http://www.univie.ac.at/Geschichte/htdocs/ifg_files/uni_logo.gif

LEADERS

PARTICIPANTS

BIBLIOGRAPHY

ARCHIVES

PROJECTS

MEETINGS

LINKS

CONTACT

Textfeld: Copyright 2014 (since February 2014)
The IGCP 609 website is hosted by Universität Wien, Austria.
Contents are provided by the project leaders and participants.
Contact Webmaster

Disclaimer: The owner of this website is not responsible for the content of websites of third parties (“external sites”). 
Textfeld:

HOME

ABOUT

Publications emerging from (marked with *), and related to, IGCP 609

 

Note: If you are not able to access some of the publications, please contact the secretary

(benjamin.sames(at)univie.ac.at) under Subject: “IGCP 609 Publication” to get a PDF.

 

 

● 2016 and 2017

 

Special Topic:

“Cretaceous Greenhouse Palaeoclimate and

Sea-level Changes”

 

Proceedings of the “International Workshop on Climate and Environmental Evolution in the Mesozoic Greenhouse World and 3rd IGCP 609 Workshop on Cretaceous Sea-Level Change”, Sept. 5–11, 2015, Nanjing, China

 

(all papers are open access)

 

*Hu, X.M., Wagreich, M., Sames, B., 2017. Special Topic: Cretaceous greenhouse paleoclimate and sea-level changes. Science China Earth Sciences, 60 (1), 1–4. https://doi.org/10.1007/s11430-016-0278-3

*Hay, W.W., 2017. Toward understanding Cretaceous climate—An updated review. Science China Earth Sciences, 60 (1), 5–19. http://doi.org/10.1007/s11430-016-0095-9

*Haq, B.U., Huber, B.T., 2017. Anatomy of a eustatic event during the Turonian (Late Cretaceous) hot greenhouse climate. Science China Earth Sciences, 60 (1), 20–29. https://doi.org/10.1007/s11430-016-0166-y

*Socorro, J., Maurrasse, F.J.-M.R., Sanchez-Hernandez, Y., 2017. Characterization of the negative carbon isotope shift in segment C2, its global implications as a harbinger of OAE1a. Science China Earth Sciences, 60 (1), 30–43. https://doi.org/10.1007/s11430-016-0092-5

*Ross, J.B., Ludvigson, G.A., Möller, A., Gonzalez, L.A., Walker, J.D., 2017. Stable isotope paleohydrology and chemostratigraphy of the Albian Wayan Formation from the wedge-top depozone, North American Western Interior Basin. Science China Earth Sciences, 60 (1), 44–57. https://doi.org/10.1007/s11430-016-0087-5

*Zorina, S.O., Pavlova, O.V., Galiullin, B.M., Morozov, V.P., Eskin, A.A., 2017. Euxinia as a dominant process during OAE1a (Early Aptian) on the Eastern Russian Platform and during OAE1b (Early Albian) in the Middle Caspian. Science China Earth Sciences, 60 (1), 58–70. http://doi.org/10.1007/s11430-016-0043-1

*Pavlishina, P., 2017. Palynostratigraphy and palaeoenvironments around the Albian-Cenomanian boundary interval (OAE1d), North Bulgaria. Science China Earth Sciences, 60 (1), 71–79. http://doi.org/10.1007/s11430-016-0067-2

 

 

 

● 2016

 

Special Issue:

“Advances and Perspectives in Understanding Cretaceous Sea-level Change”

 

Proceedings of the 2nd Workshop of IGCP 609 and EARTHTIME-EU Sequence Stratigraphy Workshop, Bucharest, Romania, August 23-25, 2014

 

 

*Wagreich, M., Haq, B.U., Melinte-Dobrinescu, M.C., Sames, B., Yılmaz, İ.Ö. (Eds.), 2015/1016. Proceedings of the 2nd IGCP 609 and Earthime-EU Sequence Stratigraphy Workshop, Bucharest, 2014. Palaeogeography, Palaeoclimatology, Palaeoecology, 441 (Part 3), 391–610. http://www.sciencedirect.com/science/journal/00310182/441/part/P3

 

Comprising the following contributions (4 reviews, 9 case studies):

 

*Wagreich, M., Haq, B.U., Melinte-Dobrinescu, M.C., Sames, B., Yılmaz, İ.Ö, 2016. Preface. Palaeogeography, Palaeoclimatology, Palaeoecology, 441 (3), 391–392. http://dx.doi.org/10.1016/j.palaeo.2015.10.040

*Sames, B., Wagreich, M., Wendler, J.E., Haq, B.U., Conrad, C.P., Melinte-Dobrinescu, M.C., Hu, X., Wendler, I., Wolfgring, E., Yilmaz, I.Ö., Zorina, S.O., 2016. Review: Short-term sea-level changes in a greenhouse world — A view from the Cretaceous. Palaeogeography, Palaeoclimatology, Palaeoecology, 441 (3), 393–411. http://dx.doi.org/10.1016/j.palaeo.2015.10.045 [Introductory Review]

*Wendler, J.E., Wendler, I., 2016. What drove sea-level fluctuations during the mid-Cretaceous greenhouse climate? Palaeogeography, Palaeoclimatology, Palaeoecology, 441 (3), 412–19. http://dx.doi.org/10.1016/j.palaeo.2015.08.029  [Review]

*Hart, M.B., FitzPatrick, M.E.J., Smart, C.W., 2016. The Cretaceous/Paleogene boundary: Foraminifera, sea grasses, sea level change and sequence stratigraphy. Palaeogeography, Palaeoclimatology, Palaeoecology, 441 (3), 420–429. http://dx.doi.org/10.1016/j.palaeo.2015.06.046 [Review]

*Wendler, J.E., Wendler, I., Vogt, C., Kuss, J., 2016. Link between cyclic eustatic sea-level change and continental weathering: Evidence for aquifer-eustasy in the Cretaceous. Palaeogeography, Palaeoclimatology, Palaeoecology, 441 (3), 430–437. http://dx.doi.org/10.1016/j.palaeo.2015.08.014 [Review]

*Lamolda, M.A., Melinte, M.C., Kaiho, K., 2016. Calcareous nannoplankton assemblage changes linked to paleoenvironmental deterioration and recovery across the Cretaceous–Paleogene boundary in the Betic Cordillera (Agost, Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 441 (3), 438–452. http://dx.doi.org/10.1016/j.palaeo.2015.10.003

*Açıkalın, S., Ocakoğlu, F., Yılmaz, İ.Ö., Vonhof, H., Hakyemez, A., Smit, J., 2016. Stable isotopes and geochemistry of a Campanian–Maastrichtian pelagic succession, Mudurnu–Göynük Basin, NW Turkey: Implications for palaeoceanography, palaeoclimate and sea-level fluctuations. Palaeogeography, Palaeoclimatology, Palaeoecology, 441 (3), 453–466. http://dx.doi.org/10.1016/j.palaeo.2015.10.005

*Wolfgring, E., Hohenegger, J., Wagreich, M., 2016. Assessing pelagic palaeoenvironments using foraminiferal assemblages — A case study from the late Campanian Radotruncana calcarata Zone (Upper Cretaceous, Austrian Alps). Palaeogeography, Palaeoclimatology, Palaeoecology, 441 (3), 467–492. http://dx.doi.org/10.1016/j.palaeo.2015.08.008

*Kopaevich, L., Vishnevskaya, V., 2016. Cenomanian–Campanian (Late Cretaceous) planktonic assemblages of the Crimea–Caucasus area: Palaeoceanography, palaeoclimate and sea level changes. Palaeogeography, Palaeoclimatology, Palaeoecology, 441 (3), 493–515. http://dx.doi.org/10.1016/j.palaeo.2015.09.024

*Xi, D., Cao, W., Cheng, Y., Jiang, T., Jia, J., Li, Y., Wan, X., 2016. Late Cretaceous biostratigraphy and sea-level change in the southwest Tarim Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 441 (3), 516–527. http://dx.doi.org/10.1016/j.palaeo.2015.09.045

*Wendler, I., Wendler, J.E., Clarke, L.J., 2016. Sea-level reconstruction for Turonian sediments from Tanzania based on integration of sedimentology, microfacies, geochemistry and micropaleontology. Palaeogeography, Palaeoclimatology, Palaeoecology, 441 (3), 528–564. http://dx.doi.org/10.1016/j.palaeo.2015.08.013

*Tüysüz, O., Melinte-Dobrinescu, M.C., Yılmaz, İ.Ö., Kirici, S., Svabenická, L., Skupien, P., 2016. The Kapanboğazı formation: A key unit for understanding Late Cretaceous evolution of the Pontides, N Turkey. Palaeogeography, Palaeoclimatology, Palaeoecology, 441 (3), 565–581. http://dx.doi.org/10.1016/j.palaeo.2015.06.028

*Sanchez-Hernandez, Y., Maurrasse, F.J.-M.R., 2016. The influence of regional factors in the expression of oceanic anoxic event 1a (OAE1a) in the semi-restricted Organyŕ Basin, south-central Pyrenees, Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 441 (3), 582–598. http://dx.doi.org/10.1016/j.palaeo.2015.06.031

*Zorina, S.O., 2016. Sea-level and climatic controls on Aptian depositional environments of the Eastern Russian Platform. Palaeogeography, Palaeoclimatology, Palaeoecology, 441 (3), 599–609. http://dx.doi.org/10.1016/j.palaeo.2015.08.035

 

 

● Other Publications 2016/17

 

*Ali, A., and Wagreich, M., 2017. Geochemistry, environmental and provenance study of the Middle Miocene Leitha limestones (Central Paratethys). Geologica Carpathica, 68(3), 248–268. http://dx.doi.org/10.1515/geoca-2017-0018

Aquit, M., Kuhnt, W., Holbourn, A., Chellai, El H., Lees, J.A., Kluth, O., and Jabour, H., 2017. Complete archive of late Turonian to early Campanian sedimentary deposition in newly drilled cores from the Tarfaya Basin, SW Morocco. GSA Bulletin, 129 (1‒2), 137‒151.

      http://dx.doi.org/10.1130/B31523.1

*Bąk, K., Bąk, M., Dulemba, P., Okoński, S., 2016. Late Cenomanian environmental conditions at the submerged Tatric Ridge, Central Western Carpathians during the period preceding Oceanic Anoxic Event 2; A palaeontological and isotopic approach. Cretaceous Research, 63, 95‒112. http://dx.doi.org/10.1016/j.cretres.2016.02.014

*Bąk K., Fabiańska, M., Bąk, M., Misz-Kennan, M., Zielińska M., Dulemba, P., Bryndal, T., Naglik, B., 2016. Organic matter in upper Albian marine sediments in the High-Tatric units, central western Carpathians related to Oceanic Anoxic Event 1d - geochemistry, microfacies and palynology. Palaeogeography, Palaeoclimatology, Palaeoecology, 453, 212‒227.

      http://dx.doi.org/10.1016/j.palaeo.2016.04.041

*Benyamovskiy, V.N. and Kopaevich, L.F., 2016. The Alan-Kyr Coniacian–Campanian Section (Crimean Mountains): Biostratigraphy and Paleobiogeography Aspects. Moscow University Geology Bulletin, 71 (3), 217–233. http://dx.doi.org/10.3103/S0145875216030042

Conrad, C.P., Selway, K., Hirschmann, M.M., Ballmer, M.D. and Wessel, P., 2017. Constraints on volumes and patterns of asthenospheric melt from the space-time distribution of seamounts. Geophysical Research Letters, 44(14), 72037210.

      http://dx.doi.org/10.1002/2017GL074098

Dangendorf, S., Marcos, M., Wöppelmann, G., Conrad,C.P., Frederikse, T., Riva, R., 2017. Reassessment of 20th century global mean sea level rise. Proceedings of the National Academy of Sciences, 114(23), 59465951. http://dx.doi.org/10.1073/pnas.1616007114

*Fekete, K., Soták, J., Boorová, D., Lintnerová, O., Michalík, J., Grabowski, J., 2017.  An Albian demise of the carbonate platform in the Manín Unit (Western Carpathians, Slovakia). 
Geologica Carpathica, 68(5), 385–402. DOI: 10.1515/geoca-2017-0026

*Grabowski, J., Lakova, I., Petrova, S., Stoykova, K., Ivanova, D., Wójcik-Tabol, P., Sobień, K. and Schnabl, P., 2016. Paleomagnetism and integrated stratigraphy of the Upper Berriasian hemipelagic succession in the Barlya section Western Balkan, Bulgaria: Implications for lithogenic input and paleoredox variations. Palaeogeography, Palaeoclimatology, Palaeoecology, 461, 156‒177.

      http://dx.doi.org/10.1016/j.palaeo.2016.08.018

*Grabowski, J., Haas, J., Stoykova, K., Wierzbowski, H. and Brański, P., 2017. Environmental changes around the Jurassic/Cretaceous transition: New nannofossil, chemostratigraphic and stable isotope data from the Lókút section (Transdanubian Range, Hungary). Sedimentary Geology, 360, 5472. http://dx.doi.org/10.1016/j.sedgeo.2017.08.004

*Jan, I.U., Iqbal, S., Davies, S.J., Zalasiewicz, J.A., Stephenson, M.H., Wagreich, M., Haneef, M., Hanif, M., and Ahmad, S., 2017. A periglacial palaeoenvironment in the Upper Carboniferous–Lower Permian Tobra formation of the Salt Range, Pakistan. Acta Geologica Sinica (English Edition), 91(3), 1063–1078.

*Kopaevich, L.F. & Gorbachik, T.N., 2017. Shell morphology of the Cretaceous planktonic Foraminifera as a tool for paleoenvironments reconstructions. Paleontologicheskii Zhurnal (Paleontological Journal), 51 (1), 3–15. http://dx.doi.org/10.1134/S0031030117010075

*Kopaevich, L.F., Bragin, N. Yu., Bragina, L.G., in press (2017). New Data on the Planktonic Foraminifers from the Yunusdag Formation (Coniacian–Santonian) in the Kelevudag Section, Northeastern Azerbaijan. Stratigraphy and Geological Correlation, 25(6), 627–637.

      DOI: 10.1134/S0869593817060053

*Li, J., Hu, X., Wagreich, M., Sames, B., 2016. Report on the “International Workshop on Climate and Environmental Evolution in the Mesozoic Greenhouse World and 3rd IGCP 609 Workshop on Cretaceous Sea-Level Change”. Episodes, 39 (4), 616–618. http://www.episodes.org/index.php/epi/article/view/105896/75071

Lukeneder, A., Soták, J., Jovane, L., Giorgioni, M., Savian, J.F., Halásová, E., Reháková, D., Józsa, Š., Kroh, A., Florindo, F., Spovieri, M., 2016. Multistratigraphic records of the Lower Cretaceous (Valanginan-Cenomanian) Puez Key Area in the northern Italy. Palaeogeography, Palaeoclimatology, Palaeoecology, 447: 6587. http://dx.doi.org/10.1016/j.palaeo.2016.01.043

Michalík J., Reháková D., Grabowski J., Lintnerová O., Svobodová A., Schlögl J., Sobień K., Schnabl P., 2016. Stratigraphy, plankton communities, and magnetic proxies at the Jurassic / Cretaceous boundary in the Pieniny Klippen Belt (Western Carpathians, Slovakia). Geologica Carpathica, 67 (4), 303328. http://dx.doi.org/10.1515/geoca-2016-0020

*Neuhuber, S., Gier, S., Hohenegger, J., Wolfgring, E., Spötl, C., Strauss, P., Wagreich, M., 2016. Palaeoenvironmental changes in the northwestern Tethys during the Late Campanian Radotruncana calcarata Zone: Implications from stable isotopes and geochemistry. Chemical Geology, 420, 280–296. http://dx.doi.org/10.1016/j.chemgeo.2015.11.023

Pelech O., Józsa S., Kohút M., Plašienka D., Hók J., Soták J., 2016. Structural, biostratigraphic, and petrographic evaluation of the Upper Cretaceous red marls and underlying granitoids from the Jašter HPJ-1 borehole near Hlohovec (Považský Inovec Mts., Slovakia). Acta Geologica Slovaca, 8 (1), 2742. http://www.geopaleo.fns.uniba.sk/ageos/articles/abstract_en.php?path=pelech_et_al2&vol=8&iss=1

Rahiminejad, A.H. and Hassani, M.J., 2016. Palaeoenvironmental distribution patterns of orbitolinids in the Lower Cretaceous deposits of eastern Rafsanjan, Central Iran. Marine Micropaleontology, 122, 53–66. http://dx.doi.org/10.1016/j.marmicro.2015.11.006

Rich, T.H., Hopson, J.A., Gill, P.G., Trusler, P., Rogers-Davidson, S., Morton, S., Cifelli, R.L., Pickering, D., Kool, L., Siu, K., Burgmann, F.A., Senden, T., Evans, A.R., Wagstaff, B.E., Seegets-Villiers, D., Corfe, I.J., Flannery, T.F., Walker, K., Musser, A.M., Archer, M., Pian, R., and Vickers-Rich, P. 2016. The Mandible and Dentition of the Early Cretaceous Monotreme Teinolophos trusleri. Alcheringa, 40 (4), 475–501.

      http://dx.doi.org/10.1080/03115518.2016.1180034

*Sha, J. and Cestari, R., 2016. Late Aptian–Albian Ysin-type rudist assemblage in the Himalayas: palaeobiogeographic implications. Cretaceous Research, 65, 34–47. http://dx.doi.org/10.1016/j.cretres.2016.04.004

*Wessely, G., Neubauer, F., Salcher, B., Wagreich, M., 2016. A geological snapshot from the front of the Northern Calcareous Alps: Well Obermoos TH-1, Salzburg, Austria. Austrian Journal of Earth Sciences, 109 (2), 189–202. http://dx.doi.org/10.17738/ajes.2016.0014

*Wolfgring, E. & Wagreich, M., 2016. A quantitative look on northwestern Tethyan foraminiferal assemblages, Campanian Nierental Formation, Austria. PeerJ, ,: e1757. http://dx.doi.org/10.7717/peerj.1757

*Wolfgring, E., Wagreich, M., Dinarčs-Turell, J., Yilmaz, I.O., Böhm, K., in press. (2017). Plankton biostratigraphy and magnetostratigraphy of the Santonian–Campanian boundary interval in the Mudurnue–Göynük Basin, northwestern Turkey. Cretaceous Research. http://dx.doi.org/10.1016/j.cretres.2017.07.006

*Wu, C., Liu, C., Yi, H., Xia, G., Zhang, H., Wang, L., Li, G., Wagreich, M., 2017. Mid-Cretaceous desert system in the Simao Basin, southwestern China, and its implications for sea-level change during a greenhouse climate. Palaeogeography, Palaeoclimatology, Palaeoecology,  468, 529–544. http://dx.doi.org/10.1016/j.palaeo.2016.12.048

*Yilmaz, I.O., Altiner, D., Ocakoglu, F., 2016. Upper Jurassic–Lower Cretaceous depositional environments and evolution of the Bilecik (Sakarya Zone) and Tauride carbonate platforms, Turkey. Palaeogeography, Palaeoclimatology, Palaeoecology, 449, 321–340. http://dx.doi.org/10.1016/j.palaeo.2016.02.028

Zakharov, Y.D., Kakabadze, M.V, Sharikadze, М.Z., Smyshlyaeva, O.P., Sobolev, E.S., Safronov, P.P., 2016. Preliminary data on isotope composition of Aptian brachiopods and mollusks of the Caucasus. In: Baraboshkin E.Y. (Ed.), Cretaceous System of Russia and CIS countries: problems of stratigraphy and palaeogeography. Simferopol, Chernomorpress, pp. 118–120 (in Russian).

*Zakharov, Y.D., Tanabe, K., Shigeta, Y., Safronov, P.P., Smyshlyaeva, O.P., and Dril, S.I., 2016. Early Albian marine environments in Madagascar: An integrated approach based on oxygen, carbon and strontium isotopic data. Cretaceous Research, 58, 29–41. http://dx.doi.org/10.1016/j.cretres.2015.08.014

*Zorina, S.O., 2016. Early Cretaceous Sea Level Fluctuations in the Eastern Part of the East European Platform. Doklady Earth Sciences, 470 (2), 1002–1005.

      http://www.dx.doi.org/10.1134/S1028334X16100081

 

 

 

Publications 2015 and before

 

Download Pdf with complete list of relevant publications before 2016.

Contents

Bibliography

UNESCO/IUGS International Geoscience Programme Project 609 (2013–2017+2018)

http://www.igcp572.segs.uwa.edu.au/files/images/iugs_logotext90.jpghttp://www.taxi-mundjal.com/files/5hft-2siwn0388jex-lztaj.jpg

Climate-environmental deteriorations during

Greenhouse phases: Causes and consequences

of short-term Cretaceous sea-level changes

IGCP 609