Online Balanced Repartitioning of Dynamic Communication Patterns in Polynomial Time

Tobias Forner
Technical University Munich
Germany

Harald Räcke
Technical University Munich
Germany

Stefan Schmid
University of Vienna
Austria

ABSTRACT
This paper revisits the online balanced repartitioning problem (introduced by Avin et al. at DISC 2016) which asks for a scheduler that dynamically collocates frequently communicating nodes, in order to reduce communication costs while minimizing migrations in distributed systems. More specifically, communication requests arrive online and need to be served, either remotely across different servers at cost 1, or locally within a server at cost 0; before serving a request, the online scheduler can change the mapping of nodes to servers, i.e., migrate nodes, at cost \(\alpha \) per node move. Avin et al. presented a deterministic \(\Omega(k \log k) \)-competitive algorithm, which is optimal up to a logarithmic factor; however, their algorithm has the drawback that it relies on expensive repartitioning operations which result in a super-polynomial runtime. Our main contribution is a different deterministic algorithm pCrep which achieves the same competitive ratio, but runs in polynomial time. Our algorithm monitors the connectivity of communication requests over time, rather than the density as in prior work; this enables the polynomial runtime. We analyze pCrep both analytically and empirically.

1 INTRODUCTION
Most distributed systems critically rely on an efficient interconnecting communication network. With the increasing scale of these systems, the network traffic often grows accordingly: applications related to distributed machine learning, batch processing, or scale-out databases, spend a considerable fraction of their runtime shuffling data [15]. An interesting method to improve the efficiency in these systems is to exploit their resource allocation flexibilities: many distributed systems are highly virtualized today and support to relocate (or migrate) communication partners (e.g. virtual machines). By collocating two frequently communicating nodes on the same server, slow and costly inter-server communication can be reduced. However, relocations also come at a cost, and the number of migrations should be kept low.

This paper revisits the online balanced repartitioning problem [5] which models the tradeoff between the benefits and the costs of dynamic relocations. The goal is to design an algorithm which maintains, at any time, a mapping of \(n \) communication nodes (virtual machines) to \(\ell \) servers of fixed equal size \(k \); in the absence of augmentation, \(n = \ell k \). The communication pattern can be seen as a dynamic graph, from which communication requests arrive in an online manner; in other words, the online algorithm does not have prior knowledge of future communication requests. The goal is to strike a balance between the benefits and the costs of migrations. More specifically, the cost model is as follows: if a communication request is served remotely, i.e., between nodes mapped to different servers, it incurs a communication cost of 1; communication requests between nodes located on the same server are free of cost. Before the cost for the current request is payed, an algorithm has the option to migrate nodes at a cost of \(\alpha \) for each node move.

The problem can be seen as a symmetric version of caching: two nodes can be “cached” together on any server.

1.1 Contributions
Our main result is a deterministic online algorithm pCrep for the dynamic balanced graph partitioning problem which achieves a competitive ratio of \(O(k \log k) \) and runs in polynomial time, for a constant augmentation.

A \(O(k \log k) \)-competitive algorithm was already given by Avin et al. in [5], together with an almost tight lower bound \(\Omega(k) \). However, the algorithm relies on expensive repartitioning which results in a super-polynomial runtime. Our algorithm, pCrep, is similar to the algorithm by Avin et al., but it comes with a twist: rather than considering the density of emerging communication patterns when deciding the repartitioning, we consider the connectivity. The latter allows for polynomial-time approximations, as we will show, but also requires a new analysis. Besides the analytical evaluation, we also report on simulations based on real datacenter workloads. We will make our implementation publicly available as open source, together with this paper.

1.2 Preliminaries
Let us introduce some definitions and notations that will be used throughout the paper. We define a graph \(G = (V, E, w) \) where \(V \) is the set of vertices, \(E \) the set of (undirected) edges, and \(w : E \rightarrow \mathbb{N} \) assigns each edge an (integer) weight. Given a graph \(G = (V, E, w) \), we define an (edge) cut of \(G \) as a pair of two disjoint subsets \(X, Y \) of \(V \) such that \(X \cup Y = V \). The
value of this cut is the sum of the weight of edges between nodes from X and Y, i.e., $\sum_{(u,v) \in E \in X, u \in Y} w(e)$ is the value of the cut (X, Y). Note that such a cut can also be defined by the set of the edges connecting X and Y that are cut. We call a cut a minimum (edge) cut of G if it is one of the cuts with minimum value.

The connectivity of a graph G is equal to the value of a minimum edge cut of G. This definition will be used in order to define the communication components our algorithm maintains as these are subsets of V which induce subgraphs of high connectivity. We explain the concept of components in greater detail later.

Furthermore we define the term (s, t)-cut as a cut (X, Y) for which $s \in X$ and $Y \in X$, i.e. a (s, t)-cut separates the nodes s and t in G. Then a minimum (s, t)-cut is a (s, t)-cut of minimum value. Note that a minimum (s, t)-cut is not necessarily a minimum cut.

Finally we call an injective function $m : X \rightarrow Y$ a mapping of X to Y. We use this terminology for example when we talk about the assignment of nodes to servers.

2 MODEL

We consider the problem of maintaining a partitioning of a set of $n = k \cdot \ell$ nodes (e.g., processes or virtual machines) that communicate with each other, into ℓ servers (henceforth sometimes also called clusters) of size k each, while minimizing both the cost due to communication and due to node migrations. More formally we are given ℓ servers $V_0, ..., V_{\ell-1}$, each with capacity k and an initial perfect mapping of $n = k \cdot \ell$ nodes to the ℓ servers, i.e. each server is assigned exactly k nodes. An input sequence $\sigma = ((u_1, v_1), 1), ((u_2, v_2), 2), ..., ((u_t, v_t), t)$ represents a communication request between the nodes u_t and v_t at time t. At time t the algorithm is allowed to perform node migrations at a cost of $\alpha > 1$ per move. After the migration step, the algorithm pays cost 1 if u_t and v_t are mapped to different servers and does not pay any cost otherwise. Note that an algorithm may also choose to perform no migrations at all.

We are in the realm of competitive analysis and as a result we compare an online algorithm Onl to the optimal offline algorithm Opt. Onl only learns of the requests in the input sequence σ as they happen and as a result only knows about the partial sequence $(u_1, v_1), ..., (u_t, v_t)$ at time t whereas Opt has perfect knowledge of the complete sequence σ at all times.

The goal is to design an online algorithm Onl with a good competitive ratio with regard to Opt defined as follows. An online algorithm Onl is ρ-competitive if there exists a constant β such that

$$\text{Onl}(\sigma) \leq \rho \cdot \text{Opt}(\sigma) + \beta \forall \sigma$$

where Onl(\sigma) and Opt(\sigma) denote the cost of serving input sequence σ of Onl and Opt respectively. This has to hold for any input sequence σ.

We consider a model with augmentation (as in prior work [5]), and allow the online algorithm to use larger capacities per server. In particular, the online algorithm is allowed to assign $\frac{2 + \varepsilon}{\alpha} \cdot n/\ell$ nodes to each server where $\varepsilon > 0$. This augmented online algorithm is then compared with the optimal offline algorithm Opt which is not allowed to use any augmentation.

Throughout this paper, we will also use $1 + \varepsilon$ as the basis for the logarithm.

3 BASIC ALGORITHM

We first describe the basic algorithm underlying our approach, before presenting the polynomial-time implementation later in this paper. In general, pCREP relies on a second-order partitioning of the communication nodes into communication components which represent node-induced subgraphs of the original communication graph given by the requests from the input sequence σ. To this end we define a component C as the set of its nodes together with the time t of its creation, i.e. $C = ((v_1, v_2, ..., v_k), t)$. For a component $B = (M, t)$ let nodes(B) = M, $\tau(B) = t$ and we define $|B| = |M|$ in order to improve readability. Initially each node forms a singleton component, but as the input sequence σ is revealed, new communication patterns unfold. The algorithm keeps track of these patterns by maintaining a graph in which the nodes represent the actual communication nodes and the weighted edges represent the number of communication requests between nodes that were part of different components at the time of the request; that is, for edge $e = (u, v)$, $w(e)$ represents the number of paid communication requests between u and v. We say that a communication request between nodes u and v is paid if the nodes are located on different servers at the time of the request. The algorithm merges a set S of components into a new component C if the connectivity of the component graph induced by the components in S is at least α. After each edge insertion the algorithm checks whether there exists a new component set S with $|S| > 1$ which fulfills this requirement.

If after any request and the insertion of the resulting edge the algorithm discovers a new subset S of nodes whose induced subgraph has connectivity at least α and which is of cardinality at most k, it merges the components that form this set into one new component and collocates all the nodes in the resulting set on a single server. The algorithm reserves additional space $\min(k - |C|, \lfloor \varepsilon \cdot |C| \rfloor)$ for each component of
Once the component set reaches a certain density threshold. More specifically earlier algorithms merge a component set \(S \) once it fulfills \(w(S) \geq (|S| - 1) \cdot a \) where \(w(S) \) denotes the cumulative weight of the edges between nodes contained in the components of \(S \).

Algorithm 3 \(\text{split}(Y) \) of \(\text{pCrep} \)

\[
\text{mergeAndRes}(X) // moves all components from } X \text{ to the same server as described}
\]

Algorithm 4 \(\text{collocate}(X) \)

\[
\text{pCrep resets all the edges contained in the split component } C \text{ and also resets the weights of edges adjacent to } C, \text{ i.e. all edges } e = \{u, v\} \text{ are reset to zero if } u \text{ or } v \text{ were contained in component } C \text{ at the time of its split. The splitting method is also described in pseudocode in Algorithm 3. Additionally, Algorithm 4 describes the collocation procedure that first tries to find a component such that the remaining ones that are to be merged fit into its existing reservation (if-case). If this is not possible all the components that are to be merged are moved to a new server with enough space for the resulting merged component } C_{\text{merged}} \text{ as well as the additional reservation of } \min(k, |C_{\text{merged}}|) \cdot |C_{\text{merged}}|}. \text{ Furthermore the merge and split process is illustrated in Figure 1.}

As we will see, the idea for the competitive analysis is to relate the cost of both \(\text{Opt} \) and \(\text{pCrep} \) to the split components in the solution of \(\text{pCrep} \). The fact that \(\text{pCrep} \) also resets
We analyze the competitive ratio of $pCrep$ with the split component whose split led to the reset of the $pCrep$. The first six requests lead connect the nodes 4, 5, 6 and 7 to C which results in a component of size 4 which gets split. During this split all edges shown in the figure are split, both those that led to the merges and the remaining ones.

adjacent edges means that we can uniquely identify requests with the split component whose split led to the reset of the corresponding edge weights to zero.

4 COMPETITIVE ANALYSIS

We analyze the competitive ratio of $pCrep$ with augmentation $(2 + \varepsilon)$ and show that $pCrep$ is $O(2/\varepsilon \cdot k \log k)$-competitive. We will use the following general definitions throughout the analysis.

Definition 4.1. For any subset S of components, let $w(S)$ be the total weight of all edges between nodes of S.

Definition 4.2. We call a set of components of size at least 2 and of connectivity α mergeable.

Definition 4.3. An α-connected component is a maximal set of vertices that is α-connected.

Despite the algorithmic differences, some claims from [2] can be adapted for $pCrep$. In Section A.1, we introduce some preliminaries which can easily be derived from prior work. In particular, we can show that there is always at most one mergeable component set after the insertion of a new edge which $pCrep$ then merges. The earliest point in time a new mergeable component set can emerge is after the next edge is inserted. In the following, we will now focus on the novel aspects of the competitive analysis.

4.1 Upper Bound On $pCrep$

We start the analysis with upper bounding the cost of $pCrep$ by introducing several notions that we will use throughout the analysis. We define the set $Sp(\sigma)$ as the set of components that were split by $pCrep$ during its execution given the input sequence σ. We define the following notions for a split component $C \in Sp(\sigma)$. Let $\tau(v)$ be the time when the node v was last turned into a singleton component and let $\tau(C)$ denote the time at which component C was created. If C was one of the components created during the initialization of the algorithm then $\tau(C) = 0$. Note that a component can either be created via merges or during the split process of another component B when the nodes of B are turned into singletons. Let $EPOCH(C)$ denote the (node, time) pairs of nodes in C starting directly after the time $\tau(node)$, i.e.

$$EPOCH(C) = \bigcup_{v \in nodes(C)} \{v\} \times \{\tau(v) + 1, \ldots, \tau(C)\}.$$

Note that for $C \in Sp(\sigma)$, $\tau(C)$ denotes both the time of the creation as well as the time of the split of C as C is split by $pCrep$ right away. We can use this definition of a component epoch $EPOCH(C)$ to uniquely assign each node to a split component C at each point in time t (except for nodes in components that persist until the end of sequence σ). We assign all requests to $EPOCH(C)$ whose corresponding edges are reset because of the split of component C and call the set of those requests $REQ(C)$. We split the requests from $REQ(C)$ into two sets: $CORE(C)$ and $HALO(C)$. $CORE(C)$ contains all requests for which both nodes have already been assigned to C at the time of the request, i.e.

$$CORE(C) = \{r = ((u, v), t) \in \sigma | (u, t) \in EPOCH(C) \text{ and } (v, t) \in EPOCH(C)\}.$$

These are the requests that led to the creation of component C by increasing the connectivity within the corresponding subgraph.

We define $HALO(C)$ as the set of all requests from $REQ(C)$ for which exactly one end point was associated with C at the time of the request. Note that this means that $HALO(C) = REQ(C) \setminus CORE(C)$. These definitions allow us to differentiate between the highly-connected sub-graph induced by the nodes of C which are connected by requests from $CORE(C)$ and the edges leaving C from $HALO(C)$ which are relatively less dense as $pCrep$ has not merged any outer node with the component.
We start the analysis by bounding the communication cost of \(p_{C_{\text{rep}}} \) that is due to serving requests from \(\text{core}(C) \) for \(C \in \text{Sp}(\sigma) \).

Lemma 4.4. With augmentation \(2 + \epsilon \), \(p_{C_{\text{rep}}} \) pays at most communication cost \(|C| \cdot \alpha \) for requests in \(\text{core}(C) \) where \(C \in \text{Sp}(\sigma) \).

Proof. First note that due to Lemma A.1, \(p_{C_{\text{rep}}} \) merges mergeable component sets as soon as they emerge. Whenever \(p_{C_{\text{rep}}} \) performs a merge of a mergeable component set \(S \), Lemma A.4 states that there was at most total edge weight \((|S| - 1) \cdot \alpha \) between the merged components, i.e. \(w(S) \leq (|S| - 1) \cdot \alpha \). Each such merge decreases the number of components that need to be merged in order to form component \(C \) by \(|S| - 1 \). Hence \(p_{C_{\text{rep}}} \) has paid at most \(|C| \cdot \alpha \) communication cost for requests in \(\text{core}(C) \). \(\square \)

We define \(\text{FIN-WEIGHTS}(\sigma) \) as the total amount of edge weight between the components \(\text{FIN-COMPS}(\sigma) \) which are present after the execution of \(p_{C_{\text{rep}}} \) given input sequence \(\sigma \). Together with the fact that \(p_{C_{\text{rep}}} \) pays for all requests in \(\text{HALO}(C) \) for split components \(C \) we use these definitions as well as the previous lemma to bound the total communication cost of \(p_{C_{\text{rep}}} \) in the following lemma.

Lemma 4.5. The cost of serving communication requests that \(p_{C_{\text{rep}}} \) has to pay, denoted by \(p_{C_{\text{rep}}}^{\text{req}}(\sigma) \) given input sequence \(\sigma \) is bounded by

\[
p_{C_{\text{rep}}}^{\text{req}}(\sigma) \leq \sum_{C \in \text{Sp}(\sigma)} (|C| \cdot \alpha + |\text{HALO}(C)|) + \sum_{C \in \text{FIN-COMPS}(\sigma)} |C| \cdot \alpha + \text{FIN-WEIGHTS}(\sigma).
\]

Proof. The number of communication requests that led to the creation of a component \(C \) is bounded by \(|C| \cdot \alpha \) due to Lemma A.4. If component \(C \) was split by \(p_{C_{\text{rep}}} \) then also the edge weights corresponding to requests from \(\text{HALO}(C) \) were reset to zero. All other edge weights were not changed. The remaining communication requests that have not been accounted for so far have either led to the creation of component \(C \in \text{FIN-COMPS}(\sigma) \) and are hence also bounded by \(|C| \cdot \alpha \) or have not led \(p_{C_{\text{rep}}} \) to any merge and are hence contained in \(\text{FIN-WEIGHTS}(\sigma) \). This concludes the proof. \(\square \)

We define \(\text{COMPS}(\sigma) := \text{Sp}(\sigma) \cup \text{FIN-COMPS}(\sigma) \) and continue our analysis by bounding the migration cost of \(p_{C_{\text{rep}}} \) in the following lemma.

Lemma 4.6. With augmentation \(2 + \epsilon \), \(p_{C_{\text{rep}}} \) pays at most migration costs of

\[
p_{C_{\text{rep}}}^{\text{mig}}(\sigma) \leq 2 \cdot \sum_{C \in \text{COMPS}(\sigma)} |C| \cdot ((2/\epsilon + 1) \cdot \log_{1+\epsilon} k) \cdot \alpha.
\]

Proof. Consider the cases in Algorithm 4 in which components are migrated after a merge. In the if-case only components are moved that fit into the reservation of some merged component \(C \) with enough free reservation, hence the number of migrated nodes is at most \(\epsilon \cdot |C| \leq |C| \). Hence only components are moved whose size is at most half the size of the resulting component \(C_{\text{merged}} \). Hence each node is merged at most \(\log_{1+\epsilon} k \) times during the time it is in \(\text{EPOCH}(B) \) for some \(B \in \text{Sp}(\sigma) \).

In the else-case components are moved if none of the reservations of the merged components in \(X \) are enough to fit \(C_{\text{merged}} \). Again we observe that this may only happen at most \(\log_{1+\epsilon} k \) times, hence each node \(v \) of some split component \(B \in \text{Sp}(\sigma) \) that contains \(v \) is moved at most \(\log_{1+\epsilon} k \) times during the time it is in \(\text{EPOCH}(B) \).

In addition components may be moved if the components are still small and thus their reservations are rounded to zero. This may only lead to at most \(2/\epsilon \) migrations per node in \(B \in \text{Sp}(\sigma) \).

Hence we may bound the migration cost of \(p_{C_{\text{rep}}} \) by summing over components in \(\text{Sp}(\sigma) \cup \text{FIN-COMPS}(\sigma) \):

\[
p_{C_{\text{rep}}}^{\text{mig}}(\sigma) \leq \sum_{C \in \text{COMPS}(\sigma)} (|C| \cdot ((2/\epsilon) + \log_{1+\epsilon} k) + |C| \cdot ((2/\epsilon) + \log_{1+\epsilon} k) \cdot \alpha \leq 2 \cdot \sum_{C \in \text{COMPS}(\sigma)} |C| \cdot ((2/\epsilon) + \log_{1+\epsilon} k) \cdot \alpha.
\]

\(\square \)

We combine our results from Lemma 4.5 and Lemma 4.6 in the following lemma in order to obtain the final upper bound on the cost of \(p_{C_{\text{rep}}} \).

Lemma 4.7. With augmentation \(2 + \epsilon \), \(p_{C_{\text{rep}}} \) pays at most total cost

\[
3 \cdot \sum_{C \in \text{COMPS}(\sigma)} |C| \cdot ((2/\epsilon + 1) \cdot \log_{1+\epsilon} k) \cdot \alpha + \sum_{C \in \text{Sp}(\sigma)} |\text{HALO}(C)| + \text{FIN-WEIGHTS}(\sigma).
\]

where \(\text{COMPS}(\sigma) = \text{Sp}(\sigma) \cup \text{FIN-COMPS}(\sigma) \).
Proof. We use the results from Lemma 4.5 and Lemma 4.6 to obtain the lemma:

\[p\text{Crep}(\sigma) \leq p\text{Crep}^{\text{req}}(\sigma) + p\text{Crep}^{\text{mix}}(\sigma) \]
\[\leq \sum_{C \in \text{Sp}(\sigma)} |C| \cdot \alpha + |\text{HALO}(C)| \]
\[+ \sum_{C \in \text{FIN-COMPS}(\sigma)} |C| \cdot \alpha + \text{FIN-WEIGHTS}(\sigma) \]
\[+ 2 \cdot \sum_{C \in \text{COMPS}(\sigma)} |C| \cdot (\frac{2}{\epsilon} + 1 + \log_{1+\epsilon} k) \cdot \alpha \]
\[\leq 3 \cdot \sum_{C \in \text{COMPS}(\sigma)} |C| \cdot (\frac{2}{\epsilon} + 1 + \log_{1+\epsilon} k) \cdot \alpha \]
\[+ \sum_{C \in \text{Sp}(\sigma)} |\text{HALO}(C)| + \text{FIN-WEIGHTS}(\sigma). \]

\[\square \]

4.2 Lower Bound on Opt

We next bound the cost on Opt by assigning cost to Opt based on the size of the components \(C \) that pCrep resets and the associated adjacent edges HALO(\(C \)) which pCrep resets to zero during the split of \(C \). In order to achieve this we introduce some additional notions. First we define the term offline interval of a node \(v \) to be the time between two migrations of \(v \) in the solution of Opt. More specifically let \(T(\sigma) = (t_0, t_1, t_2, \ldots) \) denote the ordered sequence of the times at which Opt migrates node \(v \) with the addition of \(t_0 = 0 \) such that for all \(i, t_i < t_{i+1} \) if \(t_i, t_{i+1} \in T(\sigma) \). Then an offline interval \((t_i, t_{i+1}] \) of node \(v \) is defined by every two subsequent times in \(T(\sigma) \).

Furthermore we say that an offline interval \((t_i, t_{i+1}] \) of node \(v \in C \) is contained in the epoch EPOCH(\(C \)) of a component \(C \in \text{Sp}(\sigma) \) if it ends before the time \(\tau(C) \), i.e. if \(t_{i+1} < \tau(C) \). Note that \(\tau(C) \) is both the time of the creation of \(C \) in the solution of pCrep and the time of its split as \(C \in \text{Sp}(\sigma) \). We assign a request \(r \) occurring at time \(\tau(r) \) that involves the nodes \(v \) and \(u \) to an offline interval \(I = (t_i, t_{i+1}] \) of \(v \) if \(\tau(r) \in I \) and if it is both the first offline interval of one of the end points of \(r \) that ends and if the offline interval ends before the deletion of the edge representing \(r \) due to a component split, i.e. let \(i \) be the time of the component split that resets the edge corresponding to \(r \) and \((t_j, t_{j+1}] \) be the offline interval of node \(u \) that contains \(\tau(r) \), then \(t_{j+1} < i \) and \(t_{j+1} < t_{j+1} \). The requests from \(\mathcal{H} = \bigcup_{C \in \text{Sp}(\sigma)} \text{HALO}(C) \) that are not assigned to any offline interval are then those which are reset due to the split of a component that took place before the corresponding offline interval ended. Let \(P \) denote the set of edges from \(\bigcup_{C \in \text{Sp}(\sigma)} \text{HALO}(C) \) that both pCrep and Opt pay for and let \(I \) denote the set of requests we have assigned to offline intervals.

These definitions are illustrated in Figure 2. Note that we only show some requests explicitly for the sake of readability. The grey horizontal lines represent the nodes at each time \(t \). The brown outline surrounds the (node,time) pairs of EPOCH(\(C \)). Blue dots mark migrations of the corresponding node performed by Opt while brown dots mark splits of the component the node was assigned to at that time. The dashed vertical lines in black mark requests that are assigned to another component because it is split before component \(C \). The dashed green line is a request from HALO(\(C \)) assigned to the offline interval of node 5 between the two blue dots. The regular green lines are assigned to an offline interval which is not contained in EPOCH(\(C \)).

Figure 2: Illustration of definitions used in the analysis; vertical lines represent requests between the corresponding nodes; dashed black requests are assigned to another component; the dashed green line is assigned to the offline interval of node 5; the regular green lines are assigned to an offline interval which is not contained in EPOCH(\(C \)).

Lemma 4.8. We assign at most \(k \cdot \alpha \) requests from \(N \) to any one offline interval.
Proof. We fix an arbitrary offline interval of node v. Observe that none of the nodes involved in the assigned requests are moved by Opt during the offline interval, hence all the requests in question involve only nodes that Opt has placed on the same server as v during the offline interval.

The number of such nodes is hence limited by the server capacity k. As we only examine requests from \mathcal{H} we know that none of these requests have led pCREP to perform any merges, hence there were at most α requests between v and any one of the other nodes on its server during the offline interval. This bounds the number of requests assigned to the offline interval by $k \cdot \alpha$. \hfill \Box

Let $R(C)$ denote the set of requests from HALO(C)\$P that were not assigned to any offline interval for a split component $C \in \mathcal{Sp}(\sigma)$ and that Opt does not pay for. We say that a migration of node v at time t in the solution of Opt is contained in $\text{EPOCH}(C)$ if $(v, t) \in \text{EPOCH}(C)$. Let $\text{OPT-MIG}(C)$ denote the cost of Opt due to migrations of nodes from component C that are contained in $\text{EPOCH}(C)$ and let $\text{OPT-REQ}(C)$ denote the cost of Opt due to serving requests from CORE. We show the following lower bound on the cost of Opt for migrations from $\text{OPT-MIG}(C)$ and requests from $\text{OPT-REQ}(C)$ for all split components C.

Lemma 4.9.

$$\sum_{C \in \mathcal{Sp}(\sigma)} \text{OPT-MIG}(C) + \text{OPT-REQ}(C) \geq 1/2 \cdot \sum_{C \in \mathcal{Sp}(\sigma)} |C|/k \cdot \alpha + |R(C)|/k$$

Proof. For the following part of the proof we fix an arbitrary component $C \in \mathcal{Sp}(\sigma)$. Note that the nodes involved in requests from $R(C)$ were not moved by Opt during the processing of requests from $R(C)$ until the time of the split of C as otherwise they would be assigned to an offline interval.

The number of nodes contained in C or connected to C via edges representing requests from $R(C)$ is at least $|C| + |R(C)|/\alpha$ since requests from $R(C)$ have not led pCREP to perform any migrations. Because of this fact Opt must have placed those nodes on at least $\frac{|C| + |R(C)|}{\alpha} \cdot k$ different servers. As Opt does not pay for any requests from $R(C)$ it follows that Opt must have placed the nodes from C in $(|C| + |R(C)|/\alpha)/k$ different servers.

We first examine the case in which Opt does not move any nodes from C during $\text{EPOCH}(C)$. In this case Opt must partition a graph containing the nodes from C which are connected via edges representing the requests from CORE. As stated earlier Opt placed those nodes in $(|C| + |R(C)|/\alpha)/k$ different servers at time $t(C)$. As pCREP merged component C this graph is α-connected and hence Lemma A.3 gives that Opt has to cut at least edges of total weight $(|C| + |R(C)|/\alpha)/k + 2 \cdot \alpha = 1/2 \cdot (|C|/k \cdot \alpha + |R(C)|/k)$.

For the more general case in which Opt may perform node migrations during $\text{EPOCH}(C)$ we adapt the graph construction from above as follows: we add a vertex representing each (node, time) pair from $\text{EPOCH}(C)$. We connect each (node, time) pair p with edges of weight α to the pairs of the same node that represent the time step directly before and directly after p (if they exist in the graph). These edges represent the fact that Opt may choose to migrate a node between any two time steps in $\text{EPOCH}(C)$. Additionally we add an edge of weight one for each request $r = ((u, v), t)$ from CORE by connecting the nodes in the graph that represent the pairs (u, t) and (v, t), respectively. Opt once again has to partition this graph into $\frac{|C| + |R(C)|}{\alpha} \cdot k$ parts. Note that we only added edges of weight α to the graph and hence this graph is also α-connected. We conclude that once again Opt has to cut edges of weight at least $\frac{|C| + |R(C)|}{\alpha} \cdot 1/2 \cdot (|C|/k \cdot \alpha + |R(C)|/k)$.

In both cases only edges representing either requests from $\text{OPT-REQ}(C)$ or migrations from $\text{OPT-MIG}(C)$ were cut. As the sets CORE, $R(C)$, CORE, and $R(D)$ are disjoint for two different components $C, D \in \mathcal{Sp}(\sigma)$ per their definition we conclude that

$$\sum_{C \in \mathcal{Sp}(\sigma)} \text{OPT-MIG}(C) + \text{OPT-REQ}(C) \geq 1/2 \cdot \sum_{C \in \mathcal{Sp}(\sigma)} |C|/k \cdot \alpha + |R(C)|/k.$$

\hfill \Box

In the following lemma we combine the results of the previous lemmas in order to bound the cost of Opt given input sequence σ, denoted by Opt(σ).

Lemma 4.10. The cost of the solution of Opt given input sequence σ is bounded by

$$\text{Opt}(\sigma) \geq 1/4 \cdot \sum_{C \in \mathcal{Sp}(\sigma)} |C|/k \cdot \alpha + |\text{HALO}(C)|/k.$$

Proof. We combine the results from Lemma 4.8 and Lemma 4.9. Note that the cost from Lemma 4.9 may contain migration costs. In this case the corresponding migrations represent the end of an offline interval. We denote the number of offline intervals by α. This gives us that

$$2\text{Opt}(\sigma) \geq \sum_{C \in \mathcal{Sp}(\sigma)} \text{OPT-MIG}(C) + \text{OPT-REQ}(C) + \alpha \cdot \alpha + |P|$$

as we account for each migration at most twice.

Consider that due to Lemma 4.8 we have the inequality $\alpha \geq |N|/k$. We repeat that $\mathcal{H} = \bigcup_{C \in \mathcal{Sp}(\sigma)} \text{HALO}(C)$. Note that \mathcal{N} is the subset of requests of \mathcal{H} for which Opt does not pay while \mathcal{P} is the subset of \mathcal{H} Opt pays for. It follows that the disjoint union of \mathcal{N} and \mathcal{P} is \mathcal{H}. Hence we obtain
We can now combine the results of Lemma 4.7 and are not split by where can be at most log 𝜋.

To improve readability, the desired competitive ratio. We define \(\text{comps}(\sigma) := \text{sp}(\sigma) \cup \text{fin-comps}(\sigma) \) and \(c := 2/\epsilon + 1 \) in order to improve readability.

Theorem 4.11. With augmentation \((2 + \epsilon)\) the competitive ratio of \(p\text{CREP} \) is in \(O(2/\epsilon \cdot k \log_{1+\epsilon} k) \).

Proof. We arbitrarily fix an input sequence \(\sigma \) and use our previous results to bound the competitive ratio of \(p\text{CREP} \). We define \(\text{comps}(\sigma) := \text{sp}(\sigma) \cup \text{fin-comps}(\sigma) \) and \(c := 2/\epsilon + 1 \) in order to improve readability.

\[
\begin{align*}
\frac{\text{pcrep}(\sigma) - \text{fin-weights}(\sigma)}{\text{opt}(\sigma)} &\leq \frac{3 \cdot \sum_{C \in \text{comps}(\sigma)} |C| \cdot (c + \log_{1+\epsilon} k) \cdot \alpha + \sum_{C \in \text{sp}(\sigma)} |\text{halo}(C)|}{1/4 \cdot \sum_{C \in \text{sp}(\sigma)} |C| / k \cdot \alpha + |\text{halo}(C)| / k} \\
&\leq k \log_{1+\epsilon} k \cdot \frac{3 \cdot \sum_{C \in \text{comps}(\sigma)} |C| \cdot c \cdot \alpha + \sum_{C \in \text{sp}(\sigma)} |\text{halo}(C)|}{1/4 \cdot \sum_{C \in \text{sp}(\sigma)} (|C| \cdot \alpha / 2 + |\text{halo}(C)|)} + \beta \\
&= O(2/\epsilon \cdot k \log_{1+\epsilon} k) + \beta
\end{align*}
\]

where

\[
\beta = \sum_{C \in \text{fin-comps}(\sigma)} |C| \cdot ((2/\epsilon + 1) + \log_{1+\epsilon} k) \cdot \alpha
\]

Let \(\beta' = \beta + \text{fin-weights}(\sigma) \). Then it follows that

\[
\frac{\text{pcrep}(\sigma)}{\text{opt}(\sigma)} \leq O(2/\epsilon \cdot k \log_{1+\epsilon} k) + \beta'.
\]

To obtain the bound on \(\beta' \) we observe that the components in \(\text{fin-comps}(\sigma) \) each are of size at most \(k \) since they were not split by \(p\text{CREP} \). This allows us to derive the bound \(\sum_{C \in \text{fin-comps}(\sigma)} |C| \cdot ((2/\epsilon + 1) + \log_{1+\epsilon} k) \leq \ell \cdot k \cdot ((2/\epsilon + 1) + \log_{1+\epsilon} k) \). Since at the end of the execution of \(p\text{CREP} \) there can be at most \(k \cdot \ell \) components, Lemma A.4 allows us to bound \(\text{fin-weights}(\sigma) \) by \(k \cdot \ell \cdot \alpha \). Hence we conclude that \(\beta' \leq \ell \cdot k \cdot ((2/\epsilon + 1) + \log_{1+\epsilon} k) \cdot \alpha + k \cdot \ell \cdot \alpha \in O(2/\epsilon \cdot k \log_{1+\epsilon} k) \).

5 POLY-TIME IMPLEMENTATION

So far we have only shown that the Algorithm \(p\text{CREP} \) described in Section 3 has a competitive ratio \(O(2/\epsilon \cdot k \log_{1+\epsilon} k) \). We now show that it can also be implemented in polynomial time.

In order to limit the section of the graph \(G \) maintained by \(p\text{CREP} \) that needs to be updated upon a new request between nodes of different components, we maintain a decomposition tree defined as follows: the root represents the whole graph and is assigned the connectivity of the entire graph. Given a node \(v \) in the tree that represents a subgraph \(G' \) of \(G \), we decompose \(G' \) into subgraphs whose connectivity is strictly larger than that of \(G' \) and add children to \(v \) for each such subgraph. We do not decompose sub-graphs of connectivity at least \(\alpha \) any further as we only need to identify whether a new subgraph of connectivity at least \(\alpha \) was created by the insertion of the most recent request. Additionally we keep track of the connectivity of each such subgraph. Figure 4 illustrates this decomposition for the graph shown in Figure 3. In the decomposition tree we have labelled each node with the corresponding subset of vertices and the connectivity of the graph induced by these vertices.

If a new request is revealed to \(p\text{CREP} \) then we only need to update the smallest subtree of the decomposition tree which still contains both end points of the request. This is correct because we can view each decomposition of a subgraph \(G' \) into smaller graphs of a higher connectivity as a set of cuts that separates the nodes of \(G' \). Inserting a new edge within a subgraph \(G' \) may only increase the value of the cuts which result in the decomposition of \(G' \), but does not affect cuts separating \(G' \) itself from other subgraphs. If a new request led to the creation of a new component this means that two old components that were at least \(\alpha \)-connected were merged and hence the number of leaves in the decomposition tree decreased. If this is the case then the algorithm checks whether the new component contains more than \(k \) nodes. In this case the component is split and split into singleton components, each containing one node from the split component.

Upon such a component split the edges inside of and adjacent to the component are deleted, i.e. their weight is reset to zero. This means that the decomposition tree needs to be recomputed in order to reflect this change. If however the resulting component \(C \) contains at most \(k \) nodes the algorithm tries to collocate the nodes of the component while minimizing migration costs, i.e. looking for a cluster which contains as many nodes of the newly merged component as possible but which also has enough free capacity for the remaining nodes to be moved there and for additional reservation min\((k - |C|, [\epsilon \cdot |C|]) \).

The detailed algorithms appear in Section A.2.
5.1 Subgraph Decomposition

We next describe our algorithm for the decomposition of a given subgraph represented by a node in the decomposition tree.

Given a node \(v \) of the decomposition tree, first a partition graph is constructed which is a graph consisting of the nodes in the subgraph represented by \(v \) and the edges which are between the nodes of the subgraph. This partition graph also supports merges and cuts of its nodes. More specifically the partition graph is initialized as a graph \(P = (V, E) \) with \(V = \text{nodes}(v) \) and \(E = \{ e = \{ u, w \} \in E' | u \in \text{nodes}(v) \text{ and } w \in \text{nodes}(v) \} \) where \(E' \) represents the set of edges in the graph maintained by \(\text{pCRep} \). Additionally we maintain a mapping \(M \) which assigns each node from \(V \) a set of the nodes in the subgraph represented by the decomposition tree node \(v \). Initially \(M \) assigns each node in \(V \) the subset containing only the node itself.

We now run a maximum adjacency search algorithm, sometimes also called maximum cardinality search algorithm [17], in order to obtain an arbitrary minimum \((s, t)\)-cut of the graph. The maximum adjacency search algorithm is defined as follows: We start with an empty list \(L \) to which we add an arbitrary node of \(P \). We then continually add the most tightly connected node from \(V \) to \(L \), i.e. the node which is connected to the nodes in \(L \) via edges of the most total weight. Stoer and Wagner [17] have shown that the edges between the last two nodes \(s \) and \(t \) added to \(L \) form a minimum \((s, t)\)-cut. We use the value of this cut in order to decide whether to merge the nodes \(s \) and \(t \) or whether to separate them. If the cut has value less than \(c \) we separate the nodes, otherwise we perform a merge. Here the separation of the nodes \(s \) and \(t \) means that we remove all edges in the cut from the edges \(E \) of the partition graph \(P \). In the case of a merge we combine the nodes \(s \) and \(t \) and merge the outgoing edges, i.e. we replace the set of nodes \(V \) of \(P \) by the set \(V' = V \setminus \{s, t\} \cup \{u'\} \). The edges \(E \) of \(P \) are modified by removing all edges adjacent to \(s \) and \(t \) and adding an edge \(e' = \{u', u\} \) of weight \(w(\{s, u\}) + w(\{t, u\}) \) where \(w(e) \) denotes the weight of edge \(e \) if it exists and is equal to zero otherwise. Furthermore we adjust the mapping \(M \) by setting \(M(u') = M(s) \cup M(t) \).

We continually run this algorithm until \(P \) contains no edges, i.e. until \(E = \emptyset \). The sets of nodes mapped to each of the nodes of \(P \) by \(M \) now represent candidate subgraphs for the decomposition. Note though that we have only cut and merged according to minimum \((s, t)\)-cuts and not according to minimum cuts. This means that the specific sequence in which we have performed the cuts may influence the result, e.g. if we merged based on a minimum \((s, t)\)-cut which is not a minimum cut. This can be remedied by repeating the procedure on the resulting subgraphs until it returns a subgraph of only one node, i.e. until no separation step is performed during the decomposition. This is due to the fact that this procedure always cuts a subgraph of connectivity less than \(c \) at least once, as Chang et al. have shown (see Cutability Property in [8]). In order to speed up this computation we use the heap data structure proposed and analyzed by Chang et al. [8].

Thus we conclude that this procedure correctly decomposes a given subgraph as Chang et al. have also stated in Theorem 3.1 in [8].

There are several additional optimizations with which one can improve the running time of our implementation of \(\text{pCRep} \). For example, with a \(k \)-core-based optimization, an \(\alpha \)-connected component may only contain nodes or other components whose weighted degree is at least \(\alpha \). Hence we can iteratively cut all components whose weighted degree is less than \(\alpha \) until no more components can be cut by applying this rule. Furthermore, we can track the smallest cut. In each decomposition step we keep track of the smallest minimum \((s, t)\)-cut that was encountered and then may increase the connectivity as maintained by our decomposition tree data structure that corresponds to the current subgraph to this number. This can significantly speed up our algorithm in cases where parts of the tree are recomputed as it guarantees that each subtree is merged completely at most once. For example there may be a case where after a split of a component the connectivity of the whole graph is 0 but the graph still contains large subgraphs of high connectivity. In this case the connectivity of those subgraphs that is tracked in the tree can be increased by more than one if a decomposition step has resulted in merges only.

5.2 Running Time

We will now show that \(\text{pCRep} \) is indeed a polynomial-time algorithm. The main bottleneck of the algorithm lies in the decomposition updates; it is easy to see that the other parts of the algorithm can be implemented in polynomial time.

Lemma 5.1. The subroutine \(\text{decompose} \) which decomposes a subgraph can be implemented in polynomial time \(O(\alpha |V|^2 |E|) \).

Proof. The worst case is given when the whole tree has to be recomputed. We first discuss the time complexity of decomposing a single tree node \(v \). Let the corresponding subgraph be denoted by \(G_v = (V_v, E_v) \). Since each iteration of the subroutine \(\text{decompose} \) performs at least one cut as long as the connectivity of the given graph is smaller than the current threshold \(c \) we conclude that after at most \(|V_v| \) iterations of \(\text{decompose} \) a correct decomposition is found.

Each step of \(\text{decompose} \) can be performed in \(O(|V_v| \cdot |E_v|) \) as the maximum adjacency search algorithm finds an arbitrary minimum \((s, t)\)-cut in time \(O(|E_v|) \) as shown in theorem 4.1 in [8] and as there are at most \(|V_v| \) minimum \((s, t)\)-cuts computed for each invocation of \(\text{decompose} \).
Hence the complexity of decomposing the subgraph represented by a tree node \(v\) is in \(O(|V_v|^2|E_v|)\). Let \(C_v\) denote the time needed for the decomposition of the subgraph represented by decomposition tree node \(v\).

We now sum this complexity over the nodes for each connectivity level of the decomposition tree. To this end let \(\text{level}(i)\) denote all nodes in the decomposition tree which are of connectivity exactly \(i\).

\[
\sum_{i=0}^{\alpha} \sum_{v \in \text{level}(i)} C_v \leq \sum_{i=0}^{\alpha} O(|V|^2|E|) + O(\alpha|V|^2|E|).
\]

We conclude our analysis of the time complexity by observing the polynomial-time complexity of \(O(\alpha|V|^2|E|)\). \(\Box\)

We conclude our analysis of the running time by observing that the remaining subroutines can be implemented in polynomial time which results in the following theorem on the running time.

Theorem 5.2. The algorithm \(rCRep\) can be implemented in polynomial time.

6 RELATED WORK

The closest work to ours is by Avin et al. [2] who initiated the study of the dynamic balanced graph partitioning problem. The authors present a \(O(k\log k)\)-competitive algorithm with augmentation \(2 + \epsilon\) for any \(\epsilon > 1/k\); this algorithm however has a super-polynomial runtime, which we improve upon in this paper. In their paper, Avin et al. also show a lower bound of \(k - 1\) for the competitive ratio of any online algorithm on two clusters via a reduction to online paging. Restricted variants of the balanced repartitioning problem have also been studied. Here one assumes certain restrictions of the input sequence \(\sigma\) and then studies online algorithms for these cases. Avin et al. [3] assume that an adversary provides requests according to a fixed distribution of which the optimal algorithm \(OPT\) has knowledge while an online algorithm that is compared with \(OPT\) has not. Further the authors restrict the communication pattern to form a ring-like pattern, i.e. for the case of \(n\) nodes \(0, \ldots, n-1\) only requests \(r\) of the form \(r = \{i \mod n, (i + 1) \mod n\}\) are allowed. For this case they present a competitive online algorithm which achieves a competitive ratio of \(O(\log n)\) with high probability. Henzinger et al. [12] study a special learning variant of the problem where it is assumed that the input sequence \(\sigma\) eventually reveals a perfect balanced partitioning of the \(n\) nodes into \(\ell\) parts of size \(k\) such that the edge cut is zero. In this case the communication patterns reveal connected components of the communication graph of which each forms one of the partitions. Algorithms are tasked to learn this partition and to eventually collocate nodes according to the partition while minimizing communication and migration costs. The authors of [12] present an algorithm for the case where the number of servers is \(\ell = 2\) that achieves a competitive ratio of \(O((\log n)/\epsilon)\) with augmentation \(\epsilon\), i.e. each server has capacity \((1 + \epsilon)n/2\) for \(\epsilon \in (0, 1)\). For the general case of \(\ell\) servers of capacity \((1 + \epsilon)n/\ell\) the authors construct an exponential-time algorithm that achieves a competitive ratio of \(O((\ell^2\log n \log \ell)/\epsilon^2)\) for \(\epsilon \in (0, 1/2)\) and also provide a distributed version. Additionally the authors describe a polynomial-time \(O((\ell^2\log n \log \ell)/\epsilon^2)\)-competitive algorithm for the case with general \(\ell\), servers of capacity \((1 + \epsilon)n/\ell\) and \(\epsilon \in (0, 1/2)\).

The dynamic balanced graph partitioning problem can be seen as a generalization (or symmetric version) of online paging. In the online paging problem [10], [9] one is given a scenario with a fast cache of \(k\) pages and \(n-k\) pages in slow memory. Pages are requested in an online manner, i.e. without prior knowledge of future requests. If a requested page is in the cache at the time of the request it can be served without cost. If it is in slow memory however, then a page fault occurs and the requested page needs to be moved into the cache. If the cache is full then a page from the cache needs to be evicted, i.e. moved to the slow memory in order to make space for the requested one. The goal is to design algorithms which minimize the number of such page faults. However, the standard version of online paging has no equivalent to the option of serving a request remotely as is possible in the Dynamic Balanced Graph Partitioning problem. The variant with bypassing allows an algorithm to access pages in slow memory without moving them into the cache, thus providing such an equivalent. It is worth stressing however that in our problem requests involve two nodes while in Online Paging the nodes themselves are requested.

The static balanced graph partitioning problem is the static offline variant of the problem of this paper. In this version an algorithm may not perform any migrations, but has perfect knowledge of the request sequence \(\sigma\) and then needs to provide a perfectly balanced partitioning of the \(n = k \cdot \ell\) nodes into \(\ell\) sets of equal size \(k\) that minimizes cost, i.e. the weight of edges between the servers. This scenario can be modelled as a graph partitioning problem where the weight of an edge corresponds to the number of requests between its end points in the input sequence \(\sigma\). An algorithm then has to provide a partition of the nodes into sets of exactly \(k\) nodes each while minimizing the total edge weights between partitions, i.e. an algorithm needs to minimize the edge cut of the graph. This problem is NP-complete ([1]) and for the case where \(\ell \geq 3\), Andreev and Räcke [1] have shown that there is no polynomial time approximation algorithm which guarantees a finite approximation factor unless \(P=NP\).

There are several algorithms and frameworks for graph partitioning problems. Usually these frameworks employ
heuristics in order to achieve their results. The most successful such heuristic is Multilevel Graph Partitioning [7]. This method consists of three phases. Initially the graph is repeatedly coarsened into a hierarchy of smaller graphs in such a way that cuts in the coarsest graphs correspond to cuts in the finer graphs. On the coarsest level a (potentially expensive) algorithm is used in order to compute an initial partition. This partitioning is then transferred to the finer graphs. In this process one usually uses other local heuristics in order to improve the partition quality even further with every step. METIS [13, 14] and Jostle [18, 19] are examples of libraries that utilize this multilevel approach. We choose METIS as a reference for our empirical evaluation.

More generally, clustering has been studied within a variety of different contexts from data mining to image segmentation [6, 16, 20], and is the process of generating subsets of elements with high similarity [11]. However, we consider an online problem, i.e. algorithms need to react dynamically to changes in the graph and need to maintain their data structures and adapt accordingly whereas clustering considers complete data sets which are static.

7 FUTURE WORK

While our algorithm does not only achieve a polynomial runtime and an almost competitive ratio (up to a logarithmic factor), our work leaves upon several interesting directions for future research. On the theoretical front, it would be interesting to explore how to close the gap between upper and lower bound on the competitive ratio, and to study randomized algorithms. On the practical front, we believe that our algorithm can be further engineered and optimized to achieve a lower runtime in practice, as well as an improved empirical competitive ratio under real (non worst-case) workloads. These kinds of adjustments may be achieved for example by changing certain algorithm parameters such as the connectivity threshold. There may also be potential in adapting and improving our decomposition tree data structure in order to improve running times.

REFERENCES

A DEFERRED TECHNICAL DETAILS

A.1 Preliminaries: Adoptions from [2]

Lemma A.1. At any time t after vCrep performed its merge and split actions, all subsets S of components with $|S| > 1$ have connectivity less than α, i.e. there exist no mergeable component sets after vCrep performed its merges and splits.

Proof. We prove the lemma by induction. The lemma holds trivially at time 0. Now assume that at some time $t > 0$ the lemma does not hold, i.e., there is a subset S of components with connectivity at least α and $|S| > 1$. We may assume that t is the earliest time for which S has connectivity α. The incrementation of the weight of some edge e at time t raised the connectivity of S, but S was not merged into a new α-connected component C. If no new component was created at time t we arrive at a contradiction as vCrep always merges if there exists a mergeable component set.

Now assume that a component C was created at time t. This means that C must also contain the endpoints of e. But then the conjunction of C and S forms an even larger subset of components with connectivity at least α which is a contradiction to the maximality of C and S. □

The following lemma is adapted for our connectivity-based approach from Corollary 4.2 in [2].

Lemma A.2. Fix any time t and consider weights right after they were updated by vCrep but before any merge or split actions. Then all subsets S of components with $|S| > 1$ have connectivity at most α and a mergeable component set S has connectivity exactly α.

Proof. This lemma follows directly from Lemma A.1 as connectivities can only increase by at most 1 at each time t and Lemma A.1 guarantees that mergeable component sets are merged by vCrep directly after they emerge before a new request is revealed. □

The following two lemmas combined give us a result similar to Lemma 4.3 in [2]: bounds on the cut edge weight that is cut when partitioning a mergeable component set, i.e. a set of components of connectivity at least α.

We start by establishing a lower bound on this cut edge weight in the following lemma.

Lemma A.3. Given a mergeable set of components S and a partition of S into $g > 1$ parts S_1, \ldots, S_g. Then the weight between the parts of the partition is at least $g/2 \cdot \alpha$.

Proof. We construct a graph G with the different parts S_i, $i \in \{1, \ldots, g\}$ of the partition as nodes. Note that this graph is α-connected. We insert an edge for each edge between the parts S_i. Now consider the sum of the weighted degrees of all such nodes S_i in the constructed graph:

$$\sum_{i \in \{1, \ldots, g\}} \deg_G(S_i) = 2 \sum_{e \in E} w(e)$$

The equality follows as the left sum counts each edge twice, once for each endpoint. Now consider the fact that each node S_i must have degree at least α with respect to the edges in G because G is α-connected. Hence

$$2 \sum_{e \in E} w(e) = \sum_{i \in \{1, \ldots, g\}} \deg_G(S_i) \leq \sum_{i \in \{1, \ldots, g\}} \alpha = g \cdot \alpha$$

which gives us that $\sum_{e \in E} w(e) \geq g/2 \cdot \alpha$. □

In the following lemma we establish the upper bound on the cut edge weight when partitioning a mergeable set of components S into $g \geq 2$ parts.

Lemma A.4. Given a mergeable set of components S and a partitioning of S into $g \geq 2$ parts S_1, \ldots, S_g. The weight between the parts S_i is at most $(g-1) \cdot \alpha$ during the execution of vCrep.

Proof. Similarly to before we construct a graph $G = (V, E)$ with the different parts S_i, $i \in \{1, \ldots, g\}$ of the partition as nodes and we insert an edge for each edge between the parts S_i. Note again that this graph is α-connected. We iteratively partition G into subsets via minimum cuts with regard to edge weight, i.e. we consider a minimum edge cut of G which partitions the nodes of G into the subsets V_1 and V_2. We continue to iteratively partition the resulting sets until all sets contain only one node of G each. As this required at most $|V| - 1$ cuts of value at most α and $|V| = g$ by definition of G the lemma follows. □

Algorithm 5 insertAndUpdate(a, b)

if $\text{comp}[a] == \text{comp}[b]$ then
 return
end if
addEdge(a, b)
updateDecomposition(a, b)
del ← updateMapping(alphaConnectedComponents)
deleteComponents(del)

A.2 Detailed Algorithms

We now present our algorithms in more details. Algorithm 5 is the main function that is called upon each new request. It checks whether the new request is between different α-connected components. If this is not the case it determines that this request cannot change the decomposition and returns. Otherwise the weight of the corresponding edge is
Figure 3: Example graph

$$\{0, 1, 2, 3, 4, 5, 6\}$$

$$\text{conn} = 0$$

$$\{0, 1, 2\}$$ $$\text{conn} = 2$$ $$\{3, 4, 5, 6\}$$ $$\text{conn} = 1$$

$$\{0\}$$ $$\text{conn} = \infty$$ $$\{1\}$$ $$\text{conn} = \infty$$ $$\{2\}$$ $$\text{conn} = \infty$$ $$\{6\}$$ $$\text{conn} = \infty$$

Figure 4: Decomposition tree for the graph from Figure 3 for $$\alpha = 4$$

Algorithm 6 updateDecomposition(a,b)

$$q \leftarrow \text{findSmallestSubgraph}(a,b)$$

while $$q$$ not empty do

$$\text{current} \leftarrow q \text{.popFront()}$$

if $$\text{res}.\text{connectivity} == \alpha$$ then

continue

end if

$$\text{res} \leftarrow \text{decompose(} \text{current, current.connectivity+1})$$ // decomposition based on (s,t)-cuts

$$\text{current.connectivity} \leftarrow \text{value of smallest encountered cut}$$

if $$\text{current.connectivity} \geq \alpha$$ then

continue

end if

$$\text{childrenQueue} \leftarrow \text{res}$$ // make sure that only subgraphs with higher connectivity are added as children

while $$\text{childrenQueue}$$ not empty do

$$c \leftarrow \text{childrenQueue}.\text{pop()}$$

$$cRes \leftarrow \text{decompose(c, current.connectivity+1)}$$

$$c.\text{connectivity} \leftarrow \text{value of smallest encountered cut}$$

if $$\text{decompose returned only one graph}$$ then

$$\text{current.children.add(cRes)}$$

if $$cRes$$ has connectivity smaller than $$\alpha$$ then

$$q.push(cRes)$$

end if

else

$$\text{childrenQueue.add(cRes)}$$

end if

end while

end while

was a merge then the routine examines the size of the newly created (merged) component and decides whether to split or to collocate based on the logic described in the previous section.

If a split has to be performed, then this step is done in the routine delComponents (Algorithm 7) which resets all edge weights both of edges between nodes of the component as well as all adjacent edges and finally starts the decomposition of the whole graph in order to arrive at a new decomposition that follows the definition from the previous section. In the case of a collocation, the nodes are moved to a cluster that has enough space while updating the reservations and cluster capacities accordingly.

B EMPIRICAL EVALUATION

In order to complement our analytical results and shed light on the performance of our algorithm in practice, we implemented pCREP and conducted experiments under real-world
traffic traces from datacenters and high-performance computing clusters. We also discuss an algorithm engineering approach to improve the practical performance of \(pC\text{rep} \), and compare the algorithm to different reference algorithms and heuristics.

B.1 Reference Algorithms

We compare our algorithm based on maintaining a second-order partition of the nodes into components we discussed in Section 3, i.e. \(pC\text{rep} \) where on a component split all edges inside of and adjacent to the component are deleted, with reference algorithms. We have shown the competitive ratio of \(pC\text{rep} \) in Theorem 4.11 and its polynomial running time in the previous section.

We consider the following baselines in our evaluation. First, we consider an alternative implementation of \(pC\text{rep} \), called \(dC\text{rep} \), that does not use the decomposition tree structure mentioned in Section 5. Rather, this implementation applies the MinCut-based decomposition algorithm presented in Section 5.1 to the whole graph and thus computes the new components in one decomposition step.

Furthermore, recall that \(pC\text{rep} \) always maintains a second-order partition of the nodes into components, and when a component is split, all edges inside of and adjacent to the component are reset. A natural alternative is to reset internal edges only on this occasion; we will refer to this algorithmic variant as \(C\text{rep-CORE} \). The \(pC\text{rep} \) and \(C\text{rep-CORE} \) algorithms start with randomly initialized mappings of nodes to servers.

Another natural reference algorithm is a static graph partitioning; to this end, we use the METIS_PartGraphRecursive algorithm implemented in the METIS framework [13, 14], and will refer to it simply as \(\text{STATIC} \). For \(\text{STATIC} \) we first record the communication graph resulting from the requests, and give it as input to \(\text{STATIC} \). We then compute the cost of \(\text{STATIC} \) due to migrations from the random initial mapping of nodes to servers; in addition, we charge the remote requests, i.e. the total weight of edges between nodes of the communication graph which \(\text{STATIC} \) mapped to different servers. The algorithms start with randomly initialized mappings of nodes to servers.

B.2 Traffic Traces and Methodology

We consider different real-world traffic traces (workloads), two hpc traces, NB and Mocfe, as well as a trace from a Facebook data center which we call FB. The traces and their characteristics are described in more detail in [4]. The traces are publicly available.

With Mocfe we study a scenario where the number of servers is \(\ell = 32 \), each of size \(k = 32 \), and we use the first 250k requests in a setting with 1024 nodes. For FB we restrict the trace to 2048 nodes. For this restriction we iteratively chose the vertex pairs that communicate the most during the first 20 million requests until we reached the number of 2048 nodes; we then added all requests between two of these nodes to our data set. For this scenario, we used a configuration with \(\ell = 64 \) servers is \(\ell = 32 \) of size \(k = 32 \).

The runs are then performed on the first 10k of these requests. Similarly we restricted NB to 512 nodes and used the first 250k requests for this setting; this data set is then evaluated in a scenario where the number of servers is \(\ell = 32 \), each of size \(k = 32 \). For all configurations we use \(\alpha = 3 \) and \(\epsilon = 0.1 \). These configurations are summarized in Figure 5. The influence of \(\alpha \) on the running time is investigated further in Appendix B.3.

B.3 Runtime Evaluation

We evaluate the running time of \(pC\text{rep} \) by considering different traces and alternative algorithms.

Figure 6 shows the results of all data sets for \(pC\text{rep} \) and \(dC\text{rep} \). Here we filtered the running times to only include updates which have led the respective algorithm to update, i.e. those updates where the communicating nodes belonged to different components at the time of the request. We can see that for \(pC\text{rep} \) and \(C\text{rep-CORE} \), FB produces by far the highest runtime and that \(dC\text{rep} \) performs significantly better than \(pC\text{rep} \) and \(C\text{rep-CORE} \) for FB. We first compare the runtimes

<table>
<thead>
<tr>
<th>Trace</th>
<th>Nodes</th>
<th>Requests</th>
<th>(\ell)</th>
<th>(k)</th>
<th>(\alpha)</th>
<th>(\epsilon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB</td>
<td>512</td>
<td>250 000</td>
<td>32</td>
<td>16</td>
<td>3</td>
<td>0.1</td>
</tr>
<tr>
<td>Mocfe</td>
<td>1024</td>
<td>250 000</td>
<td>32</td>
<td>32</td>
<td>3</td>
<td>0.1</td>
</tr>
<tr>
<td>FB</td>
<td>2048</td>
<td>10 000</td>
<td>64</td>
<td>32</td>
<td>3</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Figure 7: Comparison of the runtimes of pCrep (top), dCrep (middle) and CREP-CORE (bottom) for both hpc traces

Figure 8: Relation of size to time for FB for pCrep (left) and CREP-CORE (right)

Figure 9: Runtime of pCrep (top) and CREP-CORE (bottom) for Mocfe for different values of α

Figure 7: Comparison of the runtimes of pCrep (top), dCrep (middle) and CREP-CORE (bottom) for both hpc traces

of the three algorithms for the HPC data sets before we discuss the runtimes for FB in greater detail.

Figure 7 shows plots of runtimes of pCrep, dCrep and CREP-CORE for the HPC traces. On the left of the figure, we can see the distribution of the update times over the requests while the total times are shown on the right. The figure shows that pCrep is the fastest for both hpc traces while CREP-CORE is faster than dCrep. This indicates that the decomposition tree data structure which both pCrep and CREP-CORE use may be a significant advantage for the HPC traces.

Figure 8 illustrates the relation of the time needed for handling a request, and the number of edges in the data structure for pCrep and for CREP-CORE for FB. We can see a high correlation, i.e., a large number of edges in the graph maintained by the respective algorithm seems to lead to longer update times. Similarly the update times are shorter after the number of edges decreases, i.e. after a component split. While we cannot prove this, we suspect that this may be due to the fact that the data used for the run shows little structure, and thus leads to a large number of (costly) recomputation steps for our data structure. This is also supported by the fact that dCrep is significantly faster for FB as one can see in Figure 6.

It is also interesting to study the influence of α on the running time of pCrep and CREP-CORE. Figure 9 shows plots of the running time of pCrep and CREP-CORE for $\alpha \in$
Figure 10: Comparison of the costs of pCREP (left), CREP-CORE (middle) and STATIC (right) for all 3 data sets \{1, 2, 4, 8, 16\}. In order to improve the readability, only requests which led to an update of the data structure are included. The results show that for both algorithms the runtimes increase for increasing values of α. This may be due to the fact that higher values of α lead the algorithms to update the tree structure less frequently and thus also to delete components less frequently. This increases the size of the data structure, making updates slower.

B.4 Cost Evaluation

In order to shed light on the cost, in terms of communication and migration, we compare our algorithms pCREP and CREP-CORE with STATIC.

Figure 10 shows the costs of pCREP, CREP-CORE and STATIC for FB, Mocfe and NB. Note that for FB the costs of pCREP and CREP-CORE are actually lower than the cost of STATIC. For the HPC traces STATIC is able to achieve significantly lower cost than both pCREP and CREP-CORE. However, it is important to keep in mind that STATIC is essentially an offline algorithm, which knows requests ahead of time; furthermore, we also note that STATIC may not produce a perfectly balanced partitioning.