ILP formulations for finding optimal locations for charging stations in an electric car sharing network

Georg Brandstätter1 Markus Leitner1
Ivana Ljubic2 Mario Ruthmair1

1University of Vienna, Austria
2ESSEC Business School of Paris, France

January 21, 2016
Introduction

Context

- **e4-share**: Models for Ecological, Economical, Efficient, Electric Car-Sharing
- Study and solve optimization problems arising in planning and operating car sharing system using electric vehicles

Electric Vehicles

- **more efficient** and **less polluting** (in urban settings)
- **shorter range** and thus frequent recharging necessary

This work

- ILP formulations to find **optimal locations for charging stations**
- cars are picked up from / returned to these stations
- start and end station need not coincide.
Problem description
Problem description – Stations

Given a street network $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
Problem description – Stations

Given a street network $G = (\mathcal{V}, \mathcal{E})$ and a set of potential locations of charging stations $S \subseteq \mathcal{V}$, where each station i has

- a cost F_i for constructing it,
- a maximum capacity for charging slots C_i, each of which costs q_i,

![Street network diagram with charging stations marked]
Problem description – Stations

Given a street network $G = (V, E)$ and a set of potential locations of charging stations $S \subseteq V$, where each station i has

- a cost F_i for constructing it,
- a maximum capacity for charging slots C_i, each of which costs q_i,
- a neighborhood $N(i)$ in which people will walk from/to the station,
Problem description – Stations

Given a **street network** $G = (\mathcal{V}, \mathcal{E})$ and a set of potential **locations of charging stations** $S \subseteq \mathcal{V}$, where each station i has

- a **cost** F_i for constructing it,
- a **maximum capacity** for charging slots C_i, each of which costs q_i,
- a **neighborhood** $\mathcal{N}(i)$ in which people will walk from/to the station,

we select a **subset of stations** to be constructed, as well as their **size**, subject to a **budget constraint**.

![Diagram showing a street network with potential locations of charging stations marked.](image-url)
Given a set K of requested trips, where each trip has

- **origin** o_k and **destination** d_k,
- **start** s_k and **end** e_k time,
- a **profit** p_k and
- an (over-)estimated **battery usage** b_k,

we select a **set of trips** we want to accept to **maximize** the operator’s profit.
Each accepted trip is assigned to

- a **start** station where the car is picked up,
Each accepted trip is assigned to
- a **start** station where the car is picked up,
- an **end** station where the car is dropped off, and
Problem description – Trip assignment

Each accepted trip is assigned to

- a **start** station where the car is picked up,
- an **end** station where the car is dropped off, and
- a car with **sufficient battery level** parked at the start station.
ILP Model
Assumptions and Definitions

- homogeneous fleet of cars H, each costing ζ
- parked cars are recharged at fixed rate ρ
- planning horizon $T = \{0, \ldots, T_{\text{max}}\}$
- $N(v)$: stations within walking distance from v
- $\Delta_k = e_k - b_k$: the duration of trip k
Assumptions and Definitions

- homogeneous fleet of cars H, each costing ζ
- parked cars are recharged at fixed rate ρ
- planning horizon $T = \{0, \ldots, T_{\text{max}}\}$
- $N(v)$: stations within walking distance from v
- $\Delta_k = e_k - b_k$: the duration of trip k

Decision variables

- $y_i \in \{0, 1\}$: whether station i is opened or not
- $z_i \in \{0, \ldots, C_i\}$: station i’s assigned capacity
- $a_h \in \{0, 1\}$: whether car h is bought
- $x_k \in \{0, 1\}$: whether trip k is accepted
- $x_k^h \in \{0, 1\}$: whether car h performs trip k
ILP model

\[
\begin{align*}
\text{max} & \quad \sum_{k \in K} p_k x_k \\
\text{s.t.} & \quad \sum_{i \in S} (F_i y_i + q_i z_i) + \sum_{h \in H} \zeta a_h \leq W \\
& \quad y_i \leq z_i \leq C_i y_i \quad \forall i \in S \\
& \quad \sum_{h \in H} x_h^k = x_k \quad \forall k \in K \\
& \quad \sum_{k \in K : s_k \leq t, e_k > t} x_h^k \leq a_h \quad \forall t \in T, h \in H
\end{align*}
\]
ILP model

max \sum_{k \in K} p_k x_k \tag{1} \\
\text{s.t.} \sum_{i \in S} (F_i y_i + q_i z_i) + \sum_{h \in H} \zeta a_h \leq W \tag{2} \\
y_i \leq z_i \leq C_i y_i \tag{3} \\
\sum_{h \in H} x^h_k = x_k \tag{4} \\
\sum_{k \in K} x^h_k \leq a_h \tag{5} \\
\forall t \in T, h \in H \\
\text{objective function: maximize profit of accepted trips}
ILP model

\[
\begin{align*}
\text{max} & \quad \sum_{k \in K} p_k x_k \\
\text{s.t.} & \quad \sum_{i \in S} (F_i y_i + q_i z_i) + \sum_{h \in H} \zeta a_h \leq W \\
& \quad y_i \leq z_i \leq C_i y_i \quad \forall i \in S \\
& \quad \sum_{h \in H} x^h_k = x_k \quad \forall k \in K \\
& \quad \sum_{k \in K : s_k \leq t, e_k > t} x^h_k \leq a_h \quad \forall t \in T, h \in H
\end{align*}
\]

budget constraint
ILP model

\begin{align*}
\text{max} & \quad \sum_{k \in K} p_k x_k \quad (1) \\
\text{s.t.} & \quad \sum_{i \in S} (F_i y_i + q_i z_i) + \sum_{h \in H} \zeta a_h \leq W \quad (2) \\
& \quad y_i \leq z_i \leq C_i y_i \quad \forall i \in S \quad (3) \\
& \quad \sum_{h \in H} x_k^h = x_k \quad \forall k \in K \quad (4) \\
& \quad \sum_{k \in K : s_k \leq t, e_k > t} x_k^h \leq a_h \quad \forall t \in T, h \in H \quad (5)
\end{align*}

stations may not exceed their maximum capacity
ILP model

\[
\text{max} \quad \sum_{k \in K} p_k x_k
\]

s.t.

\[
\sum_{i \in S} (F_i y_i + q_i z_i) + \sum_{h \in H} \zeta a_h \leq W
\]

\[
y_i \leq z_i \leq C_i y_i \quad \forall i \in S
\]

\[
\sum_{h \in H} x_k^h = x_k \quad \forall k \in K
\]

\[
\sum_{k \in K: s_k \leq t, e_k > t} x_k^h \leq a_h \quad \forall t \in T, h \in H
\]

every opened station has at least one charging slot
ILP model

\[
\begin{align*}
\text{max} & \quad \sum_{k \in K} p_k x_k \\
\text{s.t.} & \quad \sum_{i \in S} (F_i y_i + q_i z_i) + \sum_{h \in H} \zeta a_h \leq W \\
& \quad y_i \leq z_i \leq C_i y_i \\
& \quad \sum_{h \in H} x^h_k = x_k \\
& \quad \sum_{k \in K: s_k \leq t, e_k > t} x^h_k \leq a_h \\
& \quad \forall i \in S \\
& \quad \forall k \in K \\
& \quad \forall t \in T, h \in H
\end{align*}
\]

assign every accepted trip to a car
ILP model

\[
\begin{align*}
\text{max} & \quad \sum_{k \in K} p_k x_k \\
\text{s.t.} & \quad \sum_{i \in S} (F_i y_i + q_i z_i) + \sum_{h \in H} \zeta a_h \leq W \\
& \quad y_i \leq z_i \leq C_i y_i \\
& \quad \sum_{h \in H} x^h_k = x_k \\
& \quad \sum_{k \in K: s_k \leq t, e_k > t} x^h_k \leq a_h \\
& \quad \forall i \in S \\
& \quad \forall k \in K \\
& \quad \forall t \in T, h \in H
\end{align*}
\]

a car may perform at most one trip at any time
ILP model – what’s still missing?

So far, the model does **not** ensure that

- cars move along a **consistent path** throughout the network, that
- **stations’ capacities** are never exceeded, or that
- a **car’s battery** level never gets below zero.

We will present **two models** to enforce the first two missing aspects ("location feasibility")

- **flow model** on a time-expanded location graph
- **no-flow model**

and **three models** that enforce battery feasibility

- **flow model** on a time-expanded battery graph
- **continuous** battery tracking
- battery-infeasible **path cuts**
Location feasibility
To model the location of each car at each point in time, we use a time-expanded location graph $G = (V, A)$.

\[
\begin{array}{cccc}
\text{s}_1 & \text{s}_2 & \text{s}_3 & \text{s}_4 \\
\hline
\text{t = 0} & \bullet & \bullet & \bullet & \bullet \\
\text{t = 1} & \bullet & \bullet & \bullet & \bullet \\
\text{t = 2} & \bullet & \bullet & \bullet & \bullet \\
\text{t = 3} & \bullet & \bullet & \bullet & \bullet \\
\text{t = 4} & \bullet & \bullet & \bullet & \bullet \\
\end{array}
\]
To model the location of each car at each point in time, we use a time-expanded location graph $G = (V, A)$.

root arcs A_I and **sink arcs** A_C for initialization and collection.
To model the location of each car at each point in time, we use a time-expanded location graph $G = (V, A)$.

root arcs A_I and **sink arcs** A_C
for initialization and collection

waiting arcs A_W
for parked cars

\[
\begin{array}{c}
\text{s_1} \\
\text{s_2} \\
\text{s_3} \\
\text{s_4}
\end{array}
\]
Location feasibility – Location graph

To model the location of each car at each point in time, we use a **time-expanded location graph** $G = (V, A)$.

- **Root arcs** A_I and **sink arcs** A_C for initialization and collection
- **Waiting arcs** A_W for parked cars
- **Trip arcs** A_T for cars used for trips
Location feasibility – Location graph

Additional variables

- Flow variable $f^h_a \in \{0, 1\}$: whether car h moves along arc a

\[
\sum_{h \in H} \sum_{a \in \delta^+(i_t) \setminus A_T} f^h_a \leq z_i \quad \forall i \in S, \ t \in T \tag{6}
\]

\[
f^h[\delta^-(i_t)] \leq y_i \quad \forall h \in H, \ i \in S, \ t \in T \tag{7}
\]

\[
f^h[\delta^+(r_s)] = a_h \quad \forall h \in H \tag{8}
\]

\[
f^h[\delta^-(i_t)] - f^h[\delta^+(i_t)] = 0 \quad \forall h \in H, \ i \in S, \ t \in T \tag{9}
\]

\[
\sum_{a \in A^k_T} f^h_a = x^h_k \quad \forall h \in H, \ k \in K \tag{10}
\]
Location feasibility – Location graph

Additional variables

- **Flow variable** $f_h^a \in \{0, 1\}$: whether car h moves along arc a

\[
\sum_{h \in H} \sum_{a \in \delta^+(i_t) \setminus A_T} f_h^a \leq z_i \\
\forall i \in S, \ t \in T
\]

\[
f_h^{\delta^-(i_t)} \leq y_i \\
\forall h \in H, \ i \in S, \ t \in T
\]

\[
f_h^{\delta^+(r_s)} = a_h \\
\forall h \in H
\]

\[
f_h^{\delta^-(i_t)} - f_h^{\delta^+(i_t)} = 0 \\
\forall h \in H, \ i \in S, \ t \in T
\]

\[
\sum_{a \in A_k^T} f_h^a = x_k^h \\
\forall h \in H, \ k \in K
\]

- never exceed a station’s capacity
Additional variables

- Flow variable $f^h_a \in \{0, 1\}$: whether car h moves along arc a

\[
\sum_{h \in H} \sum_{a \in \delta^+(i_t) \setminus A_T} f^h_a \leq z_i \quad \forall i \in S, \ t \in T \quad (6)
\]

\[
f^h[\delta^-(i_t)] \leq y_i \quad \forall h \in H, \ i \in S, \ t \in T \quad (7)
\]

\[
f^h[\delta^+(r_s)] = a_h \quad \forall h \in H \quad (8)
\]

\[
f^h[\delta^-(i_t)] - f^h[\delta^+(i_t)] = 0 \quad \forall h \in H, \ i \in S, \ t \in T \quad (9)
\]

\[
\sum_{a \in A^k_T} f^h_a = x^h_k \quad \forall h \in H, \ k \in K \quad (10)
\]

only opened stations may be used
Location feasibility – Location graph

Additional variables

- Flow variable $f_a^h \in \{0, 1\}$: whether car h moves along arc a

\[
\sum_{h \in H} \sum_{a \in \delta^+(i_t) \setminus A_T} f_a^h \leq z_i \quad \forall i \in S, \ t \in T \tag{6}
\]

\[
f^h[\delta^-(i_t)] \leq y_i \quad \forall h \in H, \ i \in S, \ t \in T \tag{7}
\]

\[
f^h[\delta^+(r_s)] = a_h \quad \forall h \in H \tag{8}
\]

\[
f^h[\delta^-(i_t)] - f^h[\delta^+(i_t)] = 0 \quad \forall h \in H, \ i \in S, \ t \in T \tag{9}
\]

\[
\sum_{a \in A^k_T} f_a^h = x_k^h \quad \forall h \in H, \ k \in K \tag{10}
\]

every bought car leaves the root
Flow variable $f^h_a \in \{0, 1\}$: whether car h moves along arc a.

\[
\sum_{h \in H} \sum_{a \in \delta^+(i_t) \setminus A_T} f^h_a \leq z_i \quad \forall i \in S, \ t \in T \tag{6}
\]

\[
f^h[\delta^-(i_t)] \leq y_i \quad \forall h \in H, \ i \in S, \ t \in T \tag{7}
\]

\[
f^h[\delta^+(r_s)] = a_h \quad \forall h \in H \tag{8}
\]

\[
f^h[\delta^-(i_t)] - f^h[\delta^+(i_t)] = 0 \quad \forall h \in H, \ i \in S, \ t \in T \tag{9}
\]

\[
\sum_{a \in A^k_T} f^h_a = x^h_k \quad \forall h \in H, \ k \in K \tag{10}
\]
Location feasibility – Location graph

Additional variables

- Flow variable $f^h_a \in \{0, 1\}$: whether car h moves along arc a

\[
\sum_{h \in H} \sum_{a \in \delta^+(i_t) \setminus A_T} f^h_a \leq z_i \quad \forall i \in S, t \in T \tag{6}
\]

\[
f^h[\delta^-(i_t)] \leq y_i \quad \forall h \in H, i \in S, t \in T \tag{7}
\]

\[
f^h[\delta^+(r_s)] = a_h \quad \forall h \in H \tag{8}
\]

\[
f^h[\delta^-(i_t)] - f^h[\delta^+(i_t)] = 0 \quad \forall h \in H, i \in S, t \in T \tag{9}
\]

\[
\sum_{a \in A^k_T} f^h_a = x^h_k \quad \forall h \in H, k \in K \tag{10}
\]

if a car performs a trip, it must move along one of its trip arcs
Location feasibility – No-flow model

Additional variables

- $\tilde{x}_k^i \in \{0, 1\}$: whether trip k starts at station i
- $\hat{x}_k^i \in \{0, 1\}$: whether trip k ends at station i

\[
\sum_{i \in N(o_k)} \tilde{x}_k^i = x_k \quad \forall k \in K
\]

\[
\sum_{i \in N(d_k)} \hat{x}_k^i = x_k \quad \forall k \in K
\]

\[
\tilde{x}_k^i \leq y_i \quad \forall k \in K, i \in N(o_k)
\]

\[
\hat{x}_k^i \leq y_i \quad \forall k \in K, i \in N(d_k)
\]
Location feasibility – No-flow model

Additional variables

- \(\tilde{x}_k^i \in \{0, 1\} \): whether trip \(k \) starts at station \(i \)
- \(\hat{x}_k^i \in \{0, 1\} \): whether trip \(k \) ends at station \(i \)

1. \[\sum_{i \in N(o_k)} \tilde{x}_k^i = x_k \quad \forall k \in K \] (11)
2. \[\sum_{i \in N(d_k)} \hat{x}_k^i = x_k \quad \forall k \in K \] (12)
3. \[\tilde{x}_k^i \leq y_i \quad \forall k \in K, i \in N(o_k) \] (13)
4. \[\hat{x}_k^i \leq y_i \quad \forall k \in K, i \in N(d_k) \] (14)

Assign a start and end station to each accepted trip
Location feasibility – No-flow model

Additional variables

- $\tilde{x}_k^i \in \{0, 1\}$: whether trip k starts at station i
- $\hat{x}_k^i \in \{0, 1\}$: whether trip k ends at station i

\begin{align*}
\sum_{i \in N(o_k)} \tilde{x}_k^i &= x_k \quad \forall k \in K \tag{11} \\
\sum_{i \in N(d_k)} \hat{x}_k^i &= x_k \quad \forall k \in K \tag{12} \\
\tilde{x}_k^i &\leq y_i \quad \forall k \in K, i \in N(o_k) \tag{13} \\
\hat{x}_k^i &\leq y_i \quad \forall k \in K, i \in N(d_k) \tag{14}
\end{align*}

only use opened stations as start/end stations
Location feasibility – No-flow model

Additional variables

- \(a_h^i \in \{0, 1\} \): whether car \(h \) starts at station \(i \)

\[
\sum_{i \in S} a_h^i = a_h \quad \forall h \in H \tag{15}
\]

\[
a_h^i \leq y_i \quad \forall i \in S, h \in H \tag{16}
\]

\[
0 \leq \sum_{h \in H} a_h^i - \sum_{k \in K: i \in N(o_k), s_k \leq t} \hat{x}_k^i + \sum_{k \in K: i \in N(d_k), e_k \leq t} \hat{x}_k^i \leq z_i \quad \forall i \in S, t \in T \tag{17}
\]
Location feasibility – No-flow model

Additional variables

- \(a^i_h \in \{0, 1\} \): whether car \(h \) starts at station \(i \)

\[
\sum_{i \in S} a^i_h = a_h \quad \forall h \in H \tag{15}
\]

\[
a^i_h \leq y_i \quad \forall i \in S, h \in H \tag{16}
\]

\[
0 \leq \sum_{h \in H} a^i_h - \sum_{k \in K: i \in N(o_k), s_k \leq t} \tilde{x}^i_k + \sum_{k \in K: i \in N(d_k), e_k \leq t} \hat{x}^i_k \leq z_i \quad \forall i \in S, t \in T \tag{17}
\]

assign a start station to each bought car
Location feasibility – No-flow model

Additional variables

- \(a^i_h \in \{0, 1\} \): whether car \(h \) starts at station \(i \)

\[
\begin{align*}
\sum_{i \in S} a^i_h &= a_h & \forall h \in H \\
\boxed{a^i_h} &\leq y_i & \forall i \in S, h \in H \\
0 &\leq \sum_{h \in H} a^i_h - \sum_{k \in K : i \in N(o_k), s_k \leq t} \tilde{x}^i_k + \sum_{k \in K : i \in N(d_k), e_k \leq t} \hat{x}^i_k \leq z_i & \forall i \in S, t \in T
\end{align*}
\]

only use opened stations as start stations for cars
Location feasibility – No-flow model

Additional variables

- \(a^i_h \in \{0, 1\} \): whether car \(h \) starts at station \(i \)

\[
\sum_{i \in S} a^i_h = a_h \quad \forall h \in H \tag{15}
\]

\[
a^i_h \leq y_i \quad \forall i \in S, h \in H \tag{16}
\]

\[
0 \leq \sum_{h \in H} a^i_h - \sum_{k \in K : i \in N(o_k), s_k \leq t} \tilde{x}^i_k + \sum_{k \in K : i \in N(d_k), e_k \leq t} \hat{x}^i_k \leq z_i \quad \forall i \in S, t \in T \tag{17}
\]

number of cars parked at station \(i \) at time \(t \)
Location feasibility – No-flow model

Additional variables

- $a^i_h \in \{0, 1\}$: whether car h starts at station i

\[
\sum_{i \in S} a^i_h = a_h \quad \forall h \in H \quad (15)
\]

\[
a^i_h \leq y_i \quad \forall i \in S, h \in H \quad (16)
\]

\[
0 \leq \sum_{h \in H} a^i_h - \sum_{k \in K \mid i \in N(o_k), s_k \leq t} \hat{x}^i_k + \sum_{k \in K \mid i \in N(d_k), e_k \leq t} \hat{x}^i_k \leq z_i \quad \forall i \in S, t \in T \quad (17)
\]

ensure that capacity is never exceeded
Location feasibility – No-flow model

Additional variables

- $a^i_h \in \{0, 1\}$: whether car h starts at station i

\[
\sum_{i \in S} a^i_h = a_h \quad \forall h \in H \tag{15}
\]

\[
a^i_h \leq y_i \quad \forall i \in S, h \in H \tag{16}
\]

\[
0 \leq \sum_{h \in H} a^i_h - \sum_{k \in K : i \in N(o_k), s_k \leq t} \hat{x}_k^i + \sum_{k \in K : i \in N(d_k), e_k \leq t} \hat{x}_k^i \leq z_i \quad \forall i \in S, t \in T \tag{17}
\]

ensure that no more cars leave a station than are available there
Location feasibility – No-flow model

first step to ensure connectivity: a trip \(k \) may only be assigned to a car if that car is potentially in \(N(o_k) \)

\[
x^h_k \leq \sum_{i \in N(o_k)} a^i_h + \sum_{k' \in K: e_{k'} \leq s_k, \ N(o_{k'}) \cap S \setminus N(o_k) \neq \emptyset, \ N(d_{k'}) \cap N(o_k) \neq \emptyset} x^h_{k'} - \sum_{k' \in K: s_{k'} \leq s_k, \ N(o_{k'}) \subseteq N(o_k), \ N(d_{k'}) \subseteq S \setminus N(o_k)} x^h_{k'} \quad \forall k \in K, h \in H
\]
first step to ensure connectivity: a trip k may only be assigned to a car if that car is potentially in $N(o_k)$

$$x^h_k \leq \sum_{i \in N(o_k)} a^i_h + \sum_{k' \in K : e_{k'} \leq s_k, \ N(o_{k'}) \cap S \setminus N(o_k) \neq \emptyset, \ N(d_{k'}) \cap N(o_k) \neq \emptyset} x^h_{k'} - \sum_{k' \in K : s_{k'} \leq s_k, \ N(o_{k'}) \subseteq N(o_k), \ N(d_{k'}) \subseteq S \setminus N(o_k)} x^h_{k'} \quad \forall k \in K, h \in H$$

whether car i starts in $N(o_k)$
first step to ensure connectivity: a trip k may only be assigned to a car if that car is potentially in $N(o_k)$

$$x^h_k \leq \sum_{i \in N(o_k)} a^i_h + \sum_{k' \in K : e_{k'} \leq s_k, \ N(o_{k'}) \cap S \setminus N(o_k) \neq \emptyset, \ N(d_{k'}) \cap N(o_k) \neq \emptyset} x^h_{k'} - \sum_{k' \in K : s_{k'} \leq s_k, \ N(o_{k'}) \subseteq N(o_k), \ N(d_{k'}) \subseteq S \setminus N(o_k)} x^h_{k'} \quad \forall k \in K, h \in H$$

how often car i (potentially) enters $N(o_k)$ via a trip
first step to ensure connectivity: a trip k may only be assigned to a car if that car is potentially in $N(o_k)$

$x^h_k \leq \sum_{i \in N(o_k)} a^i_h + \sum_{k' \in K : e_{k'} \leq s_k, N(o_{k'}) \cap S \setminus N(o_k) \neq \emptyset, N(d_{k'}) \cap N(o_k) \neq \emptyset} x^h_{k'} - \sum_{k' \in K : s_{k'} \leq s_k, N(o_{k'}) \subseteq N(o_k), N(d_{k'}) \subseteq S \setminus N(o_k)} x^h_{k'} \quad \forall k \in K, h \in H$

how often car i (potentially) enters $N(o_k)$ in total
Location feasibility – No-flow model

first step to ensure connectivity: a trip k may only be assigned to a car if that car is potentially in $N(o_k)$

$$x^h_k \leq \sum_{i \in N(o_k)} a^i_h + \sum_{k' \in K : e_{k'} \leq s_k, \ N(o_{k'}) \cap S \setminus N(o_k) \neq \emptyset, \ N(d_{k'}) \cap N(o_k) \neq \emptyset} x^h_{k'} - \sum_{k' \in K : s_{k'} \leq s_k, \ N(o_{k'}) \subseteq N(o_k), \ N(d_{k'}) \subseteq S \setminus N(o_k)} x^h_{k'} \quad \forall k \in K, h \in H$$

how often car i leaves $N(o_k)$
first step to ensure connectivity: a trip k may only be assigned to a car if that car is potentially in $N(o_k)$

$$x_k^h \leq \sum_{i \in N(o_k)} a_i^h + \sum_{k' \in K : e_{k'} \leq s_k, N(o_{k'}) \cap S \setminus N(o_k) \neq \emptyset} x_{k'}^h - \sum_{k' \in K : s_{k'} \leq s_k, N(o_{k'}) \subseteq N(o_k), N(d_{k'}) \subseteq S \setminus N(o_k)} x_{k'}^h \quad \forall k \in K, h \in H$$

If this whole expression is

- ≥ 1: car i might be in $N(o_k)$
- ≤ 0: car i cannot be in $N(o_k)$
first step to ensure connectivity: a trip k may only be assigned to a car if that car is potentially in $N(o_k)$

$$ x^h_k \leq \sum_{i \in N(o_k)} a^i_h + \sum_{k' \in K: e_{k'} \leq s_k, \ N(o_{k'}) \cap S \setminus N(o_k) \neq \emptyset, \ N(d_{k'}) \cap N(o_k) \neq \emptyset} x^h_{k'} - \sum_{k' \in K: s_{k'} \leq s_k, \ N(o_{k'}) \subseteq N(o_k), \ N(d_{k'}) \subseteq S \setminus N(o_k)} x^h_{k'} \quad \forall k \in K, \ h \in H $$

If this whole expression is

- ≥ 1: car i might be in $N(o_k)$
- ≤ 0: car i cannot be in $N(o_k)$

This prevents many invalid trip assignments, and guarantees connectivity if $|N(o_k)| = |N(d_k)| = 1, \forall k \in K$.
Location feasibility – No-flow model

However, this alone is not enough in general (cars are not guaranteed to be in \(N(o_k) \))
⇒ dynamically add additional constraints

If car \(h \) is assigned two consecutive trips \(k_1 \) and \(k_2 \) where \(k_2 \) doesn’t start at the station where \(k_1 \) ends, add the following constraint

\[
(1 - x^h_{k_1}) + (1 - x^h_{k_2}) + (1 - \hat{x}^{i_1}_{k_1}) + (1 - \tilde{x}^{i_2}_{k_2}) + \sum_{k \in K: s_k \geq e_{k_1}, e_k \leq s_{k_2}, o_k \in \bar{N}(i_1)} x^h_k \geq 1
\]

which ensure that
Location feasibility – No-flow model

However, this alone is not enough in general (cars are not guaranteed to be in \(N(o_k)\))
⇒ dynamically add additional constraints

If car \(h\) is assigned two consecutive trips \(k_1\) and \(k_2\) where \(k_2\) doesn’t start at the station where \(k_1\) ends, add the following constraint

\[
(1 - x^h_{k_1}) + (1 - x^h_{k_2}) + (1 - \hat{x}^i_{k_1}) + (1 - \hat{x}^i_{k_2}) + \sum_{k \in K: s_k \geq e_k, e_k \leq s_{k_2}, o_k \in \hat{N}(i_1)} x^h_k \geq 1
\]

which ensure that

- car \(h\) doesn’t do trip \(k_1\)
Location feasibility – No-flow model

However, this alone is not enough in general (cars are not guaranteed to be in \(N(o_k) \))
⇒ dynamically add additional constraints

If car \(h \) is assigned two consecutive trips \(k_1 \) and \(k_2 \) where \(k_2 \) doesn’t start at the station where \(k_1 \) ends, add the following constraint

\[
(1 - x^h_{k_1}) + (1 - x^h_{k_2}) + (1 - \hat{x}^i_{k_1}) + (1 - \tilde{x}^i_{k_2}) + \sum_{k \in K: s_k \geq e_k, e_k \leq s_{k_2}, o_k \in \bar{N}(i_1)} x^h_k \geq 1
\]

which ensure that
- car \(h \) doesn’t do trip \(k_1 \)
- car \(h \) doesn’t do trip \(k_2 \)
Location feasibility – No-flow model

However, this alone is not enough in general (cars are not guaranteed to be in $N(o_k)$)
\Rightarrow dynamically add additional constraints

If car h is assigned two consecutive trips k_1 and k_2 where k_2 doesn’t start at the station where k_1 ends, add the following constraint

$$(1 - x^h_{k_1}) + (1 - x^h_{k_2}) + (1 - \tilde{x}^i_{k_1}) + (1 - \tilde{x}^i_{k_2}) + \sum_{k \in K: s_k \geq e_k, e_k \leq s_{k_2}, o_k \in \bar{N}(i_1)} x^h_k \geq 1$$

which ensure that

- car h doesn’t do trip k_1
- car h doesn’t do trip k_2
- the end station of k_1 is changed
However, this alone is not enough in general (cars are not guaranteed to be in $N(o_k)$)
⇒ dynamically add additional constraints

If car h is assigned two consecutive trips k_1 and k_2 where k_2 doesn’t start at the station where k_1 ends, add the following constraint

$$(1 - x^h_{k_1}) + (1 - x^h_{k_2}) + (1 - \hat{x}^i_{k_1}) + (1 - \hat{x}^n_{k_2}) + \sum_{k \in K: s_k \geq e_k, e_k \leq s_{k_2}, o_k \in \bar{N}(i_1)} x^h_k \geq 1$$

which ensure that

- car h doesn’t do trip k_1
- car h doesn’t do trip k_2
- the end station of k_1 is changed
- the start station of k_2 is changed
Location feasibility – No-flow model

However, this alone is not enough in general (cars are not guaranteed to be in $N(o_k)$)
⇒ dynamically add additional constraints

If car h is assigned two consecutive trips k_1 and k_2 where k_2 doesn’t start at the station where k_1 ends, add the following constraint

$$(1 - x^h_{k_1}) + (1 - x^h_{k_2}) + (1 - \hat{x}^i_{k_1}) + (1 - \tilde{x}^i_{k_2}) + \sum_{k \in K : s_k \geq e_{k_1}, e_k \leq s_{k_2}, o_k \in \bar{N}(i_1)} x^h_k \geq 1$$

which ensure that
- car h doesn’t do trip k_1
- car h doesn’t do trip k_2
- the end station of k_1 is changed
- the start station of k_2 is changed
- car h does at least one additional trip between k_1 and k_2
Battery feasibility
Battery feasibility – Battery graph

Time-expanded battery graph $G_B = (V_B, A_B)$

<table>
<thead>
<tr>
<th></th>
<th>$t = 0$</th>
<th>$t = 1$</th>
<th>$t = 2$</th>
<th>$t = 3$</th>
<th>$t = 4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>80%</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>60%</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>40%</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>20%</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
</tbody>
</table>
Battery feasibility – Battery graph

Time-expanded battery graph \(G_B = (V_B, A_B) \)

charging arcs
for parked cars

\[
\begin{array}{cccccc}
 t = 0 & t = 1 & t = 2 & t = 3 & t = 4 \\
 100\% & 80\% & 60\% & 40\% & 20\%
\end{array}
\]
Battery feasibility – Battery graph

Time-expanded battery graph $G_B = (V_B, A_B)$

- **charging arcs**
 - for parked cars

- **waiting arcs**
 - for fully charged cars

$t = 0$ $t = 1$ $t = 2$ $t = 3$ $t = 4$
Battery feasibility – Battery graph

Time-expanded battery graph $G_B = (V_B, A_B)$

- **charging arcs** for parked cars
- **waiting arcs** for fully charged cars
- **trip arcs** A^k_B for cars used for trip k

$t = 0$ $t = 1$ $t = 2$ $t = 3$ $t = 4$
Additional variables

- Flow variable $g^h_a \in \{0, 1\}$

\[
g^h[\delta^+(b_0^{\text{max}})] = a_h \quad \forall h \in H \tag{18}
\]

\[
g^h[\delta^-(u_t)] - g^h[\delta^+(u_t)] = 0 \quad \forall h \in H, u_t \in V_B, 1 \leq t < T_{\text{max}} \tag{19}
\]

\[
\sum_{a \in A^k_B} g^h_a = x^h_k \quad \forall h \in H, k \in K \tag{20}
\]
Additional variables

- Flow variable $g^h_a \in \{0, 1\}$

\[
g^h[\delta^+(b^{max}_0)] = a_h \quad \forall h \in H \quad (18)
\]

\[
g^h[\delta^-(u_t)] - g^h[\delta^+(u_t)] = 0 \quad \forall h \in H, u_t \in V_B, 1 \leq t < T_{\text{max}} \quad (19)
\]

\[
\sum_{a \in A_B^k} g^h_a = x^h_k \quad \forall h \in H, k \in K \quad (20)
\]

all bought cars start at battery level b^{max} at $t = 0$
Additional variables

- Flow variable $g^h_a \in \{0, 1\}$

\[
g^h[\delta^+ (b_0^{\text{max}})] = a_h
\]

\[
g^h[\delta^- (u_t)] - g^h[\delta^+ (u_t)] = 0
\]

\[
\sum_{a \in A^k_B} g^h_a = x^h_k
\]

\[
\forall h \in H \quad (18)
\]

\[
\forall h \in H, u_t \in V_B, 1 \leq t < T_{\text{max}} \quad (19)
\]

\[
\forall h \in H, k \in K \quad (20)
\]

flow conservation
Battery feasibility – Battery graph

Additional variables

- Flow variable $g^h_a \in \{0, 1\}$

\[
g^h[\delta^+(b_0^{\text{max}})] = a_h \quad \forall h \in H \tag{18}
\]
\[
g^h[\delta^-(u_t)] - g^h[\delta^+(u_t)] = 0 \quad \forall h \in H, u_t \in V_B, 1 \leq t < T_{\text{max}} \tag{19}
\]
\[
\sum_{a \in A^k_B} g^h_a = x^h_k \quad \forall h \in H, k \in K \tag{20}
\]

if a car performs a trip, it must go over one of its trip arcs
Battery feasibility – Continuous battery tracking

Additional variables

- Continuous variable $g_t^h \in [0, b^{\text{max}}]$: battery level of car h at time t

\[
\begin{align*}
g_0^h &= b^{\text{max}} \\
g_{e_k}^h - g_{s_k}^h &\leq -b_k x_k^h + \Delta_k \rho (1 - x_k^h) \\
g_{t+1}^h - g_t^h &\leq \rho a_h
\end{align*}
\]

\[
\begin{align*}
\forall h \in H &&& (21) \\
\forall h \in H, k \in K &&& (22) \\
\forall h \in H, t \in T \setminus T_{\text{max}} &&& (23)
\end{align*}
\]
Battery feasibility – Continuous battery tracking

Additional variables

• Continuous variable $g^h_t \in [0, b^{\text{max}}]$: battery level of car h at time t

\[
\begin{align*}
 g^h_0 &= b^{\text{max}} \quad \forall h \in H \\
 g^h_{e_k} - g^h_{s_k} &\leq -b_k x^h_k + \Delta_k \rho (1 - x^h_k) \quad \forall h \in H, k \in K \\
 g^{h}_{t+1} - g^{h}_t &\leq \rho a_h \quad \forall h \in H, t \in T \setminus T_{\text{max}}
\end{align*}
\]

all bought cars start at battery level b^{max} at $t = 0$
Battery feasibility – Continuous battery tracking

Additional variables

- Continuous variable $g_t^h \in [0, b^\text{max}]$: battery level of car h at time t

\[
g_0^h = b^\text{max} \quad \forall h \in H \tag{21}
\]

\[
g_{e_k}^h - g_{s_k}^h \leq -b_k x_k^h + \Delta_k \rho (1 - x_k^h) \quad \forall h \in H, k \in K \tag{22}
\]

\[
g_{t+1}^h - g_t^h \leq \rho a_h \quad \forall h \in H, t \in T \setminus T_{\text{max}} \tag{23}
\]

if a car performs a trip, its battery is depleted accordingly
Battery feasibility – Continuous battery tracking

Additional variables

- **Continuous variable** $g_t^h \in [0, b_{\text{max}}]$: battery level of car h at time t

\[
g_0^h = b_{\text{max}} \quad \forall h \in H \tag{21}
\]

\[
ge_{e_k}^h - g_{s_k}^h \leq -b_k x_k^h + \Delta_k \rho (1 - x_k^h) \quad \forall h \in H, k \in K \tag{22}
\]

\[
g_{t+1}^h - g_t^h \leq \rho a_h \quad \forall h \in H, t \in T \setminus T_{\text{max}} \tag{23}
\]

cars are recharged by up to ρ each time period
explicitly forbid all battery-infeasible paths

Whenever we find a path that is infeasible w.r.t. battery consumption, we add

$$\sum_{k \in K'} x^h_k \leq f_{K'} a_h \quad \forall K' \subseteq K, h \in H$$

(24)

to the model, where $f_{K'}$ is the maximum number of trips from K' that can be performed by a single car.
Results
random instances with
- grid street network
- number of stations $|S| \in \{10, 25, 50\}$
 - random location
 - random cost
 - random maximum capacity
- number of trips $|K| \in \{10, 25, 50, 75, 100\}$
 - random start and end location
 - random start and end time
 - uniform profit $p_k = 1$

We evaluated several variants of our algorithm
- **FG**: flow model with battery graph
- **FC**: flow model with continuous battery tracking
- **N**: no-flow model with battery cuts
- **NC**: no-flow model with continuous battery tracking

Computations were done with **CPLEX**, **10800 s** time limit and **3 GB** memory limit.
Improvements
Heuristic

To improve the performance of our ILP solver, we want to provide it with a good initial solution. We want to find a set of car paths that

- covers many profitable trips, and
- is feasible w.r.t. our budget constraints

We can find such paths by repeatedly solving the resource-constrained longest path problem (RCLP) on a variant of the location graph, where each arc is assigned

- a length \(\ell_a \)
 - \(\ell_a = p_k \) for trip arcs
 - \(\ell_a = 0 \) otherwise
- a battery consumption \(b_a \)
 - \(b_a = -b_k \) for trip arcs
 - \(b_a = \rho \) for waiting arcs
 - \(b_a = 0 \) otherwise

Since the location graph is acyclic, this is equivalent to solving the resource-constrained shortest path problem (RCSP) on a variant where all arc lengths are negated.
We solve the RCLP with a **dynamic programming labeling algorithm**. A label L consists of a profit p_L and a battery level b_L, and dominates L' if

$$p_L \geq p_{L'} \land b_L \geq b_{L'}$$

(25)

with at least one inequality being strict.

1. $\text{labels}(v) = \emptyset$
2. $\text{labels}(i_0) = \{(0, 100)\}, \forall i \in S$
3. **for** $t \in T, i \in S$ **do**
4. **for** $l \in \text{labels}(i_t)$ **do**
5. **for** $(i_t, j_{t'}) \in \delta^+(i_t)$ **do**
6. **if** l not dominated by any $l' \in \text{labels}(j_{t'})$ **then**
7. add l to $\text{labels}(j_{t'})$
8. remove all dominated l' from $\text{labels}(j_{t'})$
9. build car path from best label at sink
pathlist = ∅

while $W \geq \zeta$ do
 $W = W - \zeta$
 find new path with RCLP
 if $W < \text{path.cost}$ then
 try to remove trips from path to make it feasible
 if $W \geq \text{path.cost}$ then
 pathlist = pathlist $\cup \{\text{path}\}$
 $W = W - \text{path.cost}$
 $A_T = A_T \setminus \{a \mid a.trip \in \text{path.trips}\}$
 remove waiting arcs from vertices at maximum capacity
Symmetry breaking

Since our car fleet is homogeneous, our models have lots of symmetries. We can break these by adding constraints

\[\sum_{k \in K} \alpha_k x_k^h \geq \sum_{k \in K} \alpha_k x_k^{h+1} \quad \forall h \in H \setminus \{H_{\text{max}}\} \]

(26)

that impose an ordering on cars. The value of a car depends on the trips it performs, such as

- their number (i.e., \(\alpha_k = 1 \))
- their profit (i.e., \(\alpha_k = p_k \))
- their duration (i.e., \(\alpha_k = \Delta_k \))
Symmetry breaking

Since our car fleet is homogeneous, our models have lots of symmetries. We can break these by adding constraints

\[\sum_{k \in K} \alpha_k x_k^h \geq \sum_{k \in K} \alpha_k x_k^{h+1} \quad \forall h \in H \setminus \{H_{\text{max}}\} \quad (26) \]

that impose an ordering on cars.

The value of a car depends on the trips it performs, such as

- their number (i.e., \(\alpha_k = 1 \))
- their profit (i.e., \(\alpha_k = p_k \))
- their duration (i.e., \(\alpha_k = \Delta_k \))

Unfortunately, preliminary results are not very encouraging.
Future work

- Model extensions
 - integrating uncertainty
 - allowing car relocation
- Instances based on real world data
- Computational enhancements
 - constraint separation for fractional solutions
- Alternative formulations
 - set covering formulation (branch-and-price)