \times M$ with metric

$$
\begin{equation*}
g=-d t_{c}^{2}+h \tag{2}
\end{equation*}
$$

where $h=h\left(t_{c}\right)$ is a Riemannian metric on M. Require (M, h) to be isotropic.

Isotropy at a point $x \in M$ implies

- sectional curvature independent of choice of plane
- Riemann tensor takes the form

$$
\begin{equation*}
\operatorname{Riem}[g]_{a b c d}(x)=\kappa(x)\left(h_{a c} h_{b d}-h_{b c} h_{a d}\right)(x) \tag{3}
\end{equation*}
$$

Isotropic at every point implies

$$
\begin{equation*}
\kappa=\kappa_{0} \text { constant } \tag{4}
\end{equation*}
$$

and hence (M, h) is locally isometric to $\left\{\mathbb{H}^{3}, \mathbb{R}^{3}, \mathbb{S}^{3}\right\}$

Cosmological models

Can characterise the metric in spherical coordinates as

$$
\begin{equation*}
g=-d t_{c}^{2}+a\left(t_{c}\right)^{2}\left(\frac{d r^{2}}{1-\kappa r^{2}}+r^{2} d \Omega^{2}\right) \tag{5}
\end{equation*}
$$

where $a\left(t_{c}\right)$ is an arbitrary function of time, and

$$
\kappa= \begin{cases}-1 & \text { negatively curved } \\ 0 & \text { Euclidean } \\ +1 & \text { positively curved }\end{cases}
$$

These are homogeneous spaces: they admit a transitive group of (global or local) isometries.

Cosmological models

Can characterise the metric in spherical coordinates as

$$
\begin{equation*}
g=-d t_{c}^{2}+a\left(t_{c}\right)^{2}\left(\frac{d r^{2}}{1-\kappa r^{2}}+r^{2} d \Omega^{2}\right) \tag{5}
\end{equation*}
$$

where $a\left(t_{c}\right)$ is an arbitrary function of time, and

$$
\kappa= \begin{cases}-1 & \text { negatively curved } \\ 0 & \text { Euclidean } \\ +1 & \text { positively curved }\end{cases}
$$

These are homogeneous spaces: they admit a transitive group of (global or local) isometries.

Possible to allow locally homogeneous spaces

$$
\begin{equation*}
M=\left\{\mathbb{H}^{3} / \Gamma, \mathbb{T}^{3}, \mathbb{S}^{3}\right\} \tag{6}
\end{equation*}
$$

FLRW models

Summary:

$$
\begin{equation*}
I \times M, \quad g=-d t_{c}^{2}+a\left(t_{c}\right)^{2} h_{a b} d x^{a} d x^{b} \tag{7}
\end{equation*}
$$

$a\left(t_{c}\right)$ is the scale factor

- it scales the spatial distance between fundamental observers

$$
a\left(t_{c}\right) \times \operatorname{dist}_{h}((0,0),(1,0))
$$

FLRW models

Summary:

$$
\begin{equation*}
I \times M, \quad g=-d t_{c}^{2}+a\left(t_{c}\right)^{2} h_{a b} d x^{a} d x^{b} \tag{7}
\end{equation*}
$$

$a\left(t_{c}\right)$ is the scale factor

- it scales the spatial distance between fundamental observers

$$
a\left(t_{c}\right) \times \operatorname{dist}_{h}((0,0),(1,0))
$$

- expanding universe if $\dot{a}>0$

Call $\left\{x^{1}, x^{2}, x^{3}\right\}$ co-moving coordinates.
Co-moving observer if $u^{\mu}=(1,0,0,0)$ in these coordinates.

Matter model

Suppose an observer moving with timelike 4-velocity u^{μ}.
Look at stress-energy tensor $T_{\mu \nu}$ as measured by the observer

$$
\begin{equation*}
T_{\mu \nu}=\rho u_{\mu} u_{\nu}+q_{\mu} u_{\nu}+q_{\nu} u_{\mu}+P \Pi_{\mu \nu}+\pi_{\mu \nu} \tag{8}
\end{equation*}
$$

$\Pi_{\mu \nu}=\left(g_{\mu \nu}+u_{\mu} u_{\nu}\right)$, so split into parts g-\| or g- \perp to u^{μ}.

Matter model

Suppose an observer moving with timelike 4-velocity u^{μ}.
Look at stress-energy tensor $T_{\mu \nu}$ as measured by the observer

$$
\begin{equation*}
T_{\mu \nu}=\rho u_{\mu} u_{\nu}+q_{\mu} u_{\nu}+q_{\nu} u_{\mu}+P \Pi_{\mu \nu}+\pi_{\mu \nu} \tag{8}
\end{equation*}
$$

$\Pi_{\mu \nu}=\left(g_{\mu \nu}+u_{\mu} u_{\nu}\right)$, so split into parts g-\| or g- \perp to u^{μ}.
Observer measures energy density ρ, pressure P, energy flux q^{μ} etc.

$$
10 \text { cpts of } T_{\mu \nu} \quad \longrightarrow \quad \begin{aligned}
& \rho=T_{\mu \nu} u^{\mu} u^{\nu} \\
& P=\left(g^{\mu \nu}+u^{\mu} u^{\nu}\right) T_{\mu \nu} / 3 \\
& \text { etc. }
\end{aligned}
$$

Matter model

Suppose an observer moving with timelike 4-velocity u^{μ}.
Look at stress-energy tensor $T_{\mu \nu}$ as measured by the observer

$$
\begin{equation*}
T_{\mu \nu}=\rho u_{\mu} u_{\nu}+q_{\mu} u_{\nu}+q_{\nu} u_{\mu}+P \Pi_{\mu \nu}+\pi_{\mu \nu} \tag{8}
\end{equation*}
$$

$\Pi_{\mu \nu}=\left(g_{\mu \nu}+u_{\mu} u_{\nu}\right)$, so split into parts g-\| or g- \perp to u^{μ}.
Observer measures energy density ρ, pressure P, energy flux q^{μ} etc.

$$
10 \text { cpts of } T_{\mu \nu} \quad \longrightarrow \quad \begin{aligned}
& \rho=T_{\mu \nu} u^{\mu} u^{\nu} \\
& P=\left(g^{\mu \nu}+u^{\mu} u^{\nu}\right) T_{\mu \nu} / 3 \\
& \text { etc. }
\end{aligned}
$$

Symmetry of the FLRW model forces

$$
\begin{equation*}
T_{\mu \nu}=\rho u_{\mu} u_{\nu}+P\left(g_{\mu \nu}+u_{\mu} u_{\nu}\right), \quad u^{\mu} u_{\mu}=-1 \tag{9}
\end{equation*}
$$

This is the algebraic form of a perfect fluid, with energy density $\rho\left(t_{c}\right)$, pressure $P\left(t_{c}\right)$, and 4 -velocity $u^{\mu}=(1,0,0,0)$.

Simplified Einstein-Euler equations

$$
\begin{align*}
\operatorname{Ric}[g]_{\mu \nu}-\frac{1}{2} g_{\mu \nu} \mathrm{R}[g]+\Lambda g_{\mu \nu} & =8 \pi\left((\rho+P) u_{\mu} u_{\nu}+P g_{\mu \nu}\right) \tag{10}\\
\nabla_{\mu}\left((\rho+P) u^{\mu} u^{\nu}+P g^{\mu \nu}\right) & =0
\end{align*}
$$

Simplified Einstein-Euler equations

$$
\begin{align*}
\operatorname{Ric}[g]_{\mu \nu}-\frac{1}{2} g_{\mu \nu} \mathrm{R}[g]+\Lambda g_{\mu \nu} & =8 \pi\left((\rho+P) u_{\mu} u_{\nu}+P g_{\mu \nu}\right) \tag{10}\\
\nabla_{\mu}\left((\rho+P) u^{\mu} u^{\nu}+P g^{\mu \nu}\right) & =0
\end{align*}
$$

Under symmetry, these reduce to the continuity equation

$$
\begin{equation*}
\dot{\rho}+3 \frac{\dot{a}}{a}(\rho+P)=0 \tag{11}
\end{equation*}
$$

Simplified Einstein-Euler equations

$$
\begin{align*}
\operatorname{Ric}[g]_{\mu \nu}-\frac{1}{2} g_{\mu \nu} \mathrm{R}[g]+\wedge g_{\mu \nu} & =8 \pi\left((\rho+P) u_{\mu} u_{\nu}+P g_{\mu \nu}\right) \tag{10}\\
\nabla_{\mu}\left((\rho+P) u^{\mu} u^{\nu}+P g^{\mu \nu}\right) & =0
\end{align*}
$$

Under symmetry, these reduce to the continuity equation

$$
\begin{equation*}
\dot{\rho}+3 \frac{\dot{a}}{a}(\rho+P)=0 \tag{11}
\end{equation*}
$$

the Raychaudhuri equation

$$
\begin{equation*}
\frac{\ddot{a}}{a}=-\frac{4 \pi}{3}(\rho+3 p)+\frac{\Lambda}{3} \tag{12}
\end{equation*}
$$

and the Friedmann equation

$$
\begin{equation*}
\left(\frac{\dot{a}}{a}\right)^{2}=\frac{8 \pi}{3} \rho+\frac{\Lambda}{3}-\frac{\kappa}{a^{2}} \tag{13}
\end{equation*}
$$

$$
=\frac{d}{d t_{c}}
$$

Equation of state

Close the system through an equation of state $P=f(\rho, n, s)$

- particle number density n, entropy per particle $s . .$.

Equation of state

Close the system through an equation of state $P=f(\rho, n, s)$

- particle number density n, entropy per particle $s . .$.

Often consider a linear barotropic equation of state

$$
\begin{equation*}
P=K \rho, \quad K \leq 1 \tag{14}
\end{equation*}
$$

Important cases

- $K=0$ dust, galactic epoch, neighbouring volume elements exert no action on each other
- $K=\frac{1}{3}$ radiation fluid, pre-decoupling epoch, energy density dominated by the kinetic energy, Stefan-Boltzmann law
- $K=1$ stiff fluid

Equation of state

Close the system through an equation of state $P=f(\rho, n, s)$

- particle number density n, entropy per particle $s . .$.

Often consider a linear barotropic equation of state

$$
\begin{equation*}
P=K \rho, \quad K \leq 1 \tag{14}
\end{equation*}
$$

Important cases

- $K=0$ dust, galactic epoch, neighbouring volume elements exert no action on each other
- $K=\frac{1}{3}$ radiation fluid, pre-decoupling epoch, energy density dominated by the kinetic energy, Stefan-Boltzmann law
- $K=1$ stiff fluid

Frequenty see K written as speed of sound

$$
\begin{equation*}
K=c_{s}^{2}=\left.\frac{d P}{d \rho}\right|_{s} \tag{15}
\end{equation*}
$$

Also have polytropic equations of state (stars) with $P=C \rho^{\gamma}$.

Immediate observations

- $R=4 \Lambda+(1-3 K) \rho$

If $\rho \rightarrow \infty$ then curvature blow-up.

- Integrating up the continuity equation gives

$$
\frac{\dot{\rho}}{\rho}=-3(1+K) \frac{\dot{a}}{a} \Rightarrow \rho\left(t_{c}\right) a\left(t_{c}\right)^{3(1+K)}=c_{0}=\text { const. }
$$

Energy density dilutes (at a rate depending on the type of fluid) with increasing scale factor.

- Friedmann equation becomes

$$
\begin{equation*}
\dot{a}\left(t_{c}\right)^{2}=\frac{8 \pi}{3} \frac{c_{0}}{a\left(t_{c}\right)^{1+3 K}}-\kappa+\frac{\Lambda}{3} a\left(t_{c}\right)^{2} \tag{16}
\end{equation*}
$$

e.g. if $\kappa=-1$ then $a\left(t_{c}\right)$ grows at least linearly.

Special solutions

- Einstein static universe

$$
\begin{align*}
& \kappa=+1, \quad \Lambda=0 \\
& g=-d t_{c}^{2}+a_{0}^{2}\left(d r^{2}+(\sin r)^{2} d \Omega^{2}\right) \tag{17}\\
& \rho=3 a_{0}^{-2}, \quad P=-a_{0}^{-2}, \quad K=-1 / 3
\end{align*}
$$

Include $\Lambda>0$ to remedy negative pressure.

Special solutions

- Einstein static universe

$$
\begin{align*}
& \kappa=+1, \quad \Lambda=0 \\
& g=-d t_{c}^{2}+a_{0}^{2}\left(d r^{2}+(\sin r)^{2} d \Omega^{2}\right) \tag{17}\\
& \rho=3 a_{0}^{-2}, \quad P=-a_{0}^{-2}, \quad K=-1 / 3
\end{align*}
$$

Include $\Lambda>0$ to remedy negative pressure.

- Flat FL matter-dominated universe:

$$
\begin{align*}
\kappa & =0, \quad \Lambda=0 \\
g & =-d t_{c}^{2}+t_{c}^{\frac{4}{3(1+K)}}\left(d r^{2}+r^{2} d \Omega^{2}\right) \tag{18}\\
\rho & =\frac{4}{3(1+K)^{2} t^{2}}>0
\end{align*}
$$

Example of decelerating expansion since $\dot{a}>0, a ̈<0$.
Dust case $K=0$ called Einstein-de Sitter

Special solutions

- de Sitter universe:

$$
\begin{align*}
& \kappa=0, \Lambda>0 \\
& g=-d t_{c}^{2}+\exp \left(2 \sqrt{\Lambda} t_{c}\right)\left(d r^{2}+r^{2} d \Omega^{2}\right) \tag{19}
\end{align*}
$$

Example of accelerated expansion since $\dot{a}>0, \ddot{a}>0$.

Special solutions

- de Sitter universe:

$$
\begin{align*}
& \kappa=0, \Lambda>0 \\
& g=-d t_{c}^{2}+\exp \left(2 \sqrt{\Lambda} t_{c}\right)\left(d r^{2}+r^{2} d \Omega^{2}\right) \tag{19}
\end{align*}
$$

Example of accelerated expansion since $\dot{a}>0, a ̈>0$.

- Open Milne vacuum universe:

$$
\begin{align*}
& \kappa=-1, \Lambda=0 \\
& g=-d t^{2}+t^{2}\left(d r^{2}+(\sinh r)^{2} d \Omega^{2}\right) \tag{20}\\
& \rho=P=0
\end{align*}
$$

Example of zero-accelerated expansion since $\dot{a}>0, \ddot{a}=0$.

$$
d \Omega^{2}=d \theta^{2}+\sin ^{2} \theta d \phi^{2}
$$

Models of the

EXPANDING UNIVERSE

Outside of symmetry

Study Einstein-rel. Euler equations as an initial value problem.

$$
\begin{align*}
\operatorname{Ric}[g]_{\mu \nu}-\frac{1}{2} g_{\mu \nu} \mathrm{R}[g] & =8 \pi\left((\rho+P) u_{\mu} u_{\nu}+P g_{\mu \nu}\right) \\
u^{\alpha} \nabla_{\alpha} \ln \rho+(1+K) \nabla_{\alpha} u^{\alpha} & =0 \\
u^{\alpha} \nabla_{\alpha} u^{\mu}+\frac{K}{1+K} \Pi^{\mu \alpha} \nabla_{\alpha} \ln \rho & =0 \tag{21}\\
\Pi^{\mu \nu} & :=g^{\mu \nu}+u^{\mu} u^{\nu}
\end{align*}
$$

Outside of symmetry

Study Einstein-rel. Euler equations as an initial value problem.

$$
\begin{align*}
\operatorname{Ric}[g]_{\mu \nu}-\frac{1}{2} g_{\mu \nu} \mathrm{R}[g] & =8 \pi\left((\rho+P) u_{\mu} u_{\nu}+P g_{\mu \nu}\right) \\
u^{\alpha} \nabla_{\alpha} \ln \rho+(1+K) \nabla_{\alpha} u^{\alpha} & =0 \\
u^{\alpha} \nabla_{\alpha} u^{\mu}+\frac{K}{1+K} \Pi^{\mu \alpha} \nabla_{\alpha} \ln \rho & =0 \tag{21}\\
\Pi^{\mu \nu} & :=g^{\mu \nu}+u^{\mu} u^{\nu}
\end{align*}
$$

Initial value problem

Simpler problem: fix $g_{\mu \nu}=\stackrel{\circ}{g}_{\mu \nu}$ a Lorentzian metric and only consider the relativistic Euler equations.

Initial value problem

Simpler problem: fix $g_{\mu \nu}=\stackrel{\circ}{g}_{\mu \nu}$ a Lorentzian metric and only consider the relativistic Euler equations.

Simpler problem: restrict to irrotational fluids

$$
\begin{equation*}
u_{\mu}=-\zeta^{-1} \nabla_{\mu} \Phi, \quad \zeta=\left(-\nabla_{\mu} \Phi \nabla^{\mu} \Phi\right)^{1 / 2} \tag{22}
\end{equation*}
$$

which have vanishing vorticity and enthalpy ζ.
The rel.-Euler equations reduce to a quasilinear wave equation

$$
\begin{equation*}
a^{\mu \nu} \nabla_{\mu} \nabla_{\nu} \Phi=0 \tag{23}
\end{equation*}
$$

where a is called the acoustic metric

$$
\begin{equation*}
a^{\mu \nu}=g^{\mu \nu}+\frac{1-K}{K} u^{\mu} u^{\nu} \tag{24}
\end{equation*}
$$

Literature

- In the $v \lll c$ limit of relativistic Euler equations we get the Euler equations for a perfect compressible fluid.
Smooth solutions develop singularities (gradients $\rightarrow \infty$).

Riemann 1880s, Friedrichs and Lax '60s, Sideris 1980s...

Literature

- In the $v \lll c$ limit of relativistic Euler equations we get the Euler equations for a perfect compressible fluid.
Smooth solutions develop singularities (gradients $\rightarrow \infty$).

Riemann 1880s, Friedrichs and Lax '60s, Sideris 1980s...

- Consider the relativistic Euler equations on fixed Minkowski

$$
\stackrel{\circ}{g}=-d t^{2}+d x^{2}+d y^{2}+d z^{2}
$$

Irrotational perturbations around the constant solution

$$
\rho_{B}=\rho_{0}>0 \text { on } \Sigma_{0} \backslash B, \quad u_{B}^{\mu}=(1,0,0,0)
$$

lead to finite-time shock formation for many $P=f(\rho)$ [Christodoulou '07]

Literature

Situations of global existence on Minkowski do occur.

- if $H=\rho f^{\prime \prime}(\rho)+2 f^{\prime}(\rho)$ vanishes on the constant state then no shocks form.

$$
\begin{equation*}
P=-A \rho^{-1}, A>0, \text { Chaplygin gas } \tag{25}
\end{equation*}
$$

Literature

Situations of global existence on Minkowski do occur.

- if $H=\rho f^{\prime \prime}(\rho)+2 f^{\prime}(\rho)$ vanishes on the constant state then no shocks form.

$$
\begin{equation*}
P=-A \rho^{-1}, A>0, \text { Chaplygin gas } \tag{25}
\end{equation*}
$$

Moving to cosmological models [Brauer-Rendall-Reula '94]

- Newton-Cartan-Ehlers cosmological model
- For $\Lambda>0$ and (1) $P=C \rho^{\gamma}$ for $\gamma>1$, or (2) $P=0$, small perturbations of homogeneous solutions exist globally.
- For $\Lambda=0$ and $a(t)=t^{2 / 3}$, trajectories of dust particles cross.

Literature

Situations of global existence on Minkowski do occur.

- if $H=\rho f^{\prime \prime}(\rho)+2 f^{\prime}(\rho)$ vanishes on the constant state then no shocks form.

$$
\begin{equation*}
P=-A \rho^{-1}, A>0, \text { Chaplygin gas } \tag{25}
\end{equation*}
$$

Moving to cosmological models [Brauer-Rendall-Reula '94]

- Newton-Cartan-Ehlers cosmological model
- For $\Lambda>0$ and (1) $P=C \rho^{\gamma}$ for $\gamma>1$, or (2) $P=0$, small perturbations of homogeneous solutions exist globally.
- For $\Lambda=0$ and $a(t)=t^{2 / 3}$, trajectories of dust particles cross.

Key idea: spacetime expansion induced by $\Lambda>0$ can suppress shock formation in fluids.

Literature: $\Lambda>0$

Think of Minkowski as

$$
\stackrel{\circ}{g}=\eta=-d t^{2}+1^{2}\left(d x^{2}+d y^{2}+d z^{2}\right)
$$

Literature: $\Lambda>0$

Think of Minkowski as

$$
\stackrel{\circ}{g}=\eta=-d t^{2}+1^{2}\left(d x^{2}+d y^{2}+d z^{2}\right)
$$

Consider uniformly quiet fluid solutions to Einstein- $\Lambda-$ rel. Euler

$$
\begin{array}{ll}
g_{B}=-d t^{2}+a_{B}(t)^{2} h, & a_{B}(t) \sim \exp (\sqrt{\Lambda} t) \\
\rho_{B}=\rho_{0} a_{B}(t)^{-3(1+K)}, & u_{B}^{\mu}=(1,0,0,0) \tag{26}
\end{array}
$$

"Theorem": such solutions are stable for

$$
P=K \rho, \quad 0 \leq K \leq 1 / 3
$$

Typically $M=g_{\mathbb{T}^{3}}$. Also $g_{\mathbb{S}^{3}}$.

Literature: $\Lambda>0$

Think of Minkowski as

$$
\stackrel{\circ}{g}=\eta=-d t^{2}+1^{2}\left(d x^{2}+d y^{2}+d z^{2}\right)
$$

Consider uniformly quiet fluid solutions to Einstein $-\Lambda-$ rel. Euler

$$
\begin{array}{ll}
g_{B}=-d t^{2}+a_{B}(t)^{2} h, & a_{B}(t) \sim \exp (\sqrt{\Lambda} t) \\
\rho_{B}=\rho_{0} a_{B}(t)^{-3(1+K)}, & u_{B}^{\mu}=(1,0,0,0) \tag{26}
\end{array}
$$

"Theorem": such solutions are stable for

$$
P=K \rho, \quad 0 \leq K \leq 1 / 3
$$

Typically $M=g_{\mathbb{T}^{3}}$. Also $g_{\mathbb{S}^{3}}$.

- [Rodnianski-Speck '09, Speck '11] $0<K<1 / 3$
- [Lübbe-Valiente Kroon '11] $K=1 / 3$, [Hadžić-Speck '13] $K=0$
- [Oliynyk '15, '20] $0<K<1 / 2$, [Friedrich '16] $K=0$
- Also: [Ringström '08, '09]

Literature: power law inflation

Focus on fixed power law spacetimes

$$
\begin{equation*}
I \times \mathbb{T}^{3}, \quad g=-d t^{2}+t^{2 p} \delta_{a b} d x^{a} d x^{b}, \quad p>0 \tag{27}
\end{equation*}
$$

Literature: power law inflation

Focus on fixed power law spacetimes

$$
\begin{equation*}
I \times \mathbb{T}^{3}, \quad g=-d t^{2}+t^{2 p} \delta_{a b} d x^{a} d x^{b}, \quad p>0 \tag{27}
\end{equation*}
$$

[Speck '12] showed stability of homogeneous solutions to the relativistic Euler equations provided integrability conditions hold for the scale factor. See also [Wei JDE '18]
For example, if $K=1 / 3$ and

$$
\begin{array}{ll}
\int_{1}^{\infty} \frac{1}{a(s)} \mathrm{d} s<\infty & \text { then perturbation exists globally } \\
\int_{1}^{\infty} \frac{1}{a(s)} \mathrm{d} s=\infty & \text { then shocks form in finite time }
\end{array}
$$

Relies on conformal invariance of rel. Euler equations when $K=\frac{1}{3}$.

Power law inflation

Exp. rate	Range of K	Behaviour	Ref.
$p>1$	$0<K<1 / 3$	Stable	[Speck '12]
$p>\frac{1}{2}$	Dust $K=0$	Stable	[Speck '12]
$p=1$	Radiation $K=1 / 3$	Shocks	[Speck '12]
$p=1$	$0<K<1 / 3$	Stable (irrot.)	\swarrow

Power law inflation

Exp. rate	Range of K	Behaviour	Ref.
$p>1$	$0<K<1 / 3$	Stable	[Speck '12]
$p>\frac{1}{2}$	Dust $K=0$	Stable	[Speck '12]
$p=1$	Radiation $K=1 / 3$	Shocks	[Speck '12]
$p=1$	$0<K<1 / 3$	Stable (irrot.)	\swarrow

Theorem (Fajman-Oliynyk-ZW '20)

The canonical homogeneous solutions to the rel.-Euler equations on Milne-like FLRW spacetimes $\mathbb{R} \times \mathbb{T}^{3}$ with metric

$$
\stackrel{\circ}{g}=-d t^{2}+t^{2} \delta_{a b} d x^{a} d x^{b}
$$

and $0<K<1 / 3$ are nonlinearly stable to sufficiently small irrotational perturbations.

- first non-dust fluid stabilization below accelerated expansion
- shows that Speck's shock formation is sharp

Einstein-Euler: zero-acceleration

Move to fluid-gravity system, although note that rel. Euler is the weakest link.

Einstein-Euler: zero-acceleration

Move to fluid-gravity system, although note that rel. Euler is the weakest link.

Consider the generalised Milne model:

$$
\begin{equation*}
g=-d t_{c}^{2}+\frac{t_{c}^{2}}{9} \gamma, \quad \operatorname{Ric}[\gamma]=-\frac{2}{9} \gamma \tag{28}
\end{equation*}
$$

with M a compact, connected orientable n-manifold admitting a negative Einstein metric γ.

Einstein-Euler: zero-acceleration

Move to fluid-gravity system, although note that rel. Euler is the weakest link.

Consider the generalised Milne model:

$$
\begin{equation*}
g=-d t_{c}^{2}+\frac{t_{c}^{2}}{9} \gamma, \quad \operatorname{Ric}[\gamma]=-\frac{2}{9} \gamma \tag{28}
\end{equation*}
$$

with M a compact, connected orientable n-manifold admitting a negative Einstein metric γ.

- Example of zero-accelerated expansion $(\Lambda=0)$
- Milne vacuum stability for $n \geq 3$: [Andersson-Moncrief '11]
- $n=3$ then γ has constant negative sectional curvature hence hyperbolic, hence we have Mostow rigidity

Einstein-Dust: zero-acceleration

Start with 'most likely to be stable' case of dust.
Theorem (Fajman-Ofner-ZW '21)
The Milne spacetime is a stable solution to the Einstein-Dust equations $(\Lambda=0)$.

Einstein-Dust: zero-acceleration

Start with 'most likely to be stable' case of dust.
Theorem (Fajman-Ofner-ZW '21)
The Milne spacetime is a stable solution to the Einstein-Dust equations $(\Lambda=0)$.

First example of fluid-gravity stabilization by non-accelerated spacetime expansion.

- Milne matter stability: [Andersson-Fajman '17], [Branding-Fajman-Kroncke '18], [Wang '18], [Fajman-ZW '19], [Barzegar-Fajman '20].
- most relevant dust work: $\Lambda>0$ [Hadžić-Speck '13]

Vacuum stability: set up $1 / 2$

- ADM variables:

$$
\begin{equation*}
\bar{g}=-N^{2} d t^{2}+g_{a b}\left(d x^{a}+X^{a} d t\right)\left(d x^{b}+X^{b} d t\right) \tag{29}
\end{equation*}
$$

Vacuum stability: set up $1 / 2$

- ADM variables:

$$
\begin{equation*}
\bar{g}=-N^{2} d t^{2}+g_{a b}\left(d x^{a}+X^{a} d t\right)\left(d x^{b}+X^{b} d t\right) \tag{29}
\end{equation*}
$$

- CMCSH gauge:

$$
\text { mean curvature } \tau:=g^{a b} k_{a b}=-\frac{3}{t_{c}} \text { on background }
$$

Choose a foliation whose slices have constant mean curvature

$$
\begin{align*}
t & =\tau \\
g^{i j}\left(\Gamma_{i j}^{k}[g]-\Gamma_{i j}^{k}[\gamma]\right) & =0 \tag{30}
\end{align*}
$$

[Andersson-Moncrief '03]

Vacuum stability: set up $2 / 2$

- Rescale variables using τ to account for spatial expansion. E.g.

$$
\begin{equation*}
g_{i j}:=\tau^{2} \tilde{g}_{i j} \tag{31}
\end{equation*}
$$

and use a rescaled time $T=-\ln \left(\tau / \tau_{0}\right)$

Vacuum stability: set up $2 / 2$

- Rescale variables using τ to account for spatial expansion. E.g.

$$
\begin{equation*}
g_{i j}:=\tau^{2} \tilde{g}_{i j} \tag{31}
\end{equation*}
$$

and use a rescaled time $T=-\ln \left(\tau / \tau_{0}\right)$

- Unknowns: lapse N, shift X, Riemannian metric g, and

$$
\begin{equation*}
\Sigma_{a b}=\left(k_{a b}\right)^{T F}:=k_{a b}-\frac{\tau}{3} g_{a b} \tag{32}
\end{equation*}
$$

Background solution in this gauge is

$$
\begin{equation*}
\left.\left(g_{a b}, \Sigma_{a b}, N, X^{a}\right)\right|_{B}=\left(\gamma_{a b}, 0,3,0\right) . \tag{33}
\end{equation*}
$$

Vacuum stability: PDEs

The gauge gives elliptic equations for the lapse and shift variables

$$
\begin{align*}
\left(\Delta-\frac{1}{3}\right) N & =-1+\ldots \\
\Delta X^{i}+\operatorname{Ric}[g]^{i}{ }_{m} X^{m} & =0+\ldots \tag{34}
\end{align*}
$$

Vacuum stability: PDEs

The gauge gives elliptic equations for the lapse and shift variables

$$
\begin{align*}
\left(\Delta-\frac{1}{3}\right) N & =-1+\ldots \\
\Delta X^{i}+\operatorname{Ric}[g]^{i}{ }_{m} X^{m} & =0+\ldots \tag{34}
\end{align*}
$$

and hyperbolic equations for the metric and (SFF) ${ }^{\mathrm{TF}}$

$$
\begin{align*}
\partial_{T}(g-\gamma) & =2 N \Sigma-\mathscr{L}_{X} g+\ldots \tag{35}\\
\partial_{T} \Sigma_{a b} & =-2 \Sigma-3 N \mathcal{L}_{g, \gamma}(g-\gamma)+\nabla_{a} \nabla_{b} N+\ldots
\end{align*}
$$

where

$$
\begin{equation*}
\mathcal{L}_{g, \gamma}=-g^{a b} \nabla[\gamma]_{a} \nabla[\gamma]_{b}-2 \operatorname{Riem}[\gamma] \sim \nabla^{2} \tag{36}
\end{equation*}
$$

is a self-adjoint elliptic operator on M.

Vacuum stability: PDEs

The gauge gives elliptic equations for the lapse and shift variables

$$
\begin{align*}
\left(\Delta-\frac{1}{3}\right) N & =-1+\ldots \\
\Delta X^{i}+\operatorname{Ric}[g]^{i}{ }_{m} X^{m} & =0+\ldots \tag{34}
\end{align*}
$$

and hyperbolic equations for the metric and (SFF) ${ }^{\mathrm{TF}}$

$$
\begin{align*}
\partial_{T}(g-\gamma) & =2 N \Sigma-\mathscr{L}_{X} g+\ldots \tag{35}\\
\partial_{T} \Sigma_{a b} & =-2 \Sigma-3 N \mathcal{L}_{g, \gamma}(g-\gamma)+\nabla_{a} \nabla_{b} N+\ldots
\end{align*}
$$

where

$$
\begin{equation*}
\mathcal{L}_{g, \gamma}=-g^{a b} \nabla[\gamma]_{a} \nabla[\gamma]_{b}-2 \operatorname{Riem}[\gamma] \sim \nabla^{2} \tag{36}
\end{equation*}
$$

is a self-adjoint elliptic operator on M.
Aim to prove solutions to the PDEs exist for $T \rightarrow \infty$.

Vacuum stability: strategy

Aim to show

$$
\|g-\gamma\|_{s}+\|\Sigma\|_{s-1}+\|N-3\|_{s+1}+\|X\|_{s+1} \rightarrow 0, \quad T \rightarrow \infty
$$

with decay rates that imply future completeness. $\|\cdot\|_{H^{s}(M)}=\|\cdot\|_{s}$.
Use a coercive energy with correction terms. For example

$$
\begin{equation*}
\|g-\gamma\|_{1}^{2}+\|\Sigma\|_{0}^{2} \leq C E_{1} \tag{37}
\end{equation*}
$$

where E_{1} roughly looks like

$$
\begin{align*}
E_{1} & \sim \int_{M} \Sigma^{2}+\int(g-\gamma) \mathcal{L}_{g, \gamma}(g-\gamma) \\
& \sim \int_{M}\left(\partial_{T} g\right)^{2}+\int(\nabla g)^{2} \tag{38}
\end{align*}
$$

and obeys a good estimate like

$$
\begin{equation*}
\partial_{T} E_{1} \leq-2 E_{2}+\text { error } \tag{39}
\end{equation*}
$$

Vacuum stability: corrected energies

For $c_{E}>0$ depending on the smallest positive e'value of $\mathcal{L}_{\gamma, \gamma}$

$$
\begin{align*}
E_{2}:= & \frac{1}{2} \int_{M}\left\langle\Sigma, \mathcal{L}_{g, \gamma} \Sigma\right\rangle+\frac{9}{2} \int_{M}\left\langle\mathcal{L}_{g, \gamma}(g-\gamma), \mathcal{L}_{g, \gamma}(g-\gamma)\right\rangle \tag{40}\\
& +c_{E} \int_{M}\left\langle\Sigma, \mathcal{L}_{g, \gamma}(g-\gamma)\right\rangle
\end{align*}
$$

Add in correction term in order to get the full energy back

$$
\begin{align*}
\partial_{T} E_{2} & =\frac{1}{2} \int_{M}\left\langle\partial_{T} \Sigma, \mathcal{L}_{g, \gamma} \Sigma\right\rangle+\cdots \\
& =\frac{1}{2} \int_{M}\left\langle-2 \Sigma+\cdots, \mathcal{L}_{g, \gamma} \Sigma\right\rangle+\cdots \tag{41}\\
& \leq-E_{2}+C\left(E_{2}\right)^{3 / 2}
\end{align*}
$$

Dust matter

Now include the matter. For example

$$
\begin{equation*}
\left(\Delta-\frac{1}{3}\right) N=N\left(|\Sigma|_{g}^{2}-\tau \eta\right) \tag{42}
\end{equation*}
$$

where $\eta=T^{\mu \nu} n_{\mu} n_{\nu}+g^{a b} T_{a b}$ is a matter contribution.

Dust matter

Now include the matter. For example

$$
\begin{equation*}
\left(\Delta-\frac{1}{3}\right) N=N\left(|\Sigma|_{g}^{2}-\tau \eta\right) \tag{42}
\end{equation*}
$$

where $\eta=T^{\mu \nu} n_{\mu} n_{\nu}+g^{a b} T_{a b}$ is a matter contribution.
Equations for the fluid variables

$$
\partial_{T} \Sigma_{a b}=\text { geometry }+\tau \rho g_{a b}+\tau^{3} \rho u_{a} u_{b} X+\ldots
$$

suggest we need ρ, u^{a} at same level of regularity as Σ.

Dust matter

Now include the matter. For example

$$
\begin{equation*}
\left(\Delta-\frac{1}{3}\right) N=N\left(|\Sigma|_{g}^{2}-\tau \eta\right) \tag{42}
\end{equation*}
$$

where $\eta=T^{\mu \nu} n_{\mu} n_{\nu}+g^{a b} T_{a b}$ is a matter contribution.
Equations for the fluid variables

$$
\partial_{T} \Sigma_{a b}=\text { geometry }+\tau \rho g_{a b}+\tau^{3} \rho u_{a} u_{b} X+\ldots
$$

suggest we need ρ, u^{a} at same level of regularity as Σ. However

$$
\begin{aligned}
u^{0} \partial_{T} u^{b}-\tau u^{a} \nabla_{a} u^{b} & =u^{a} \Sigma_{a}^{b}+\ldots \\
u^{0} \partial_{T} \rho-\tau u^{a} \nabla_{a} \rho & =\tau \rho \nabla_{a} u^{a}+\Sigma_{a}^{a}+\ldots
\end{aligned}
$$

suggest we instead have u, Σ at same order, but also ρ, Σ at same order and u one higher.

Follow idea of [Hadžić-Speck '13] and use a fluid/material derivative

$$
\begin{equation*}
\partial_{\mathbf{u}}=u^{0} \partial_{T}-\tau u^{a} \nabla[\gamma]_{a} \simeq u^{\alpha} \nabla_{\alpha} \tag{43}
\end{equation*}
$$

as differential operator in energy functionals.

Follow idea of [Hadžić-Speck '13] and use a fluid/material derivative

$$
\begin{equation*}
\partial_{\mathbf{u}}=u^{0} \partial_{T}-\tau u^{a} \nabla[\gamma]_{a} \simeq u^{\alpha} \nabla_{\alpha} \tag{43}
\end{equation*}
$$

as differential operator in energy functionals.
Matter PDEs look like

$$
\begin{align*}
\partial_{\mathbf{u}} u^{b} & =u^{a} \Sigma_{a}^{b}+\ldots \tag{44}\\
\partial_{\mathbf{u}} \rho & =\tau \rho \nabla_{a} u^{a}+\Sigma_{a}^{a}+\ldots
\end{align*}
$$

Commute Einstein equations with $\nabla^{N-1} \partial_{\mathbf{u}}$ instead of ∇^{N}.

Adapt our bootstrap conditions

$$
\begin{aligned}
\|g-\gamma\|_{s}+\|\Sigma\|_{s-1}+\|N-3\|_{s}+\|X\|_{s}+\|\rho\|_{s-2} & \rightarrow 0 \\
\left\|\partial_{T} N\right\|_{s-1}+\left\|\partial_{T} X\right\|_{s-1} & \rightarrow 0 \\
\left\|u^{a}\right\|_{s-1} & \sim e^{\mu T}
\end{aligned}
$$

Adapt our geometric energy functionals. For example

$$
\begin{aligned}
E_{2}:= & \frac{1}{2} \int_{M}\left\langle\Sigma, \mathcal{L}_{g, \gamma} \Sigma\right\rangle+\frac{9}{2} \int_{M}\left\langle\mathcal{L}_{g, \gamma}(g-\gamma), \mathcal{L}_{g, \gamma}(g-\gamma)\right\rangle \\
& +c_{E} \int_{M}\left\langle\Sigma, \mathcal{L}_{g, \gamma}(g-\gamma)\right\rangle
\end{aligned}
$$

Adapt our geometric energy functionals. For example

$$
\begin{aligned}
& \tilde{E}_{2}=\frac{1}{2} \int_{M}\left\langle\partial_{\mathbf{u}}(\Sigma), \partial_{\mathbf{u}} \mathcal{L}_{g, \gamma} \Sigma\right\rangle+\frac{9}{2} \int_{M}\left\langle\partial_{\mathbf{u}} \mathcal{L}_{g, \gamma}(g-\gamma), \partial_{\mathbf{u}} \mathcal{L}_{g, \gamma}(g-\gamma)\right\rangle \\
&+c_{E} \int_{M}\left\langle\partial_{\mathbf{u}}(\Sigma), \partial_{\mathbf{u}} \mathcal{L}_{g, \gamma}(g-\gamma)\right\rangle
\end{aligned}
$$

Adapt our geometric energy functionals. For example

$$
\begin{aligned}
\tilde{E}_{2}= & \frac{1}{2} \int_{M}\left\langle\partial_{\mathbf{u}}(\Sigma), \partial_{\mathbf{u}} \mathcal{L}_{g, \gamma} \Sigma\right\rangle+\frac{9}{2} \int_{M}\left\langle\partial_{\mathbf{u}} \mathcal{L}_{g, \gamma}(g-\gamma), \partial_{\mathbf{u}} \mathcal{L}_{g, \gamma}(g-\gamma)\right\rangle \\
& +c_{E} \int_{M}\left\langle\partial_{\mathbf{u}}(\Sigma), \partial_{\mathbf{u}} \mathcal{L}_{g, \gamma}(g-\gamma)\right\rangle
\end{aligned}
$$

Recall

$$
\begin{aligned}
\partial_{T} \Sigma_{a b} & =\text { geometry }+\tau \rho g_{a b}+\tau^{3} \rho u_{a} u_{b} X+\ldots \\
\partial_{\mathbf{u}} \rho & =\tau \rho \nabla_{a} u^{a}+\Sigma_{a}^{a}+\ldots
\end{aligned}
$$

When we take a time derivative, we end up replacing

$$
\partial_{\mathbf{u}} \mathcal{L}_{g, \gamma}\left(\partial_{T} \Sigma\right) \simeq \partial_{\mathbf{u}} \mathcal{L}_{g, \gamma}(\tau \rho) \simeq \tau \mathcal{L}_{g, \gamma}\left(\partial_{\mathbf{u}} \rho\right)
$$

Key: don't have to estimate $\nabla \rho$ in this equation since already contained in $\partial_{\mathbf{u}} \rho$

Need extra ideas for some top-order lapse and shift estimates.

$$
\partial_{\mathbf{u}} \mathcal{L}_{g, \gamma}^{k}\left(\mathscr{L}_{X} g\right) \sim \partial_{\mathbf{u}} \nabla^{2 k+1}(X)
$$

gives problems, so we instead write:

$$
\begin{aligned}
\partial_{\mathbf{u}} \mathcal{L}_{g, \gamma}^{k}\left(\mathscr{L}_{X} g\right) & \sim \partial_{\mathbf{u}} \mathcal{L}_{g, \gamma}^{k-1}\left(\Delta \mathscr{L}_{X} g\right) \\
& \sim \partial_{\mathbf{u}} \mathcal{L}_{g, \gamma}^{k-1}\left(\nabla_{a} \Delta X+\left[\Delta, \nabla_{a}\right] X_{b}\right)
\end{aligned}
$$

Need extra ideas for some top-order lapse and shift estimates.

$$
\partial_{\mathbf{u}} \mathcal{L}_{g, \gamma}^{k}\left(\mathscr{L}_{X} g\right) \sim \partial_{\mathbf{u}} \nabla^{2 k+1}(X)
$$

gives problems, so we instead write:

$$
\begin{aligned}
\partial_{\mathbf{u}} \mathcal{L}_{g, \gamma}^{k}\left(\mathscr{L}_{X} g\right) & \sim \partial_{\mathbf{u}} \mathcal{L}_{g, \gamma}^{k-1}\left(\Delta \mathscr{L}_{X} g\right) \\
& \sim \partial_{\mathbf{u}} \mathcal{L}_{g, \gamma}^{k-1}\left(\nabla_{a} \Delta X+\left[\Delta, \nabla_{a}\right] X_{b}\right)
\end{aligned}
$$

$$
\stackrel{\text { EoM }}{\sim} \partial_{\mathbf{u}} \mathcal{L}_{\mathrm{g}, \gamma}^{\mathrm{k}-1}\left(\nabla_{a} \operatorname{Ric} \cdot X+\nabla \operatorname{Riem} \cdot X_{b}\right)
$$

Need extra ideas for some top-order lapse and shift estimates.

$$
\partial_{\mathbf{u}} \mathcal{L}_{g, \gamma}^{k}\left(\mathscr{L}_{X} g\right) \sim \partial_{\mathbf{u}} \nabla^{2 k+1}(X)
$$

gives problems, so we instead write:

$$
\begin{aligned}
\partial_{\mathbf{u}} \mathcal{L}_{g, \gamma}^{k}\left(\mathscr{L}_{X} g\right) & \sim \partial_{\mathbf{u}} \mathcal{L}_{g, \gamma}^{k-1}\left(\Delta \mathscr{L}_{X} g\right) \\
& \sim \partial_{\mathbf{u}} \mathcal{L}_{g, \gamma}^{k-1}\left(\nabla_{a} \Delta X+\left[\Delta, \nabla_{a}\right] X_{b}\right)
\end{aligned}
$$

$$
\stackrel{\mathrm{EoM}}{\sim} \partial_{\mathbf{u}} \mathcal{L}_{g, \gamma}^{k-1}\left(\nabla_{a} \operatorname{Ric} \cdot X+\nabla \operatorname{Riem} \cdot X_{b}\right)
$$

$$
\stackrel{\text { Bianchi }}{\sim} \partial_{\mathbf{u}} \mathcal{L}_{g, \gamma}^{k-1}\left(-2 X^{k} \nabla_{k} \text { Ric }\right)
$$

Need extra ideas for some top-order lapse and shift estimates.

$$
\partial_{\mathbf{u}} \mathcal{L}_{g, \gamma}^{k}\left(\mathscr{L}_{X} g\right) \sim \partial_{\mathbf{u}} \nabla^{2 k+1}(X)
$$

gives problems, so we instead write:

$$
\begin{aligned}
\partial_{\mathbf{u}} \mathcal{L}_{g, \gamma}^{k}\left(\mathscr{L}_{X} g\right) & \sim \partial_{\mathbf{u}} \mathcal{L}_{g, \gamma}^{k-1}\left(\Delta \mathscr{L}_{X} g\right) \\
& \sim \partial_{\mathbf{u}} \mathcal{L}_{g, \gamma}^{k-1}\left(\nabla_{a} \Delta X+\left[\Delta, \nabla_{a}\right] X_{b}\right)
\end{aligned}
$$

$\stackrel{\mathrm{EoM}}{\sim} \partial_{\mathbf{u}} \mathcal{L}_{g, \gamma}^{k-1}\left(\nabla_{a} \operatorname{Ric} \cdot X+\nabla\right.$ Riem $\left.\cdot X_{b}\right)$
$\stackrel{\text { Bianchi }}{\sim} \partial_{\mathbf{u}} \mathcal{L}_{g, \gamma}^{k-1}\left(-2 X^{k} \nabla_{k}\right.$ Ric $)$
SH gauge $\partial_{\mathbf{u}} \mathcal{L}_{g, \gamma}^{k-1}\left(X^{k} \nabla_{k} \mathcal{L}_{g, \gamma}(g-\gamma)\right)$

Need extra ideas for some top-order lapse and shift estimates.

$$
\partial_{\mathbf{u}} \mathcal{L}_{g, \gamma}^{k}\left(\mathscr{L}_{X} g\right) \sim \partial_{\mathbf{u}} \nabla^{2 k+1}(X)
$$

gives problems, so we instead write:

$$
\begin{aligned}
\partial_{\mathbf{u}} \mathcal{L}_{g, \gamma}^{k}\left(\mathscr{L}_{X} g\right) & \sim \partial_{\mathbf{u}} \mathcal{L}_{g, \gamma}^{k-1}\left(\Delta \mathscr{L}_{X} g\right) \\
& \sim \partial_{\mathbf{u}} \mathcal{L}_{g, \gamma}^{k-1}\left(\nabla_{a} \Delta X+\left[\Delta, \nabla_{a}\right] X_{b}\right)
\end{aligned}
$$

$\stackrel{\mathrm{EoM}}{\sim} \partial_{\mathbf{u}} \mathcal{L}_{g, \gamma}^{k-1}\left(\nabla_{a} \operatorname{Ric} \cdot X+\nabla\right.$ Riem $\left.\cdot X_{b}\right)$
$\stackrel{\text { Bianchi }}{\sim} \partial_{\mathbf{u}} \mathcal{L}_{g, \gamma}^{k-1}\left(-2 X^{k} \nabla_{k}\right.$ Ric $)$

$$
\begin{aligned}
\text { SH gauge } & \partial_{\mathbf{u}} \mathcal{L}_{g, \gamma}^{k-1}\left(X^{k} \nabla_{k} \mathcal{L}_{g, \gamma}(g-\gamma)\right) \\
& \sim X^{k} \nabla_{k} \partial_{\mathbf{u}} \mathcal{L}_{g, \gamma}^{k}(g-\gamma)+\partial_{\mathbf{u}} \nabla^{2 k-2} X \cdots
\end{aligned}
$$

Need extra ideas for some top-order lapse and shift estimates.

$$
\partial_{\mathbf{u}} \mathcal{L}_{g, \gamma}^{k}\left(\mathscr{L}_{X} g\right) \sim \partial_{\mathbf{u}} \nabla^{2 k+1}(X)
$$

gives problems, so we instead write:

$$
\begin{aligned}
\partial_{\mathbf{u}} \mathcal{L}_{g, \gamma}^{k}\left(\mathscr{L}_{X} g\right) & \sim \partial_{\mathbf{u}} \mathcal{L}_{g, \gamma}^{k-1}\left(\Delta \mathscr{L}_{X} g\right) \\
& \sim \partial_{\mathbf{u}} \mathcal{L}_{g, \gamma}^{k-1}\left(\nabla_{a} \Delta X+\left[\Delta, \nabla_{a}\right] X_{b}\right) \\
& \stackrel{\text { EoM }}{\sim} \partial_{\mathbf{u}} \mathcal{L}_{g, \gamma}^{k-1}\left(\nabla_{a} \operatorname{Ric} \cdot X+\nabla \text { Riem } \cdot X_{b}\right) \\
& \stackrel{\text { Bianchi }}{\sim} \partial_{\mathbf{u}} \mathcal{L}_{g, \gamma}^{k-1}\left(-2 X^{k} \nabla_{k} \text { Ric }\right) \\
& \stackrel{\text { SH gauge }}{\sim} \partial_{\mathbf{u}} \mathcal{L}_{g, \gamma}^{k-1}\left(X^{k} \nabla_{k} \mathcal{L}_{g, \gamma}(g-\gamma)\right) \\
& \sim X^{k} \nabla_{k} \partial_{\mathbf{u}} \mathcal{L}_{g, \gamma}^{k}(g-\gamma)+\partial_{\mathbf{u}} \nabla^{2 k-2} X \cdots
\end{aligned}
$$

This now has too many derivatives on the metric perturbation but the structure in the energy is symmetric so we can conclude by IBP

$$
\begin{aligned}
& \int_{M} X^{k} \nabla_{k}\left(\partial_{\mathbf{u}} \mathcal{L}_{g, \gamma}^{k}(g-\gamma)\right) \cdot \partial_{\mathbf{u}} \mathcal{L}_{g, \gamma}^{k}(g-\gamma) \\
& \sim \int \nabla_{k} X^{k} \cdot\left(\partial_{\mathbf{u}} \mathcal{L}_{g, \gamma}^{k}(g-\gamma)\right)^{2}
\end{aligned}
$$

Outlook

Summary:

- The homogeneous solutions to the relativistic Euler equations with $0<K<1 / 3$ on Milne-like FLRW spacetimes

$$
\mathbb{R} \times \mathbb{T}^{3}, \quad g=-d t^{2}+t^{2} \delta_{a b} d x^{a} d x^{b}
$$

are nonlinear stable to irrotational perturbations.

- Milne is a stable solution to the Einstein-Dust equations (i.e. relativistic Euler when $K=0$).

Outlook

Summary:

- The homogeneous solutions to the relativistic Euler equations with $0<K<1 / 3$ on Milne-like FLRW spacetimes

$$
\mathbb{R} \times \mathbb{T}^{3}, \quad g=-d t^{2}+t^{2} \delta_{a b} d x^{a} d x^{b}
$$

are nonlinear stable to irrotational perturbations.

- Milne is a stable solution to the Einstein-Dust equations (i.e. relativistic Euler when $K=0$).

Future work:

- Case $\frac{1}{3}<K<1$ very much open. [Oliynyk '20], [Fournodavlos '21]
- Does Speck's blow-up result still hold if $\left(g_{M}, M\right)=\left(\delta, \mathbb{T}^{3}\right)$ replaced with negatively curved manifold?
- Can we study deccelerating cases $p<1$, perhaps with $p=p(K)$?
- Milne-fluid stability when $0<K<1 / 3$.

