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Setting for today

Goal: understand the stability of particular cosmological
spacetimes filled with idealised perfect fluids.

I CMP 2021, with Fajman (Vienna) and Oliynyk (Monash)

I arXiv:2107.00457 with Fajman and Ofner (Vienna)



Cosmological spacetimes

Interested in cosmological solutions to the Einstein equations

Ric[g ]µν −
1

2
gµνR[g ] + Λgµν = 8πTµν (1)

Cosmological principle:

I fundamental oberservers whose timelines span the spacetime
and whose proper time tc is cosmic time

I at large scales, one sees the same distribution of matter
regardless of

I direction (isotropic)
I location (homogeneous)
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Observations

Expect isotropy about every point

(WMAP, NASA) temperature range ± 200 µK

Uniform radiation to roughly 1 part in 100,000.



Cosmological models

Spacetime splits as M̄ = I ×M with metric

g = −dt2
c + h (2)

where h = h(tc) is a Riemannian metric on M. Require (M, h) to
be isotropic.

Isotropy at a point x ∈ M implies

I sectional curvature independent of choice of plane

I Riemann tensor takes the form

Riem[g ]abcd(x) = κ(x)
(
hachbd − hbchad

)
(x) (3)

Isotropic at every point implies

κ = κ0 constant (4)

and hence (M, h) is locally isometric to {H3,R3,S3}
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Cosmological models

Can characterise the metric in spherical coordinates as

g = −dt2
c + a(tc)2

(
dr2

1− κr2
+ r2dΩ2

)
(5)

where a(tc) is an arbitrary function of time, and

κ =


−1 negatively curved
0 Euclidean
+1 positively curved

These are homogeneous spaces: they admit a transitive group of
(global or local) isometries.

Possible to allow locally homogeneous spaces

M = {H3/Γ,T3,S3} (6)
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FLRW models

Summary:

I ×M, g = −dt2
c + a(tc)2habdx

adxb (7)

a(tc) is the scale factor

I it scales the spatial distance between fundamental observers

a(tc)× disth((0, 0), (1, 0))

I expanding universe if ȧ > 0

Call {x1, x2, x3} co-moving coordinates.

Co-moving observer if uµ = (1, 0, 0, 0) in these coordinates.
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Matter model

Suppose an observer moving with timelike 4-velocity uµ.

Look at stress-energy tensor Tµν as measured by the observer

Tµν = ρuµuν + qµuν + qνuµ + PΠµν + πµν (8)

Πµν = (gµν + uµuν), so split into parts g-|| or g-⊥ to uµ.

Observer measures energy density ρ, pressure P, energy flux qµ etc.

10 cpts of Tµν −→
ρ = Tµνu

µuν

P = (gµν + uµuν)Tµν/3
etc.

Symmetry of the FLRW model forces

Tµν = ρuµuν + P(gµν + uµuν), uµuµ = −1 (9)

This is the algebraic form of a perfect fluid, with energy density
ρ(tc), pressure P(tc), and 4–velocity uµ = (1, 0, 0, 0).
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Simplified Einstein-Euler equations

Ric[g ]µν − 1
2gµνR[g ] + Λgµν = 8π

(
(ρ+ P)uµuν + Pgµν

)
∇µ
(
(ρ+ P)uµuν + Pgµν

)
= 0

(10)

Under symmetry, these reduce to the continuity equation

ρ̇+ 3
ȧ

a
(ρ+ P) = 0 (11)

the Raychaudhuri equation

ä

a
= −4π

3
(ρ+ 3p) +

Λ

3
(12)

and the Friedmann equation(
ȧ

a

)2

=
8π

3
ρ+

Λ

3
− κ

a2
(13)

˙ = d
dtc
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Equation of state

Close the system through an equation of state P = f (ρ, n, s)
- particle number density n, entropy per particle s...

Often consider a linear barotropic equation of state

P = Kρ, K ≤ 1. (14)

Important cases

I K = 0 dust, galactic epoch, neighbouring volume elements
exert no action on each other

I K = 1
3 radiation fluid, pre-decoupling epoch, energy density

dominated by the kinetic energy, Stefan–Boltzmann law

I K = 1 stiff fluid

Frequenty see K written as speed of sound

K = c2
s =

dP

dρ

∣∣∣
s

(15)

Also have polytropic equations of state (stars) with P = Cργ .
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Immediate observations

I R = 4Λ + (1− 3K )ρ
If ρ→∞ then curvature blow-up.

I Integrating up the continuity equation gives

ρ̇

ρ
= −3(1 + K )

ȧ

a
⇒ ρ(tc)a(tc)3(1+K) = c0 = const.

Energy density dilutes (at a rate depending on the type of
fluid) with increasing scale factor.

I Friedmann equation becomes

ȧ(tc)2 =
8π

3

c0

a(tc)1+3K
− κ+

Λ

3
a(tc)2 (16)

e.g. if κ = −1 then a(tc) grows at least linearly.



Special solutions

I Einstein static universe

κ = +1, Λ = 0

g = −dt2
c + a2

0(dr2 + (sin r)2 dΩ2)

ρ = 3a−2
0 , P = −a−2

0 , K = −1/3

(17)

Include Λ > 0 to remedy negative pressure.

I Flat FL matter-dominated universe:

κ = 0, Λ = 0

g = −dt2
c + t

4
3(1+K)
c (dr2 + r2 dΩ2)

ρ = 4
3(1+K)2t2 > 0

(18)

Example of decelerating expansion since ȧ > 0, ä < 0.

Dust case K = 0 called Einstein-de Sitter
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Special solutions

I de Sitter universe:

κ = 0, Λ > 0,

g = −dt2
c + exp(2

√
Λtc)(dr2 + r2 dΩ2)

(19)

Example of accelerated expansion since ȧ > 0, ä > 0.

I Open Milne vacuum universe:

κ = −1, Λ = 0,

g = −dt2 + t2(dr2 + (sinh r)2 dΩ2)

ρ = P = 0

(20)

Example of zero-accelerated expansion since ȧ > 0, ä = 0.

dΩ2 = dθ2 + sin2 θdφ2.
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Outside of symmetry

Study Einstein-rel. Euler equations as an initial value problem.

Ric[g ]µν − 1
2gµνR[g ] = 8π

(
(ρ+ P)uµuν + Pgµν

)
uα∇α ln ρ+ (1 + K )∇αuα = 0

uα∇αuµ + K
1+K Πµα∇α ln ρ = 0

Πµν := gµν + uµuν

(21)
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Initial value problem

Simpler problem: fix gµν =
◦
gµν a Lorentzian metric and only

consider the relativistic Euler equations.

Simpler problem: restrict to irrotational fluids

uµ = −ζ−1∇µΦ, ζ =
(
−∇µΦ∇µΦ

)1/2
(22)

which have vanishing vorticity and enthalpy ζ.

The rel.-Euler equations reduce to a quasilinear wave equation

aµν∇µ∇νΦ = 0 (23)

where a is called the acoustic metric

aµν = gµν + 1−K
K uµuν (24)
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Literature

I In the v ≪ c limit of relativistic Euler equations we get the
Euler equations for a perfect compressible fluid.

Smooth solutions develop singularities (gradients →∞).

Riemann 1880s, Friedrichs and Lax ‘60s, Sideris 1980s...

I Consider the relativistic Euler equations on fixed Minkowski

◦
g = −dt2 + dx2 + dy2 + dz2

Irrotational perturbations around the constant solution

ρB = ρ0 > 0 on Σ0\B, uµB = (1, 0, 0, 0)

lead to finite-time shock formation for many P = f (ρ)
[Christodoulou ‘07]
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Literature

Situations of global existence on Minkowski do occur.

I if H = ρf ′′(ρ) + 2f ′(ρ) vanishes on the constant state then no
shocks form.

P = −Aρ−1,A > 0, Chaplygin gas (25)

Moving to cosmological models [Brauer–Rendall–Reula ‘94]

I Newton-Cartan-Ehlers cosmological model

I For Λ > 0 and (1) P = Cργ for γ > 1, or (2) P = 0,
small perturbations of homogeneous solutions exist globally.

I For Λ = 0 and a(t) = t2/3, trajectories of dust particles cross.

Key idea: spacetime expansion induced by Λ > 0 can suppress
shock formation in fluids.
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Literature: Λ > 0

Think of Minkowski as

◦
g = η = −dt2 + 12(dx2 + dy2 + dz2)

Consider uniformly quiet fluid solutions to Einstein–Λ–rel. Euler

gB = −dt2 + aB(t)2h, aB(t) ∼ exp(
√

Λt)

ρB = ρ0aB(t)−3(1+K), uµB = (1, 0, 0, 0)
(26)

“Theorem”: such solutions are stable for

P = Kρ, 0 ≤ K ≤ 1/3

Typically M = gT3 . Also gS3 .

I [Rodnianski–Speck ‘09, Speck ‘11] 0 < K < 1/3

I [Lübbe–Valiente Kroon ‘11] K = 1/3, [Hadžić–Speck ‘13] K = 0

I [Oliynyk ‘15, ‘20] 0 < K < 1/2, [Friedrich ‘16] K = 0

I Also: [Ringström ‘08, ‘09]
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Literature: power law inflation

Focus on fixed power law spacetimes

I × T3, g = −dt2 + t2pδabdx
adxb, p > 0 (27)

[Speck ‘12] showed stability of homogeneous solutions to the
relativistic Euler equations provided integrability conditions hold for
the scale factor. See also [Wei JDE ‘18]

For example, if K = 1/3 and∫ ∞
1

1

a(s)
ds <∞ then perturbation exists globally∫ ∞

1

1

a(s)
ds =∞ then shocks form in finite time

Relies on conformal invariance of rel. Euler equations when K = 1
3 .



Literature: power law inflation

Focus on fixed power law spacetimes

I × T3, g = −dt2 + t2pδabdx
adxb, p > 0 (27)

[Speck ‘12] showed stability of homogeneous solutions to the
relativistic Euler equations provided integrability conditions hold for
the scale factor. See also [Wei JDE ‘18]

For example, if K = 1/3 and∫ ∞
1

1

a(s)
ds <∞ then perturbation exists globally∫ ∞

1

1

a(s)
ds =∞ then shocks form in finite time

Relies on conformal invariance of rel. Euler equations when K = 1
3 .



Power law inflation

Exp. rate Range of K Behaviour Ref.

p > 1 0 < K < 1/3 Stable [Speck ‘12]
p > 1

2 Dust K = 0 Stable [Speck ‘12]
p = 1 Radiation K = 1/3 Shocks [Speck ‘12]
p = 1 0 < K < 1/3 Stable (irrot.) ↙

Theorem (Fajman–Oliynyk–ZW ‘20)

The canonical homogeneous solutions to the rel.-Euler equations
on Milne-like FLRW spacetimes R× T3 with metric

◦
g = −dt2 + t2δabdx

adxb

and 0 < K < 1/3 are nonlinearly stable to sufficiently small
irrotational perturbations.

I first non-dust fluid stabilization below accelerated expansion

I shows that Speck’s shock formation is sharp
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Einstein-Euler: zero-acceleration

Move to fluid–gravity system, although note that rel. Euler is the
weakest link.

Consider the generalised Milne model:

g = −dt2
c +

t2
c

9
γ, Ric[γ] = −2

9γ
(28)

with M a compact, connected orientable n-manifold admitting a
negative Einstein metric γ.

I Example of zero-accelerated expansion (Λ = 0)

I Milne vacuum stability for n ≥ 3: [Andersson–Moncrief ‘11]

I n = 3 then γ has constant negative sectional curvature hence
hyperbolic, hence we have Mostow rigidity
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Einstein–Dust: zero-acceleration

Start with ‘most likely to be stable’ case of dust.

Theorem (Fajman–Ofner–ZW ‘21)

The Milne spacetime is a stable solution to the Einstein-Dust
equations (Λ = 0).

First example of fluid-gravity stabilization by non-accelerated
spacetime expansion.

I Milne matter stability: [Andersson–Fajman ‘17],
[Branding–Fajman–Kroncke ‘18], [Wang ‘18], [Fajman–ZW
‘19], [Barzegar–Fajman ‘20].

I most relevant dust work: Λ > 0 [Hadžić–Speck ‘13]
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Vacuum stability: set up 1/2

I ADM variables:

ḡ = −N2dt2 + gab(dxa + X adt)(dxb + X bdt) (29)

I CMCSH gauge:

mean curvature τ := gabkab = − 3
tc

on background

Choose a foliation whose slices have constant mean curvature

t = τ

g ij(Γk
ij [g ]− Γk

ij [γ]) = 0
(30)

[Andersson–Moncrief ‘03]
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Vacuum stability: set up 2/2

I Rescale variables using τ to account for spatial expansion. E.g.

gij := τ2g̃ij (31)

and use a rescaled time T = − ln(τ/τ0)

I Unknowns: lapse N, shift X , Riemannian metric g , and

Σab = (kab)TF := kab − τ
3gab (32)

Background solution in this gauge is

(gab,Σab,N,X
a)|B = (γab, 0, 3, 0) . (33)
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Vacuum stability: PDEs

The gauge gives elliptic equations for the lapse and shift variables

(∆− 1
3 )N = −1 + ...

∆X i + Ric[g ]imX
m = 0 + ...

(34)

and hyperbolic equations for the metric and (SFF)TF

∂T (g − γ) = 2NΣ−LXg + ...

∂TΣab = −2Σ− 3NLg ,γ(g − γ) +∇a∇bN + ...
(35)

where
Lg ,γ = −gab∇[γ]a∇[γ]b − 2Riem[γ]∼ ∇2 (36)

is a self-adjoint elliptic operator on M.

Aim to prove solutions to the PDEs exist for T →∞.
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Vacuum stability: strategy

Aim to show

‖g − γ‖s + ‖Σ‖s−1 + ‖N − 3‖s+1 + ‖X‖s+1 → 0, T →∞

with decay rates that imply future completeness. ‖ · ‖Hs(M) = ‖ · ‖s .

Use a coercive energy with correction terms. For example

‖g − γ‖2
1 + ‖Σ‖2

0 ≤ CE1 (37)

where E1 roughly looks like

E1 ∼
∫
M

Σ2 +

∫
(g − γ)Lg ,γ(g − γ)

∼
∫
M

(∂Tg)2 +

∫
(∇g)2

(38)

and obeys a good estimate like

∂TE1 ≤ −2E2 + error (39)



Vacuum stability: corrected energies

For cE > 0 depending on the smallest positive e’value of Lγ,γ

E2 :=
1

2

∫
M
〈Σ,Lg ,γΣ〉+

9

2

∫
M
〈Lg ,γ(g − γ),Lg ,γ(g − γ)〉

+ cE

∫
M
〈Σ,Lg ,γ(g − γ)〉

(40)

Add in correction term in order to get the full energy back

∂TE2 =
1

2

∫
M
〈∂TΣ,Lg ,γΣ〉+ · · ·

=
1

2

∫
M
〈−2Σ + · · · ,Lg ,γΣ〉+ · · ·

≤ −E2 + C (E2)3/2

(41)



Dust matter

Now include the matter. For example

(∆− 1
3 )N = N

(
|Σ|2g − τη

)
(42)

where η = Tµνnµnν + gabTab is a matter contribution.

Equations for the fluid variables

∂TΣab = geometry + τρgab + τ3ρuaubX + ...

suggest we need ρ, ua at same level of regularity as Σ. However

u0∂Tu
b − τua∇au

b = uaΣb
a + ...

u0∂Tρ− τua∇aρ = τρ∇au
a + Σa

a + ...

suggest we instead have u,Σ at same order, but also ρ,Σ at same
order and u one higher.
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Follow idea of [Hadžić–Speck ‘13] and use a fluid/material
derivative

∂u = u0∂T − τua∇[γ]a ' uα∇α (43)

as differential operator in energy functionals.

Matter PDEs look like

∂uu
b = uaΣb

a + ...

∂uρ = τρ∇au
a + Σa

a + ...
(44)

Commute Einstein equations with ∇N−1∂u instead of ∇N .

Adapt our bootstrap conditions

‖g − γ‖s + ‖Σ‖s−1 + ‖N − 3‖s + ‖X‖s + ‖ρ‖s−2 → 0

‖∂TN‖s−1 + ‖∂TX‖s−1 → 0

‖ua‖s−1 ∼ eµT
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Adapt our geometric energy functionals. For example

E2 :=
1

2

∫
M
〈Σ,Lg ,γΣ〉+

9

2

∫
M
〈Lg ,γ(g − γ),Lg ,γ(g − γ)〉

+ cE

∫
M
〈Σ,Lg ,γ(g − γ)〉

Recall

∂TΣab = geometry + τρgab + τ3ρuaubX + ...

∂uρ = τρ∇au
a + Σa

a + ...

When we take a time derivative, we end up replacing

∂uLg ,γ(∂TΣ) ' ∂uLg ,γ(τρ) ' τLg ,γ(∂uρ)

Key: don’t have to estimate ∇ρ in this equation since already
contained in ∂uρ
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Need extra ideas for some top-order lapse and shift estimates.

∂uLkg ,γ(LXg) ∼ ∂u∇2k+1(X )

gives problems, so we instead write:

∂uLkg ,γ(LXg) ∼ ∂uLk−1
g ,γ (∆LXg)

∼ ∂uLk−1
g ,γ (∇a∆X + [∆,∇a]Xb)

EoM∼ ∂uLk−1
g ,γ (∇a Ric ·X +∇Riem ·Xb)

Bianchi∼ ∂uLk−1
g ,γ (−2X k∇k Ric)

SH gauge∼ ∂uLk−1
g ,γ (X k∇kLg ,γ(g − γ))

SH gauge∼ X k∇k∂uLkg ,γ(g − γ) + ∂u∇2k−2X · · ·
This now has too many derivatives on the metric perturbation but
the structure in the energy is symmetric so we can conclude by IBP∫

M
X k∇k

(
∂uLkg ,γ(g − γ)

)
· ∂uLkg ,γ(g − γ)

∼
∫
∇kX

k ·
(
∂uLkg ,γ(g − γ)

)2
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Outlook

Summary:

I The homogeneous solutions to the relativistic Euler equations
with 0 < K < 1/3 on Milne-like FLRW spacetimes

R× T3, g = −dt2 + t2δabdx
adxb

are nonlinear stable to irrotational perturbations.

I Milne is a stable solution to the Einstein-Dust equations
(i.e. relativistic Euler when K = 0).

Future work:

I Case 1
3 < K < 1 very much open. [Oliynyk ‘20],

[Fournodavlos ‘21]

I Does Speck’s blow-up result still hold if (gM ,M) = (δ,T3)
replaced with negatively curved manifold?

I Can we study deccelerating cases p < 1, perhaps with
p = p(K )?

I Milne-fluid stability when 0 < K < 1/3.
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