Latte: Improving the Latency of Transiently Consistent Network Update Schedules

Niels Christensen
Aalborg University
Denmark

Stefan Schmid
University of Vienna
Austria

Mark Glavind
Aalborg University
Denmark

Jiří Srba
Aalborg University
Denmark

ABSTRACT

Emerging software-defined and programmable networking technologies enable more adaptive communication infrastructures. However, leveraging these flexibilities and operating networks more adaptively is challenging, as the underlying infrastructure remains a complex distributed system that is a subject to delays, and as consistency properties need to be preserved transiently, even during network reconfiguration. Motivated by these challenges, we propose Latte, an automated approach to minimize the latency of network update schedules by avoiding unnecessary waiting times and exploiting concurrency, while at the same time provably ensuring a wide range of fundamental consistency properties like waypoint enforcement. To enable automated reasoning about the performance and consistency of software-defined networks during an update, we introduce the model of timed-arc colored Petri nets: an extension of Petri nets which allows us to account for time aspects in asynchronous networks, including characteristic timing behaviors, modeled as timed and colored tokens. This novel formalism may be of independent interest. Latte relies on an efficient translation of specific network update problems into timed-arc colored Petri nets. We show that the constructed nets can be analyzed efficiently via their unfolding into existing timed-arc Petri nets. We integrate Latte into the state-of-the-art model checking tool TAPAAL, and find that in many cases, we are able to reduce the latency of network updates by 90% or more.

Keywords

update synthesis, waypoint enforcement, time scheduling, timed-arc colored Petri nets

1. INTRODUCTION

Programmable and software-defined networks introduce great flexibilities in how communication networks can be operated and optimized over time. Especially, the possibility to quickly and programmatically update configurations and routes, received much attention over the last years [17]. Such reconfigurations can be used, e.g., to improve the performance of traffic engineering by dynamically adjusting routes to the current demand and workload; other use cases are related to an improved fault-tolerance, e.g., allowing for a fast reaction to failures or supporting maintenance work [11]. However, while programmability is an enabler of more adaptive or even “self-driving” [15] communication networks, supporting such reconfigurations is highly non-trivial, for three reasons. First, modern communication networks typically come with stringent dependability guarantees, requiring consistency properties at any time, i.e., transiently during reconfigurations. Second, although software-defined networks provide a simple logically centralized abstraction, the underlying network remains a complex distributed system, where individual configuration updates are communicated and realized asynchronously and may hence take effect at different times. Third, updates should not only be implemented consistently but also fast: a main promise of more adaptive networks. The major Internet outage in Japan in 2017, which was due to an incorrect routing table update [10], highlights the importance of transiently correct reconstructions more generally.

Existing consistent network update mechanisms in the literature are often based on hand-crafted algorithms and either assume an overly pessimistic model where the underlying network may be arbitrarily asynchronous (e.g., [28, 26]), or an overly optimistic model where updates can be timed precisely (e.g., [30, 41]). The resulting update schedules are likely to be unnecessarily slow (in the pessimistic model) or may be infeasible without specific hardware (in the optimistic model). Yet another class of algorithms relies on the modification of packet headers (e.g., to carry state information), which however can introduce further overheads or incompatibilities with existing protocols [35].

Our paper is motivated by the desire to automate the process of designing consistent network update algorithms. In particular, we believe that the future self-driving communication networks envisioned by the networking community require mechanisms that provide formal correctness guarantees but also perform well, both in theory (analytically) as well as in practice (in the “average case”). We hence envision algorithms that automatically improve the latency of network updates by removing unnecessary waiting times in update schedules while accounting for possible differences in update processing times: different packet types, such as VoIP, SSH, or VPN, entail different forwarding times at switches [7], hence requiring different waiting intervals; similarly, also the specific switch type effects forwarding times.

We develop a fully automated approach to optimize the performance of network update schedulers accounting for
such possible differences in the update time characteristics. In particular, we aim to maximize update concurrency and minimize waiting times, while ensuring transient consistency. Minimizing the update duration is critical because the network may experience irregular behavior during the update procedure. On the other hand, the computation of the optimal update schedule is less time-critical as it occurs ahead of time and does not influence the reliability of the network operation. In our work, we support a wide range of per-packet consistency properties such as:

- **Waypoint enforcement**: Each packet traverses a specific waypoint (e.g., implementing a security-critical network function such as a firewall or intrusion detection system) during the update. We also support the traversal of a sequence of (ordered) waypoints as well as sets of (unordered) waypoints: a relevant scenario in the context of service chaining [37].

- **Loop freedom**: A packet will never end up in a loop during the update. We support both strong and weak loop-freedom [25].

- **Blacklist enforcement**: A packet never traverses certain blacklisted parts (see e.g., [20]) of the network.

- **Blackhole freedom**: A packet never encounters a blackhole [28] where no forwarding is currently defined.

Our approach to synthesize such time-optimized and provably correct update schedules relies on a novel application of automata theory, and in particular *Petri nets*: a well-known formal framework to model and reason about distributed and concurrent systems. However, in order to account for timing aspects and in particular, differences in update and processing times, we extend the traditional Petri nets and introduce the notion of *timed-arc colored Petri nets* (TACPN): Petri nets that account for timing issues and differences in timing behaviors (encoded as colors). By encoding time in tokens, TACPNs allow us to keep track of the time analytically.

We show that despite being more general and powerful, timed-arc colored Petri nets can be analyzed efficiently, and we present a reduction algorithm accordingly: we show how to unfold TACPNs into timed-arc Petri nets without colors where efficient verifications engines are already available [13]. The resulting solution can be used to efficiently synthesize optimized update schedules, providing correctness guarantees as well as significantly improved update latency in practice.

1.1 Our Contributions

Our main contribution is Latte (Latency-aware transiently correct updates), an automated optimization approach for the synthesis of minimal delays between switch updates in order to ensure network update schedules of minimal latency that provably maintain general transient consistency properties. We achieve this by introducing a novel notion of timed-arc colored Petri nets, for which we define a formal syntax and semantics. Then we present an efficient verification algorithm by unfolding our timed-arc colored Petri nets into existing timed-arc Petri nets, while preserving timed bisimilarity and hence also the consistency (safety) properties of network updates. We integrate Latte into the leading model checker TAPAAL [12] and report on our case study based on real-world network topologies, which show that our approach indeed results in significantly faster schedules.

As an independent contribution to the research community and to ensure reproducibility, we make Latte publicly available as an open source tool, including the integration of the modeling formalism into the TAPAAL GUI in order to support the visualization and graphical modelling of timed-arc colored Petri nets.

1.2 Organization

The remainder of this paper is organized as follows. We present a formalization of the problem in Section 2 and introduce the notion of the timed-arc colored Petri nets approach in Section 3. In Section 4, we show how to efficiently solve the problem instances by reduction, and report on our prototype and simulation results in Section 5. After reviewing related work in Section 6, we conclude in Section 7.

2. MODEL AND METRICS

In a nutshell, the network update problem asks for a schedule to update a route from its initial path to an updated (final) path. The routes are realized by the forwarding functions of switches (or synonymously here: routers). The update schedule is implemented by a (logically centralized) controller that communicates updates to the switches. In particular, we are interested in update schemes that do not require packet header rewriting. In order to improve performance, updates are sent out by the controller in batches: due to the asynchronous communication, the updates in one batch can take effect in any order. Once the switches involved in a batch finish their updates, the controller schedules the next batch of updates: either immediately, or after a certain delay, as it may be required to ensure consistency properties such as waypoint enforcement.

Ideally, in order to optimize update delays, the number of interactions with the controller should be minimized and a single batch with all updates scheduled at once. However, it is well-known that this approach can yield various transient inconsistencies such as loops, blackholes, or violations of waypoint enforcement policies [28, 27]. Accordingly, our goal is to automatically optimize the delays in update schedules and to bundle as many updates to be issued concurrently as possible, while guaranteeing consistency of the update.

More formally, we define the network update problem as a tuple \((S, S_0, initial, final, X_1, ..., X_k)\) where:

- \(S\) is a finite set of switches,
- \(S_0 \in S\) is an initial switch,
- \(initial : S \rightarrow S\) is the initial partial forwarding function,
- \(final : S \rightarrow S\) is the final partial forwarding function, and
- \(X_1, ..., X_k \subseteq (2^S)^{\ast}\) is a sequence of nonempty groups of switches (batches) that are updated concurrently such that the sets of switches \(X_1, ..., X_k\) form a partitioning of the set \(S\), i.e., \(\bigcup_{i=1}^{k} X_i = S\) and \(X_i \cap X_j = \emptyset\) for all \(i \neq j\) where \(1 \leq i, j \leq k\).
A partial update \(X \subseteq S \) is a subset of switches that are already updated and respect the update sequence \(X_1, \ldots, X_k \), meaning that there exists a \(j, 1 \leq j \leq k \), such that \(X = \bigcup_{i=j}^{k} X_i \cup Y \) where \(Y \subseteq X_j \). The partial update hence models the effect of asynchrony where only a subset of switches from the current batch have been updated so far. Clearly, the empty set is a partial update (no switches are updated yet) and the set of all switches is also a partial update (once all switches are updated).

Any partial update \(X \) defines the corresponding network trace starting from the initial switch \(S_0 \) as the maximal sequence of switches \(S_0 S_1 \ldots S_m \) such that for every \(i \), \(0 \leq i < m \), we have either \(\text{initial}(S_i) = S_{i+1} \) for every \(S_i \notin X \), or \(\text{final}(S_i) = S_{i+1} \) for every \(S_i \in X \). By maximality we mean that if \(S_m \notin X \) then \(\text{initial}(S_m) \) is undefined and if \(S_m \in X \) then \(\text{final}(S_m) \) is undefined.

By \(\text{Traces} \) we denote the set of all network traces for all possible partial updates. We can now ask several properties about the set \(\text{Traces} \) such as:

- **Waypoint enforcement.** Given an end switch \(S_{\text{end}} \) and a waypoint switch \(S \), we want to guarantee that every trace from \(\text{Traces} \) that starts in \(S_0 \) and ends in \(S_{\text{end}} \) contains also the waypoint switch \(S \) (or alternatively contains a subsequence of a priori given ordered or unordered list of waypoint switches).

- **Loop freedom.** For strong loop-freedom, we require that any switch appears at most once in any trace from \(\text{Traces} \). In case of weak loop-freedom, we demand this property only for traces that end in an a priori selected end switch.

- **Blacklist enforcement.** Given a list of blacklist switches, we want to ensure that all traces from \(\text{Traces} \) never contain any blacklist switch.

- **Blackhole freedom.** Given an end switch \(S_{\text{end}} \), we want to guarantee that every trace from \(\text{Traces} \) always ends with the switch \(S_{\text{end}} \).

EXAMPLE 1. Let us formalize a basic network update problem from the literature [25]: in this example we consider the network update instance \((\{S_0, S_1, S_2, S_3\}, S_0, \text{initial}, \{S_1\}, \{S_0, S_2\}, \{S_3\})\) where \(\text{initial}(S_0) = S_1 \), \(\text{initial}(S_1) = S_2 \), \(\text{initial}(S_2) = S_3 \) and \(\text{final}(S_0) = S_2 \), \(\text{final}(S_1) = S_3 \), \(\text{final}(S_2) = S_1 \). The update problem is graphically depicted in Figure 1 where the solid lines correspond to the initial forwarding function and the dashed lines to the final function. The desired waypointing property is that each packet that starts at \(S_0 \) and leaves at \(S_3 \) must visit the waypoint \(S_1 \) (denoted by a filled circle in our figure). A possible partial update is \(X = \{S_1, S_2\} \) which gives the network trace \(S_0 S_1 S_3 \). Another partial update is \(X = \{S_0, S_1\} \) and the corresponding network trace is \(S_0 S_2 S_3 \). The set of all network traces can now be constructed by enumerating all partial updates and realizing that \(\text{Traces} = \{S_0 S_1 S_2 S_3, S_0 S_1 S_3, S_0 S_2 S_3, S_0 S_1 S_2, S_0 S_2 S_1, S_0 S_3 S_2, S_0 S_3 S_1, S_0 S_1 S_3 S_2, S_0 S_1 S_3 S_1, S_0 S_2 S_1 S_3, S_0 S_2 S_3 S_1, S_0 S_3 S_1 S_2, S_0 S_3 S_2 S_1\} \).

Clearly, the set of traces contains the sequence \(S_0 S_2 S_3 \) that forwards a packet from \(S_0 \) to \(S_3 \) without visiting the waypoint \(S_1 \).

Let us now consider that we want to perform a network update according to the group of switches \(X_1, \ldots, X_k \). In practical scenarios, we first update all switches from the set \(X_1 \) (without requiring any specific order of updates) and then we wait for a sufficiently long time before we start updating the switches from the group \(X_2 \) (and so on until all groups of switches are updated). Clearly, we must guarantee that all switches from \(X_1 \) finished their update before we start updating switches from \(X_2 \). This can be achieved by waiting for the maximum update time of any switch from \(X_1 \) plus the maximum time a packet can travel in the network. After this delay, it is now safe to update the switches from the group \(X_2 \) and so on.

There exist different timing behaviors in software-defined networks which, if accounted for, may significantly improve the latency of updates. However, the interaction between the timings of packet forwarding and switch updates can be quite intricate, and hence, in order to provide rigorous safety guarantees that enforce the absence of certain undesirable traces during the network update, we need to provide a formal framework accordingly. In particular, in the following sections we provide a method for minimizing the latency of a network update by using model checking techniques.

3. **TIMED-ARC COLORED PETRI NETS**

In order to automate the generation of fast network update schedules, and in order to account for specific timing behavior (e.g., related to packet processing or switch update time estimation), we suggest a novel extension of the classic Petri nets model that is introduced in this section.

Let us first introduce some preliminaries. The configuration (marking) of a Petri net [33] is generally determined by its tokens located at places. In the timed-arc colored Petri net model that we introduce in this section, tokens contain both the color information as well as the timing information (their age taken from the domain of nonnegative reals).

Places and input-arcs are then associated with timing constraints specific to the token colors. We shall first define the P/T net and then add both color and timing features. Let \(N_0 \) be the set of natural numbers including 0 and let \(N_0^\infty \) be the set \(N_0 \) together with the special infinity symbol \(\infty \) such that \(n < \infty \) for any natural number \(n \in N_0 \).

A Petri net is a tuple \(N = (P,T,W,W_t) \) where \(P \) is a finite set of places, \(T \) is a finite set of transitions such that \(P \cap T = \emptyset \), \(W : (P \times T) \cup (T \times P) \rightarrow N_0 \) is the weight function for the input arcs from places to transitions and output arcs from transitions to places and \(W_t : P \times T \rightarrow N_0^\infty \) is the inhibitor weight function that assigns weights to inhibitor arcs from places to transitions.

A marking on a Petri net \(N \) is a function \(M : P \rightarrow N_0 \) such that \(M(p) \) denotes the number of tokens in the place
\[p \in P. \] A transition \(t \in T \) is enabled in a marking \(M \) if \(W(p,t) \leq M(p) \) and \(W_I(p,t) > M(p) \) for all places \(p \in P \). In other words, each input arc must have enough tokens that can be consumed from the connected place and all inhibitor arcs must be disabled. If a transition \(t \) is enabled in \(M \), it can fire and produce a marking \(M' \) such that for all places \(p \in P \) we have \(M'(p) = M(p) - W(p,t) + W(t,p) \). We notice that inhibitor arcs only influence the enabledness of a transition but they do not participate in transition firing.

3.1 Color and Time Extension

We shall now describe the color and time extension of the basic Petri net model that we use for modelling of network updates. We assume a given (possibly infinite) set of colors \(C \) such that every place \(p \) in the net is assigned a finite subset of \(C \) called the color type of \(p \). We also assume that with each place \(p \) there is an associated age invariant of the form \(c \leq I_c \), where \(I_c \in \mathbb{N}^\infty \), for each color \(c \) from the color type of \(p \).

A token in a timed-arc colored Petri net (TACPN) is then a triple \((p, x, c) \) where \(p \) is the location of the token, \(c \) is a color from the color type of \(p \) and \(x \) is the age of the token (initially all tokens are of age 0) such that \(x \leq I_c \), where \(I_c \) is the upper bound of the age invariant for the color \(c \). A marking in TACPN is a multiset of tokens. Transition enabledness in a given marking is now conditioned also on the colors and ages of tokens in a marking, in addition to the requirement on a number of tokens, as in the classical Petri net model introduced above. We assume that each input arc from a place \(p \) to a transition \(t \) is annotated (for each color \(c \) from the color type of \(p \)) with the expressions \(c \to [a, b] \) where \([a, b] \) is a time interval such that \(a, b \in \mathbb{N}^\infty \) and \(a \leq b \).

The intuition is that the age of each token of color \(c \) that will be consumed during the transition firing must belong to the interval \([a, b]\). Moreover, every such input arc is assigned an arc expression of the form \(n_1(\tau_1) + \ldots + n_k(\tau_k) \) where \(n_1, \ldots, n_k \in \mathbb{N}_0 \) is the number of tokens of the color expressions \(\tau_1, \ldots, \tau_k \) to be consumed during the transition firing. For the purpose of this paper, we assume that \(\tau_i, 1 \leq i \leq k \), is either a concrete color \(c \) or a variable that allows for a binding to any color from the color type of \(p \). Similarly, each output arc from a transition to a place is also assigned an arc expression; however, output arcs do not contain any time intervals as the age of newly produced tokens by transition firing is reset to 0.

Remark 1. In the general TACPN model we allow for more complex color expressions that include also color products as well as basic operations for color manipulation like e.g. color successor and predecessor in case of cyclic color types. Moreover transitions can contain guards that further restrict the transition firing. Similarly, it is possible to preserve the age of tokens during transition firing by means of transport arcs and to define urgent transitions that restrict time delay whenever enabled. These features are not necessary for modelling of the network updates and in order to simplify the presentation, we do not define them in the present paper.

Example. Figure 2 shows a graphical representation of an TACPN example. The net has five places \(p_0, \ldots, p_4 \), denoted by circles and each place has an associated color type in square parenthesis together with the age invariants. For example the place \(p_0 \) is of color type Dot (classical Petri net token) and the age invariant says that a token can reach age at most 50, after which the time cannot progress anymore. Similarly, the color type of \(p_1 \) is PacketType containing three elements ssh, web and vpn. Each color element should have defined its own age invariant, however, we abbreviate by the star notation \(* \leq 25 \) the fact that all three colors share the same age invariant. Places that do not have listed any age invariant, like \(p_2 \) and \(p_4 \), assume the default invariant \(* \leq \infty \) that does not restrict the possible time delays. Transitions in the net are denoted by rectangles and represent events in the net (a packet entering a network, dropping a packet, forwarding a packet to \(p_2 \) and routing the packet: external or internal traffic). Places and transitions are connected by arcs that move tokens during transition firing. For example the transition \(\text{Enter} \) will consume one token from \(p_0 \), return the token back (while resetting its age to 0) and producing two tokens with color type PacketType into the place \(p_1 \). Depending on the binding of the variable \(pck \) to one of the three different colors in PacketType, the two produced tokens can be of three different colors. Again, their age is reset to 0. The input arc to the transition \(\text{Enter} \) does not contain

![Figure 2: Example of a Timed-Arc Colored Petri Net (TACPN)](image-url)
any interval, assuming the default interval $[0, \infty]$ that does not restrict the age of the consumed token in any way. On the other hand, the arc from p_1 to $Forward$ can only consume a token with color web of age between 10 and 25 or with color ssh or vpn of age between 4 and 6 (here we again use the star notation). An arc can also consume more than one token, like for example the arc from p_2 to $Interval$ that requires one ssh token and two vpn tokens. The firing of $Interval$ consumes three such tokens of corresponding ages (ssh between 15 and 22 and vpn between 18 and 22) and produces three fresh tokens of type Dot and with age 0. Finally, the arc with the circle-tip from p_2 to $Forward$ is an inhibitor arc of weight 10 which means that as soon as the place p_2 contains 10 or more tokens, it disables the firing of the transition $Forward$.

We shall now define the behavior of TACPN that consists of a nondeterministic choice between firing one of the currently enabled transitions and a time delay where all tokens age by the same delay (unless the delay is disabled by some inhibitor arc of weight 1).

3.2 Tool Support for TACPN

The time-arc colored Petri nets underlying our consistent network update framework need strong tool support in order to be applied on real-world scenarios. For that purpose, we implemented and integrated our model of TACPN in the GUI of the open source tool TAPAAL [12]. This allows us to graphically draw the nets as well as to answer reachability and CTL queries with atomic propositions that consist of upper and lower bounds on the number of tokens in different places of the net, and their Boolean combinations. We also implemented unfolding of TACPN nets into plain timed-arc Petri nets (where the only color type is Dot = {●}) by expanding the number of places in order to model tokens of different colors. The unfolding relies on the classical approach where color domains are expanded into multiple places and we had to further extend this unfolding technique to deal with the timing information and with inhibitor arcs.

An example of the unfolding process is given in Figure 3 where the color type of the place p is (R,G,B) and it is unfolded into three places (p,R), (p,G) and (p,B). The tokens of age and color $(5,G)$, $(2,B)$ and $(7,B)$ are then placed in the corresponding unfolded places while preserving their age. Similarly, the color type of the place p' is (tt,ff). The unfolding is given for the binding of the variable x to the color R and we also add a special place (p,sum) where we keep the accumulated number of tokens in the original place p (for the purpose of inhibitor arc tests). The resulting timed-arc Petri net model can be proved to be timed bisimilar to the original net with colors, hence preserving the answers to (among others) reachability queries that we need for our application. The unfolded net and query can then be verified using existing verification engines of TAPAAL, both for the discrete [6] as well as continuous [13] time.

4. TIME OPTIMAL SCHEDULING

Given the concepts introduced above, we can now present our approach for generating fast update schedules, ensuring transient consistency properties. In a nutshell, Latte translates a given network update problem into a timed-arc colored Petri net in order to compute how the delay between switch updates can be automatically minimized, and updates batched, hence optimizing the overall network update time. For ease of presentation, we demonstrate Latte on the waypoint enforcement property in the following; at the end of this section, we discuss how our approach can be generalized to other types of safety properties.

4.1 Overview of Reduction to TACPN

Let us assume a given instance of a network update problem $(S, S_0, initial, final, X_1 \ldots X_k)$. The input is automatically processed by our translation algorithm that creates different types of net components as well as a query for the verification. A conceptual overview of the translation is displayed in Figure 4. The translation algorithm works as follows.

1) We create time constraints based on packet input types and for each packet type we create a color in the color type $PckType$.

![Figure 3: Unfolding example](image-url)

![Figure 4: Conceptual overview of translation](image-url)
2) We create the start and the end component representing the start and end switches of the route.

3) For all switches, we create a separate switch component. A special component is created for a waypoint switch that remembers whether a packet passed through the switch.

4) For each switch we create an update component that uses a timing interval for the duration of the update.

5) We create an initialization sequence for switch updates and use the constants C_1, C_2, \ldots as the waiting delays before the next switch update is initialized.

6) We create a TACPN query for verification and use the bisection algorithm to minimize the constants C_1, C_2, \ldots while still preserving the waypoint enforcement property.

The different components that we create share places. This is denoted by the dotted circle around the place and the idea is that all such shared places with the same name are merged together. We use the colors to model the different timing behaviors of different packet types, allowing us to use the timing information to calculate a safe update delay given by the following expression:

$$\text{slowest-switch-update} + \#\text{switches-on-the-route} \times \text{slowest-hop}$$ (1)

In this safe delay estimate we include the time for the slowest switch update in order to make sure that all forwarding rules for all switches from a given batch are fully updated before we proceed to the next batch. But at the same time, we have to make sure that all packets that can still be in transit (and could potentially use some of the old forwarding rules), left the network. The second part hence approximates the latency of the routing path by multiplying the number of switches involved in the routing with the slowest packet forwarding time.

4.2 Examples of Switch and Next-Hop Timing

While our formalization and approach is more general, in the following, we will discuss some specific examples of packet and switch update times. These examples will also serve us as case studies in the evaluation.

Packet processing time. Different types of packets can occur with different processing times. For example, the resulting latency can be a function of packet size, as shown by Bauer et al. [7]: the authors find that the latency for, e.g., a Pica8 P3297 switch [1] can vary by 0.5 μs (difference between an upper and lower bound, see Figure 3 in [7]). In Table 1, we summarize the latency for some typical packet types on Pica8 P3297 switch and show the latency interval that we use in our experiments.

Switch update time estimation. The cumulative time for the switch update (installation of a new set of forwarding rules) can also differ significantly depending on the hardware and the scheduler that performs the update. For example, in Figure 5 from [32], the authors show the cumulative distribution function of flow installation for 1000 flows on a FatTree topology. In Table 2 we show the update completion times for the different scheduling algorithms when installing a batch of new forwarding rules and approximate them by intervals. As an example, we use the timing interval with no scheduler in our translation and experiments.

4.3 Translation Algorithm

We can now proceed to define the net components that are created during the translation of a network update instance to a corresponding TACPN.

Figure 5a creates an initial component that at any moment allows to inject a packet into the network by firing the transition T_0. Depending on the binding of the variable
Color types: pckType is \{ VPN, SSH, VoIP \}
dot is (•)

Variables:
pck in pckType

Constants:
vpnMax = 3, sshMax = 1, voipMax = 3

- from

- the function

- invariant

- Table 2 on the input arc to

- of the update is determined by the update interval from

- a given switch. One such component is created for each

- Figure 5c.

- Figure 5: Translation of update synthesis into TACPN

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure5}
\caption{Translation of update synthesis into TACPN}
\end{figure}

\textbf{pck} to either \textit{VPN}, \textit{SSH} or \textit{VoIP}, three different types of packets can be created and placed into the place \textit{S_0} that corresponds to activation of the initial switch \textit{S_0}. The place \textit{S_0} is a shared place, meaning that it is the same place as the initial place for the component corresponding to the switch \textit{S_0} from Figure 5c.

Figure 5b shows a component representing the update of a given switch. One such component is created for each switch \textit{S}. The update for the switch \textit{S} is initialized by placing a token to the place \textit{StartUpdateS} and the duration of the update is determined by the update interval from Table 2 on the input arc to \textit{T1} and it is enforced by the invariant \(* ≤ Max\). Once \textit{T1} is fired, it removes the token from \textit{S_{InitialEnf}} and creates a token in \textit{S_{FinalEnf}}. These are shared places that are used in the switch component to determine whether the forwarding should be done according to the function \textit{initial} (in case the token is in \textit{S_{InitialEnf}}) or to

the function \textit{final} (in case the token is moved to \textit{S_{FinalEnf}}).

Figure 5c is a component that executes the packet forwarding of a given switch \textit{S}. Once a packet arrives to the shared place \textit{S}, it is forwarded either to the place \textit{S_{Initial}} assuming that there is a token in \textit{S_{InitialEnf}} and \textit{initial}(\textit{S}) = \textit{S_{Initial}}, or to the place \textit{S_{Final}} in case that the token is in \textit{S_{FinalEnf}} and \textit{final}(\textit{S}) = \textit{S_{Final}}. The duration of such packet forwarding is determined by its color (packet type) and the associated forwarding interval from Table 1, while the age invariants ensure that a packet cannot stay at a switch for more than the upper bound of the forwarding interval.

Figure 5d models the execution of an update sequence of the network according to the switch update groups \textit{X}_1, \ldots, \textit{X}_k. We assume that the ordering of the switches \textit{S_0}, \textit{S_1}, \ldots, \textit{S_n} respects this update sequence such that the switches from the group \textit{X}, always come before the switches
from the group X_{i+1}. The update sequence can start at any time by firing the transition T_1, which initiates the update of the switch S_0 by placing a token to the place StartUpdateS_0. At the same time a token of age 0 is placed into the place Step ensuring that the update of the switch S_1 starts exactly after C_1 units of time. The remaining switch updates are chained in a similar way such that the constants C_1, \ldots, C_{n-1} determine the respective delays between switch updates are initiated. The constants that separate switch updates from the same update group will be set to 0, meaning that all such updates are started at the same time. Switch updates from different update groups must be separated by a delay that is sufficiently long in order to guarantee that all previous switch updates finished and there is no packet in the network that followed some of the outdated forwarding rules—the delays are initially set according to Equation 1.

Figure 6a shows a waypoint component for a switch S. The forwarding part of a waypoint switch is the same as for ordinary switches; however, it is prefixed with firing either the transition T_4 or T_0. The purpose is to place a token to a place WaypointVisited the first time the switch is used. This is enforced by the fact that T_4 is disabled as long as WaypointVisited has no tokens. On the other hand, once it contains a token, the transition T_0 is now disabled because of the inhibitor arc and we have to necessarily fire T_4 that keeps the token in WaypointVisited. This construction ensures that our Petri net remains bounded even in case of cyclic behavior.

The general switch component can be simplified in case that both the initial and final function return the same next-hop switch, as shown in Figure 6b. Finally, in Figure 6c we add the component for ending the packet forwarding once the last switch SwitchEnd in the network routing is reached. Due to the invariant $s \leq 0$ we enforce that the firing of the transition T_0 is urgent and the place EndNetwork gets marked without any time delay.

The general construction of the TACPN net that models the behavior of a network update problem is now finished. Once the update sequence is initiated, the switches are then updated with the delays determined by the constants C_1, \ldots, C_{n-1}. At any moment a packet (token) can be injected into the network and we execute a network trace according to the current status of switch updates. Once a waypoint is visited, we record this by placing a token into WaypointVisited and we must guarantee that this place is marked before the packet reaches the end switch and the routing is terminated by placing a token into the place EndNetwork. Hence the waypoint enforcement is expressed by the following reachability query

$$\text{AG} (\text{EndNetwork} = 0 \lor \text{WaypointVisited} \geq 1)$$

claiming that during any execution of the net either the place EndNetwork is still not marked (contains 0 tokens) or if this is not the case then the place WaypointVisited must contain at least one token.

Such a query can be automatically verified using our prototype implementation in the tool TAPAAL [12] that loads the network topology with forwarding tables and an update sequence and automatically generates the correspond-
ing timed-arc colored Petri net on which it verifies the above mentioned query.

4.4 Minimization of Delay Points

In case the waypoint enforcement is satisfied, we are interested in minimizing the delays given by the constants C_1, \ldots, C_{n-1}, without breaking the waypointing property. We achieve this by sequentially minimizing the constants (using the bisection method) until we find the minimal constants that still satisfy waypoint enforcement. In order to speedup the identification of updates that can be performed concurrently, we start the bisection method by first setting each constant to 0. As it is often the case that a large degree of concurrency is possible during the updates, the bisection method hence becomes computationally cheap as it only needs to perform the repeated bisection between the switch updates where a delay is necessary for preserving the waypointing (typically less than two of such delay points are necessary). As we demonstrate by the experiments in the next section, this method scales even for larger update sequences and allows us to significantly reduce the total update time on several realistic network topologies. We conjecture that the sequential optimization of the delays in our application actually produces the shortest possible update sequence, however, the formal proof of this claim is beyond the scope of this paper.

4.5 Other Consistency Properties

For the sake of presentation, we formally described the translation to TACPAN for the waypoint enforcement property. However, other consistency properties can be easily verified by small modifications of the translation.

- In order to optimize the update delays that preserve loop freedom, we use for each switch the component for waypoint switch as given in Figure 6a where the weight of the inhibitor arc is 2 and the weights of the arcs connecting the WaypointVisited place with $T4$ have weight 2 as well. To verify strong loop freedom, we now ask the AG query (for all reachable markings) requiring invariably that the place WaypointVisited for each switch S in the network contains at most one token. In order to verify weak loop freedom, we require this property to hold only for execution traces that include also the end switch.

- For blacklist enforcement, we simply put a token to a newly created place each time a blacklist switch is visited and we verify that invariably this place contains no tokens.

- Blackhole freedom can be also verified by marking a newly created place whenever a switch with undefined next-hop is traversed and asking a query that makes sure that this place is invariably empty.

In practical applications, we are often interested in the combination of a number of consistency properties that should be invariably preserved in conjunction during the network update. As the consistency properties can be, as argued above, expressed by the formulae $AG \varphi_1, \ldots, AG \varphi_n$ that invariably postulate that the corresponding properties $\varphi_1, \ldots, \varphi_n$ hold at any moment during the network update, we can easily verify also the conjunction of these properties as the formula $AG(\varphi_1 \land \ldots \land \varphi_n)$. The advantage is that there is only a slight overhead when more properties are checked at the same time, as we are exploring the state space of the Petri net only once, while verifying all properties during this single search.

5. EVALUATION

In order to evaluate the performance achievable with our approach and compare it to the state-of-the-art, we implemented a prototype of Latte. In the following, we present our empirical results and discuss our findings in a variety of network update instances.

5.1 Prototype and Experimental Setup

The novel model of TACPAN defined earlier is fully integrated as a plugin into the leading model checking tool TAPAAL (also in the GUI) and we provide an efficient C++ implementation of the unfolding algorithm for verification of TACPAN. Our tool is now part of the TAPAAL model checking suite and available as a beta-release at http://tapaal.net/download/ in “Other Downloads”, together with an archive including all experiments needed to reproduce the results presented in this section. The workflow of verifying network updates is fully automated and depicted in the screenshots in Figure 7. First, the user calls the Latte plugin in Tools menu, enters the paths to the network topology file and the update sequence file and the tool automatically parses these files and produces the TACPAN components. The tool opens a dialog where the user updates the packet types together with their sizes in bytes the analysis should consider. The verification is then initialized by executing “Run analysis”.

In our evaluation, we use network topologies from the Topology Zoo [23]. The initial and final configurations of the network as well as the update sequence are generated by the tool NetSynth [29]. The tool takes a network topology and creates one or more source and destination pairs in the given topology. It also creates an initial and final configuration and an update sequence that guarantees consistency. In our evaluation, we focus on waypoint enforcement as a case study. The update sequence generated by NetSynth contains the symbol # that requires a sufficiently long delay before
<table>
<thead>
<tr>
<th>Network</th>
<th>Route length</th>
<th>Verification time [s]</th>
<th>Default update [s]</th>
<th>Optimized update [s]</th>
<th>Improvement [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>HibernaIreland</td>
<td>5</td>
<td>0.74</td>
<td>6.05</td>
<td>0.28</td>
<td>95.50%</td>
</tr>
<tr>
<td>Harnet</td>
<td>6</td>
<td>1.42</td>
<td>9.08</td>
<td>0.28</td>
<td>96.97%</td>
</tr>
<tr>
<td>UniC</td>
<td>7</td>
<td>1.49</td>
<td>12.65</td>
<td>0.28</td>
<td>97.83%</td>
</tr>
<tr>
<td>Oxford</td>
<td>8</td>
<td>2.02</td>
<td>16.78</td>
<td>0.28</td>
<td>98.36%</td>
</tr>
<tr>
<td>Xerox</td>
<td>10</td>
<td>5.86</td>
<td>26.68</td>
<td>0.28</td>
<td>98.97%</td>
</tr>
<tr>
<td>Sunet</td>
<td>11</td>
<td>10.23</td>
<td>32.45</td>
<td>0.28</td>
<td>99.15%</td>
</tr>
<tr>
<td>SwitchL3</td>
<td>12</td>
<td>18.88</td>
<td>38.78</td>
<td>0.28</td>
<td>99.29%</td>
</tr>
<tr>
<td>Poinet</td>
<td>14</td>
<td>89.67</td>
<td>53.01</td>
<td>0.28</td>
<td>99.48%</td>
</tr>
<tr>
<td>Uunet</td>
<td>15</td>
<td>211.86</td>
<td>61.05</td>
<td>0.28</td>
<td>99.55%</td>
</tr>
<tr>
<td>Renater2010</td>
<td>16</td>
<td>480.52</td>
<td>69.58</td>
<td>0.28</td>
<td>99.60%</td>
</tr>
<tr>
<td>Missouri</td>
<td>25</td>
<td>timeout</td>
<td>171.05</td>
<td>67.10</td>
<td>60.77%</td>
</tr>
<tr>
<td>Synaps</td>
<td>35</td>
<td>timeout</td>
<td>336.05</td>
<td>295.35</td>
<td>12.11%</td>
</tr>
<tr>
<td>VivalWavenet2011</td>
<td>35</td>
<td>timeout</td>
<td>336.06</td>
<td>295.35</td>
<td>12.11%</td>
</tr>
</tbody>
</table>

Table 3: Experiments with update sequences generated by NetSynth

the next switch gets updated. NetSynth does not identify updates that can be performed concurrently, assuming that a safe delay point is inserted between any switch updates. As explained earlier, our task is to minimize these delays while still preserving the waypointing property. The sizes of network topologies range from tens to a hundred of switches (with the average network size of about 35 switches), however, we do not report these sizes as the results as our verification algorithm is only marginally dependant on the topology size. We instead report as the scaling parameter the length of the update route as this is the parameter that has the main influence on the performance of our method.

The experiments are run on a 64-bit Ubuntu 18.04 laptop with 16 GB RAM and Intel Core i7-7700HQ CPU @ 2.80GHz x 8 with a 10 minute timeout.

5.2 Results
We are primarily interested in two metrics in our evaluation: the runtime of our algorithm and the latency of the generated update schedules. Our results are summarized in Table 3. The size of each instance here is scaled by the route length, which is the sum of the lengths of the packet routing before and after the update. Verification time shows the total time needed to find the optimal delay constants that separate switch updates. The default update time is computed by replacing each delay symbol # produced by NetSynth with the safe delay constant as computed by Equation 1. The optimized update time is the sum of all delay constants computed by our algorithm as described in Section 4.4.

We can see that within the 10 minute timeout, we are able to compute the optimal update times for route lengths up to 16: over 90% improvement compared to the default update times by considering the conservative delays between updates as suggested by NetSynth. For the last three instances our algorithm times out, meaning that the bisection algorithm did not manage to find the optimal constants, however, still achieving an improvement in the total update time. The reason for the timeout is that the update sequences produced by NetSynth actually allow to run all updates concurrently, meaning that all delay constants can be set to 0. This creates a large number of switches that update concurrently and we have to consider all (exponentially many) interleavings of the updates in order to guarantee the waypoint enforcement. On the other hand, as the tool NetSynth produces disjoint update sequences, the fact that all updates can be concurrent can be determined by exact static methods without the need of running the actual verification.

In the future work, we will explore the possibility of combining our method with static analysis in order to further improve the performance in case of a large number of concurrent updates.

We also explore (manually created) update sequences where a concurrent update of all switches is not safe and some minimum delays are necessary in order to guarantee waypointing. The results are summarized in Table 4. We can observe the optimal update times decrease but are still over 90% more efficient compared to the default update times. Moreover, the concurrency is reduced significantly and this is reflected by the improved verification times. The networks like Missouri that has 67 switches and update sequence of length 10 can still be verified in a matter of seconds, due to the reduced concurrency in the update batches. In summary, we find that the proposed method of optimizing the network update time while preserving waypoint enforcement is feasible for a standard benchmark of network topologies and for up to 16 concurrent switch updates. Even in the situations where the state space explodes for a higher number of concurrent updates, we are still able to reduce the total update time while preserving consistency properties, by simply inserting a safe delay in order to break more than 16 concurrent updates in a row. We like to emphasize that the critical factor here is the actual optimized update time for the whole network, which we often reduce below one second. The actual verification time for computing the optimized update sequence ranges from seconds to several minutes, however, as this is a pre-computation performed offline, it is less critical and does not influence the network performance: during the precomputation the network is stable as it is still forwarding using the previously loaded configurations.

6. RELATED WORK
Motivated by the advent of software-defined and hence more adaptive communication networks, the consistent network update problem has received much attention over the last years, see the recent survey [17] on the topic. The seminal work by Reitblatt et al. [35], and many followup works (e.g., [8, 24, 18, 21, 22, 9, 31]), rely on packet versions, ensuring a strong per-packet consistency. Mahajan and Wattenhofer [29] initiated the study of fast network update algorithms which do not require packet header rewit-
Table 4: Experiments with update sequences that require nonzero delays

<table>
<thead>
<tr>
<th>Name</th>
<th>Route length</th>
<th>Verification time [s]</th>
<th>Default update [s]</th>
<th>Optimized update [s]</th>
<th>Improvement [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>HevernsIreland</td>
<td>6</td>
<td>4.37</td>
<td>4.68</td>
<td>0.45</td>
<td>90.87%</td>
</tr>
<tr>
<td>Oxford</td>
<td>12</td>
<td>4.71</td>
<td>7.99</td>
<td>0.45</td>
<td>94.42%</td>
</tr>
<tr>
<td>SwitchL3</td>
<td>8</td>
<td>4.67</td>
<td>5.78</td>
<td>0.47</td>
<td>91.95%</td>
</tr>
<tr>
<td>Petnet</td>
<td>16</td>
<td>4.67</td>
<td>10.18</td>
<td>0.45</td>
<td>95.63%</td>
</tr>
<tr>
<td>Renater2010</td>
<td>7</td>
<td>4.23</td>
<td>5.23</td>
<td>0.45</td>
<td>91.48%</td>
</tr>
<tr>
<td>Missouri</td>
<td>10</td>
<td>5.14</td>
<td>6.88</td>
<td>0.45</td>
<td>93.53%</td>
</tr>
<tr>
<td>Ans</td>
<td>13</td>
<td>8.52</td>
<td>12.65</td>
<td>0.44</td>
<td>96.56%</td>
</tr>
<tr>
<td>Bics</td>
<td>13</td>
<td>6.20</td>
<td>10.88</td>
<td>0.43</td>
<td>94.90%</td>
</tr>
<tr>
<td>Globalcenter</td>
<td>14</td>
<td>7.63</td>
<td>17.88</td>
<td>0.45</td>
<td>97.51%</td>
</tr>
<tr>
<td>Geant2009</td>
<td>13</td>
<td>11.72</td>
<td>16.78</td>
<td>0.45</td>
<td>97.35%</td>
</tr>
</tbody>
</table>

7. CONCLUSION

Motivated by the emerging more adaptive communication networks, we presented an automated approach to improve and speed up network update schedules, while ensuring rig-
orous transient correctness guarantees for a wide range of properties. Our approach relies on formal methods and in particular, a novel generalization of Petri nets which supports reasoning about different timing behaviors. We introduced an efficient algorithm to construct and solve our timed-arc colored Petri nets, presented an implementation in a state-of-the-art model checking tool, and reported on experimental results. For network topologies with up to 16 concurrent switch updates, we were able to reduce the network update time from about a minute to a fraction of a second and hence to significantly reduce the time of possible routing irregularities during the network update. The computation time needed to achieve this gain ranges from seconds to minutes, which is very reasonable given the high complexity of the task. Moreover, the network routing is not affected during the computation of the update delays, and hence it is only the network update duration that is critical for the network performance.

We understand our work as a first step and believe that it opens several interesting directions for future research. In particular, it will be interesting to generalize the synthesis algorithm further, supporting the synthesis of arbitrary update schedules from scratch. It will also be interesting to explore the use of our developed timed-arc colored Petri nets in other application domains as well: we believe that TACPNet may be of independent interest and of use in other contexts where different timing behaviors occur, e.g., in transportation systems. In order to facilitate future research and ensure reproducibility, we share our implementation as part of the open source tool TAPAAL.

Acknowledgements. We would like to thank to Peter G. Jensen for his technical advice on the implementation of the verification engine. We also thank to Thomas Frandsen for his contributions to the definition of timed-arc colored Petri nets and the unfolding algorithm used in the verification tool TAPAAL. The research in this paper was supported by DFF grant QASNET and the Vienna Science and Technology Fund (WWTF) grant ICT19-045.

8. REFERENCES

[19] Klaus-Tycho Förster, Thomas Luedi, Jochen Seidel,

