BA: Does Preprocessing Help under Congestion?

Klaus-Tycho Foerster, Janne H. Korhonen (IST Austria), Joel Rybicki (IST Austria), Stefan Schmid
Motivation

• Standard distributed computing models (eg CONGEST with $O(\log n)$ message sizes & IDs):
 ◦ Network topology is unknown
 ◦ Compute from scratch

• But in many networking applications:
 ◦ Communication topology remains unchanged
 ◦ Only the problem input changes
 ◦ Can we leverage preprocessing?

Idea of the SUPPORTED model (Schmid and Suomela, 2013)
1. Perform any preprocessing on communication graph H
2. Solve problem for subgraph $G \subseteq H$ in eg CONGEST model
 • Use preprocessing information
 • Communicate on H
Brief Background

- **Congested Clique**
 - Introduced at SPAA 2003: Lotker, Pavlov, Patt-Shamir, Peleg
 - Analogy: SUPPORTED CONGEST model if communication graph H is a clique

- **SUPPORTED model**
 - Introduced for LOCAL and CONGEST at HotSDN 2013: Schmid and Suomela
 - CONGEST: Applications to subgraph detection at OPODIS 2017: Korhonen and Rybicki
 - LOCAL: Approximation bounds and connections to SLOCAL at INFOCOM 2019: Foerster, Hirvonen, Suomela, Schmid

- **This BA:** How do CONGEST lower bounds transfer to the SUPPORTED CONGEST model?
Many Communication-Complexity Bounds Transfer

• Common observation:
 ◦ Many CONGEST lower bounds rely on small cuts
 ◦ Topology information needs to be transferred over congested cut

• High-level idea:
 ◦ If small cut is also present on communication graph, then preprocessing does not help
 ◦ Topology information of input/problem graph still needs to get across congested cut

• Adapt proof from Abboud, Censor-Hillel, Khoury, Paz (arXiv 2019)
 ◦ Family of lower bound graphs construction
Transfer of Lower Bounds from **CONGEST** to **SUPPORTED CONGEST**

<table>
<thead>
<tr>
<th>Lower bound</th>
<th>Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Omega\left(n^{1/2}/\log n\right)$</td>
<td>4-cycle [Drucker, Kuhn, Oshman PODC’14], 2k-cycle [Korhonen, Rybicki OPODIS’17], Girth ($(2 - \varepsilon)$-apx.) [Frischknecht, Holzer, Wattenhofer SODA’12]</td>
</tr>
<tr>
<td>$\Omega(n/\log n)$</td>
<td>(2k + 1)-cycle [DKO PODC’14], APSP, Diameter ($(3/2 - \varepsilon)$-apx.) [FHW SODA’12]</td>
</tr>
<tr>
<td>$\Omega\left(n/(\log n)^2\right)$</td>
<td>Diameter on sparse graphs [Abboud, Censor-Hillel, Khoury DISC’16]</td>
</tr>
<tr>
<td>$\Omega\left(n/(\log n)^3\right)$</td>
<td>On sparse graphs: Diameter and radius ($(3/2 - \varepsilon)$-apx.), eccentricities ($(5/3 - \varepsilon)$-apx.) [ACK DISC’16]</td>
</tr>
<tr>
<td>$\Omega\left(n^{2-1/k} / (k \log n)\right)$</td>
<td>Subgraph detection (for any k) [Fischer, Gonen, Kuhn, Oshman SPAA’18]</td>
</tr>
<tr>
<td>$\Omega\left(n^2/(\log n)^2\right)$</td>
<td>Min. vertex cover, max. independent set, chrom. number ($(4/3 - \varepsilon)$-apx.), weighted 8-cycle [Censor-Hillel, Khoury, Paz DISC’17]</td>
</tr>
<tr>
<td>$\Omega\left(n^2\right)$</td>
<td>Identical subgraphs (deterministic only) [CHKP DISC’17]</td>
</tr>
</tbody>
</table>
Summary and Outlook

- We investigated the power of **preprocessing** in the *CONGEST* model

- Many *CONGEST* lower bounds hold even under arbitrary **preprocessing**
 - Is SUPPORTED *CONGEST* maybe the proper way to look at lower bounds?

- Is there a “proper” **separation** between *CONGEST* and SUPPORTED *CONGEST* for general graphs?
 - “Proper”: Without relying on identifiers and graph size?
 - Note: Easy on restricted graph classes, e.g., if H has small chromatic number
References

distance computations, even in sparse networks. In Proc. 39th International Symposium on
Distributed Computing (DISC 2016), pages 29–42. 2016.

bounds, 2019. arxiv:1901.01630 [cs.DC].

for the CONGEST model. In Proc. 31st International Symposium on Distributed Computing

367–376. 2014.

for distributed subgraph detection. In Proc. 30th Symposium on Parallelism in Algorithms

of preprocessing in decentralized network optimization. In Proc. 39th IEEE International

diameter in sublinear time. In Proc. 23rd ACM-SIAM Symposium on Discrete Algorithms

[8] Janne H. Korhonen and Joel Rybicki. Deterministic subgraph detection in broadcast CON-
GEST. In Proc. 21st International Conference on Principles of Distributed Systems (OPODIS

[9] Zvi Lotker, Eran Pavlov, Boaz Patt-Shamir, and David Peleg. MST construction in O(log log n)
communication rounds. In Proc. 15th ACM Symposium on Parallelism in Algorithms and

[10] Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai, Gopal
Pandurangan, David Peleg, and Roger Wattenhofer. Distributed verification and hardness of

2nd ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking (HotSDN
BA: Does Preprocessing Help under Congestion?

Klaus-Tycho Foerster, Janne H. Korhonen (IST Austria), Joel Rybicki (IST Austria), Stefan Schmid