NeuroViNE: A Neural Preprocessor for Your Virtual Network Embedding Algorithm

Andreas Blenk* Patrick Kalmbach* Johannes Zerwas*
Michael Jarschel° Stefan Schmid^ Wolfgang Kellerer*

*Technical University of Munich, Germany
°Nokia Bell Labs, Munich, Germany
^University of Vienna, Austria
Context
Virtual Networks Providing Predictable Performance

- **Network Virtualization**: Resource sharing enables high and efficient network utilization
- **Predictable application performance**: Need for efficient performance isolation mechanisms

Increasing diversity of applications

Frequently changing demands

Wind Storm Jonas – FaceTime Traffic

- Bandwidth
- Time
- January 15-17
- January 22-24
The Problem

Online Virtual Network Embedding (VNE) problem

Hard Problem

(1) Optimal solutions do not scale
Vs.
(2) Heuristics may result in large footprints

Neural Preprocessing to achieve (1) scalability and (2) quality
Reduce embedding cost of heuristics (search on close substrate nodes)

Improve runtime of optimal algorithms (shrink search space)

But how do we find good subgraphs?!
Contribution: NeuroViNE

- Neural Computation
- Parallel Computation
- Implementable on hardware
- Reuse existing VNE algorithms

Hopfield network solution provides nodes with high capacity close to each other
Neural Computation of Decisions in Optimization Problems

“Neural” computation of decisions in optimization problems
JJ Hopfield, DW Tank - Biological cybernetics, 1985 - Springer
Abstract Highly-interconnected networks of nonlinear analog neurons are shown to be extremely effective in computing. The networks can rapidly provide a collectively-computed solution (a digital output) to a problem on the basis of analog input information. The …
Hopfield Network
An Artificial Recurrent Neural Network (which can be used for optimization)

- Number of neurons
- Input bias vector I
- Connection weights T
- Energy of network
 $$E = -\frac{1}{2}V^T TV - V^T I$$
- Fullfills Lyapunov function property
 \implies Convergence to local (global) optima guaranteed

How to map Virtual Network Embedding problem?
Hopfield Network
How to use for optimization ...

1. Optimization problem: find subgraph with low resource footprint and high probability for accepting virtual network
2. VNE problem energy function
 \[E = V^T (\Psi(t) + \alpha \cdot T^{\text{constraint}}) V + V^T (\Xi(t) + \alpha \cdot I^{\text{constraint}}) \]
3. Derive: \(\Psi(t), T^{\text{constraint}}, \Xi(t), I^{\text{constraint}} \)
4. Execute network: solve
5. After execution \(\rightarrow \) Neuron states (values) indicate subgraph nodes

Hopfield Optimization Procedure

We do not solve VNE directly ...
But show Hopfield’s preprocessing capabilities
NeuroViNE’s Hopfield Network Energy Function

\[E = V^T (\Psi(t) + \alpha \cdot T_{\text{constraint}}) V + V^T (\mathcal{E}(t) + \alpha \cdot I_{\text{constraint}}) \]

Select paths with low costs = low energy

Satisfying constraint = low energy

Select virtual nodes with high CPU ratio = low energy
NeuroViNE’s Hopfield Network Construction

Example for 3-Node Substrate and 2-Node Virtual Network

Node ranking

\[\mathcal{E}_i(t) = \frac{\max_{N_j \in N} C_j(t) - C_i(t)}{\max_{N_j \in N} C_j(t)} \]

3 substrate nodes with CPU resource

3 neurons - Input bias vector considers CPU
Path Ranking

NeuroViNE’s Hopfield Network Construction

3 links with datarate attributes

3 times 3 entries of weight matrix

Path ranking

\[\Psi_{ij}(t) = \gamma \frac{D_{ij}(t)}{\max_{ij}(D(t))} \]
Keeping Constraints

NeuroViNE’s Hopfield Network Construction

2 Virtual nodes

2 out of 3 neurons should be chosen

Node number selection constraints

\[T_{ij}^{\text{constraint}} = \begin{cases} 1 & \text{if } i \neq j \\ 0 & \text{otherwise} \end{cases} \]

\[I_k^{\text{constraint}} = -(2 \cdot \zeta - 1) \]
NeuroViNE’s Hopfield Network Energy Function

\[E = V^T (\Psi(t) + \alpha \cdot T_{\text{constraint}}) V + V^T (\Xi(t) + \alpha \cdot I_{\text{constraint}}) \]

- Select paths with low costs = low energy
- Satisfying constraint = low energy
- Select virtual nodes with high CPU ratio = low energy

Low Energy
High Energy
Low Energy
NeuroViNE in combination with state-of-the-art VNE algorithms: GRC, ViNEYard, Shortest Distance Path (SDP: optimal algorithm with limited solving time)

Substrate topologies: random network topologies, wide area networks and datacenter topologies (FatTree and Bcube)

Performance Measures: Acceptance ratio, revenue-cost-ratio, total revenue, algorithm modeling time (for optimal algorithms), algorithm solving time (for optimal algorithms)

Simulation settings: at least 2500 VNs per topology with different arrival rates
NeuroViNE selects substrate nodes close to each other!

Selected nodes by GRC lead to long paths!
NeuroViNE: Efficient also in Datacenters

Uses a datacenter modification (see paper)

NeuroViNE shows similar acceptance ratios... but saves cost
NeuroViNE Helps Optimal Algorithms to Become Credible Alternatives

Preselected nodes improve revenue-cost-ratio (RCR)

Subgraph reduces variables when modeling/solving
Other Ways to Improve Networking Algorithms (Our related work)

This talk: NeuroViNE

Neural Computation

- Speed up networking algorithms
- Improve algorithm solution quality

Alpha GO inspired (Monte Carlo Tree Search)

- Blenk, Andreas; Kalmbach, Patrick; Schmid, Stefan; Kellerer, Wolfgang: o'zapft is: Tap Your Network Algorithm's Big Data! ACM SIGCOMM 2017 Big-DAMA Workshop, 2017
- He, Mu; Kalmbach, Patrick; Blenk, Andreas; Schmid, Stefan; Kellerer, Wolfgang: Algorithm-Data Driven Optimization of Adaptive Communication Networks. IEEE CNP Workshop on Machine Learning and Artificial Intelligence in Computer Networks, 2017

Machine Learning

- Blenk, Andreas; Kalmbach, Patrick; van der Smagt, Patrick; Kellerer, Wolfgang: Boost Online Virtual Network Embedding: Using Neural Networks for Admission Control. CNSM, 2016

Probabilistic Modeling

Conclusion

- Subgraph extraction targeting Online Virtual Network Embedding problem

- Designed Hopfield network for subgraph extraction (neural computation, fast!)

- Improved efficiency of existing VNE algorithms: reduced cost and speed up

- Opening interesting future work: energy-based models, automated configuration parameter tuning, restricted boltzmann machines, ...
Thank you!

&

Questions?