Improved Fast Rerouting Using Postprocessing

Klaus-Tycho Foerster (University of Vienna, Austria)
Andrzej Kamisiński (AGH University of Science and Technology in Kraków, Poland)
Yvonne-Anne Pignolet (DFINITY, Switzerland)
Stefan Schmid (University of Vienna, Austria)
Gilles Tredan (LAAS-CNRS, France)
A tale of arborescences and donuts..

...and their connection to routing
Outline

1. Model and Objectives
2. Arborescence-based Fast Rerouting
3. Postprocessing Framework
4. Case Studies
5. Conclusion and Outlook
Motivation

Approaches for maximal resilience are known [Chiesa et al. TON17] => What about stretch, load and other performance criteria? [CCR18,Infocom19,DSN19] => Despite NP-hardness results and beyond special cases?

Static Fast Rerouting (FRR)
- Seamless failover
- Precomputed failover-routes
Model and Objectives

Model

Network: strongly r-connected di-graph

In case of failure:
- **static** local re-routing based on
 - SRC, DST, in-port
 - incident failures

No header rewriting, no communication, deterministic
Model and Objectives

Model

Network: strongly r-connected di-graph

![Diagram of a strongly r-connected di-graph]

In case of failure:

- **Static** local re-routing based on
 - SRC, DST, in-port
 - incident failures

Objectives

Load
Maximum additional link utilization due to rerouting

Stretch
Maximum additional hops due to rerouting

SRLG
Shared Risk Link Groups

Path independence
No shared intermediate nodes to destination

No header rewriting, no communication, deterministic
Arc-disjoint Arborescence Decomposition

- Arborescence = a rooted directed spanning tree
- Decomposition: union of r-arborescences uses each link at most once
Arborescence FRR

- Assign numbers to arborescences, pick arborescence 1
- Forward to next hop according to current arborescence
Arborescence FRR
Arborescence FRR

- Assign numbers to arborescences, pick arborescence 1
- Forward to next hop according to current arborescence
- If forwarding link is not available, use link of next arborescence

Decomposition influences length/load/..
Theorem 1: Deterministic local fast failover algorithms resilient to $k - 1$ failures, have competitive additive stretch of $\Omega(n/(k - 1))$ (can be met by arborescence-based re-routing on donut graph).
How to transform $T1$ into $T2$?

Observation: outgoing from same node

$(x,w) \leftrightarrow (x,u)$

$(u,v) \leftrightarrow (u,x)$

...
Swapping Conditions

An arborescence swap $e=(u,v)$ with $e'=(u,v')$ is valid if

I. $e \in T_i$, $e' \in T_j$ and
 ○ v' is not on the path from v to the root in T_j
 ○ v is not on the path from v' to the root in T_i

or

II. $e \in T_i$ and e' not in any T_j and
 ○ v is not on the path from v' to the root in T_i

Observation: Validity computable in $O(n)$
Theorem 2.

Post-processing algorithm never introduces cycles and always converges.
Case study 1

Traffic scenario optimization

- Flows differ in size and importance
- Links differ in failure probability

=> Minimize stretch/load of important flows given a failure model
Traffic Scenario

Stretch Minimization

Load Minimization

Down to 0 failures!

50% lower!
Case study 2

Direct decomposition optimization

- Shared Risk Link Groups (SRLG)

 => Links in SRLG in same arborescences

- Path independence

 => No shared intermediate nodes on routes to destination
SLRG and Independence

SLRG

- High % of SRLG links in last arbs

Independence

- 98 % of paths are independent
Conclusions

FRR to provide QoS in addition to basic connectivity

- FRR with arborescence decompositions can be asymptotically optimal wrt stretch
- Simple post-processing framework with convergence guarantee

Case studies demonstrate applicability for stretch, load, independence, SRLG

Future work
- Bounds on improvement achieved
- Alternative post-processing strategies
Post-Processing Algorithm

Input: arborescence decomposition T, objective function

Output: improved decomposition

1. improved := True
2. while improved do
3. improved := False
4. for each node v do
5. for all pairs of outgoing edges from v do
6. if swapping condition met and objective function improves
7. swap edges in T
8. improved := True

Theorem 2.

Post-processing algorithm never introduces cycles and always converges.