Modelling solvency and liquidity stress interactions

Claus Puhr & Stefan W. Schmitz

Oesterreichische Nationalbank

6th Expert forum on advanced stress testing techniques
IMF/CCBS
London, December 9/10, 2014
Disclaimer

The opinions expressed in this presentation are those of the authors and do not necessarily reflect those of the OeNB or the Euro System.

The authors would like to thank Kujtim Avdiu, Michael Boss, Helmut Elsinger, Robert Ferstl, Emanuel Kopp, Gerald Krenn, Benjamin Neudorfer, David Seres, Christoph Siebenbrunner, Michael Sigmund, Ralph Spitzer and Martin Summer for their contributions to stress testing at the OeNB and their support while writing this paper.

Moreover, they would like to also thank Nicolas Blancher and Laura Valderrama for the cooperation during the Austrian FSAP 2013, on which the authors base the example in this presentation.

Finally, the authors would like to thank the chair of the session, Christian Schmieder, for the long running cooperation and his helpful feedback on the work presented today.
Agenda

Austrian stress test models

Solvency stress test model

Liquidity stress test model

Interaction solvency/liquidity

Results & conclusions
Austrian solvency stress test models

Solvency Stress Test

Scenario Models (i.e. exogeneous shocks)
- Two separate models for Austria and „Rest of World“

Macro-2-Micro Models (i.e. risk factor distributions)
- PDs, LGDs, ratings, market risk factors, net interest income, ...

Balance Sheet Model (i.e. loss functions)
- Balance, Profit & Loss, RWAs

Feedback Models
- Interbank exposures

Cash Flow Model (i.e. maturity mismatch)
- Run-off rates and haircuts
Data sources for stress testing in Austria

<table>
<thead>
<tr>
<th>Reporting</th>
<th>Solvency</th>
<th>Liquidity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope</td>
<td>All Austrian banks (~600 consolidated, ~800+100 unconsolidated)</td>
<td>29 largest Austrian banks on a consolidated / sub-consolidated basis</td>
</tr>
<tr>
<td>Frequency</td>
<td>Quarterly</td>
<td>Weekly</td>
</tr>
<tr>
<td>Sources</td>
<td>FINREP & COREP (incl. cross-border subs) Central Credit Registry NFC default frequencies Bloomberg data Macroeconomic variables</td>
<td>Weekly liquidity reporting Unencumbered collateral deposited at OeNB Reporting data on NFC bond holdings</td>
</tr>
<tr>
<td>Cut-off date (for this example)</td>
<td>2012Q4</td>
<td>2012Q4</td>
</tr>
</tbody>
</table>
Agenda

Austrian stress test models

Solvency stress test model

Liquidity stress test model

Interaction solvency/liquidity

Results & conclusions
Main challenges of solvency stress tests

<table>
<thead>
<tr>
<th>Main challenges</th>
<th>OeNB solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability of granular data</td>
<td>Central Credit Registry</td>
</tr>
<tr>
<td>Robustness of the scenario</td>
<td>Cooperation with Economics Department</td>
</tr>
<tr>
<td>Uncertainty of the risk factor distributions</td>
<td>Model averaging for macro-2-micro models</td>
</tr>
<tr>
<td>Uncertainty with regard to the loss functions</td>
<td>Bottom-up benchmarks, cross sectional comparisons, extensive back testing</td>
</tr>
<tr>
<td>Explicit link to liquidity</td>
<td>Cost of funding, fire sales (preliminary)</td>
</tr>
<tr>
<td>Network externalities</td>
<td>Only partially addressed (IB contagion)</td>
</tr>
</tbody>
</table>
Solvency stress testing model (ARNIE**)
Agenda

Austrian stress test models

Solvency stress test model

Liquidity stress test model

Interaction solvency/liquidity

Results & conclusions
Liquidity stress testing model

Input / Data
- Weekly cash-flow based liquidity reporting data
- Treasury data

Calculation
- Inflows
- Outflows
- CBC*

Liquidity surplus/gap

Stress Assumptions
- Roll over rates
- Run off rates
- Haircuts

Output
- Open funding gap
- In relation to total liabilities
- Number of failed banks
- ... (* CGI*)

*) CBC = Counter Balancing Capacity

**) A bank fails the stress test (i.e., has a liquidity gap) if it is not able to cover a possible net funding gap (i.e., Inflows < Outflows) with its counterbalancing capacity.
Main challenges of liquidity stress tests

<table>
<thead>
<tr>
<th>Main challenges</th>
<th>OeNB solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability of cash flow data</td>
<td>Weekly cash flow report in six currencies</td>
</tr>
<tr>
<td>Scenario design</td>
<td>Close link to solvency scenario</td>
</tr>
<tr>
<td>Scenario calibration</td>
<td>Extensive empirical foundation</td>
</tr>
<tr>
<td>Parameter uncertainty</td>
<td>Three groups of 12 embedded scenarios</td>
</tr>
<tr>
<td>Explicit link to solvency</td>
<td>Macro-to-PD shifts feed into CC migration matrix in CBC & CIF (loans)</td>
</tr>
<tr>
<td>Treatment of CBs as lender of last resort</td>
<td>Three stage gradual approach</td>
</tr>
</tbody>
</table>
Data requirements

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contractual / behavioural maturities</td>
<td></td>
</tr>
<tr>
<td>Gross / net cash flows</td>
<td></td>
</tr>
<tr>
<td>Liquidity coverage approach / separation of li risk exposure & risk bearing capacity</td>
<td></td>
</tr>
<tr>
<td>Stock of liquid assets / counterbalancing capacity</td>
<td></td>
</tr>
<tr>
<td>Single currency / multiple currencies</td>
<td></td>
</tr>
<tr>
<td>Frequency, cut-off date and reporting time lag</td>
<td></td>
</tr>
<tr>
<td>Product oriented/accounting balance sheet based versus functional items</td>
<td></td>
</tr>
<tr>
<td>Reporting period and bucket size (9 buckets)</td>
<td></td>
</tr>
<tr>
<td>Consolidated / solo</td>
<td></td>
</tr>
<tr>
<td>Differentiation according to business model / comprehensive template</td>
<td></td>
</tr>
</tbody>
</table>
Template design crucial

| Contractual & behavioural | Without contractual → **results biased**
| | Behavioural assumptions explicit → **reveal risk tolerance**
<table>
<thead>
<tr>
<th></th>
<th>Allow for institution specificity</th>
</tr>
</thead>
</table>
| Gross cash flows | Allow for differentiated analysis of liquidity risk exposure → **more risk sensitive**
| | More granular stress tests possible |
| Counterbalancing capacity | **Consistency** across inflows/outflows counterbalancing capacity
| | Makes implicit assumptions of stock explicit → **information gain** |
| Multiple currencies | **Liquidity risk currency specific**
| | Links across currencies product specific |
| Functional items | **Common language** among li-risk managers & supervisors
| | **Facilitates** scenario design & calibration |
Austrian maturity mismatch template

Inflows (14 line items)
- Maturing instruments (loans, swaps, ...)
- Fixed / expected issuances (short- and long-term)
- Expected deposit inflows (un/secured, retail / wholesale)

Outflows (16)
- New loans, advances, calling of lines, ...
- Tender, Repos, Issuances (due)
- Expected deposit outflows (un/secured, retail / wholesale)

Counterbalancing Capacity (9)
- Cash, excess reserves at the central bank (by rating category)
- Tender / unencumbered collateral
- Liquid and other assets available for collateralisation

*) Six currencies include: EUR, USD, CHF, GBP, YEN and a basket of other currencies.
**) Five maturity buckets cover: up to 5 days, 1 month, 3 months, 6 months and 12 months.
Scenario calibration

Consistency with solvency scenario
- Often contain relevant parameters (e.g. bond prices)

Econometric approach not feasible
- Low frequency/high impact events
- Data hardly available

Product & market specific
- Reporting data & academic literature (IMF WP03/12, BCBS WP 24/25 2013)

Case studies
- Bank, market & country level (IMF WP03/12, BCBS WP 24/25 2013)

Output of solvency stress test
- See discussion below
parameter uncertainty – embedded scenarios

- Scenario 1
 - Closure of unsecured interbank markets
 - Closure of FX Swap markets

- Scenario 2
 - Reduced issuance of short term / long term debt
 - Increase in calling of credit commitments
 - Mild haircuts on unencumbered collateral in CBC

- Scenario 3
 - Dry up of funding markets – no future debt issuance
 - Severe increase in calling of credit commitments
 - Increased Haircuts on CBC according to the asset quality
 - Reduction in planned financial investments (mitigating)

- Scenario 4
 - Combines scenario 3 with idiosyncratic shock
 - Reduction of expected roll-over rates of wholesale and retail deposits

Cumulative severity

Reveals liquidity risk tolerance
Treatment of CBs as lender of last resort

Lender of last resort
• Discretionary/extra-ordinary deviation from the standard framework of monetary policy implementation
• Liquidity provided to individual/subsample of institutions on specific terms that are not available to other market participants

Monetary policy implementation
• Reaction to expected increase of the structural liquidity deficit at the target rate
• Always market oriented – never individual bank focused
• Can entail deviations from standard monetary policy
LoLR: focus on markets rather than failing bank

Arguments for reliance on LoLR

- Historical experience
- Theory
 - Potential efficiency gains under restrictive assumption (e.g. prevent asset fire sale contagion)

Arguments against reliance on LoLR

- Conflicts with raison-d’être for liquidity regulation
 - Internalise externality & moral hazard & efficient allocation of liquidity & risk
 - Qualitative liquidity regulation aims at self-insurance (CEBS 2009, 2010a, BCBS 2010)
- FX liquidity (e.g. Bulgaria)
- LoLR cannot be considered in isolation (subordination, bank resolution)
- Political economy of bail-outs
 - Interference in property rights, fiscal exposure, distributional effects
- CB discretion undermined
 - Delienation of illiquidity from insolvency impossible under time pressure
 - Conflict of interest with monetary policy implementation

Potential efficiency gains can be achieved by less distortionary alternatives
Less distortionary alternatives to standard LoLR

<table>
<thead>
<tr>
<th>Pricing</th>
<th>Charging a fee according to the liquidity risk exposure and liquidity risk bearing capacity of the bank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective: Internalise the externality associated with liquidity risk ➔ banks should be indifferent between effective self-insurance and insurance by the public</td>
<td></td>
</tr>
<tr>
<td>Challenge: unrealistic ➔ fair price difficult to estimate (see pricing of RCLF in AUS)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditionality</th>
<th>Automatic sanctions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replacement of board members</td>
<td></td>
</tr>
<tr>
<td>Trigger for early intervention mechanism</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Liquidity provision to market rather than illiquid bank</th>
<th>Address asset fire sale externality</th>
</tr>
</thead>
<tbody>
<tr>
<td>assumes other market participants cannot exploit underpricing due to liquidity constraints</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Original concept of the LoLR according to Thornton and Bagehot</th>
<th>Enables other market participants to profit from underpricing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limits negative price effect</td>
<td></td>
</tr>
</tbody>
</table>
Conclusions: No LoLR in liquidity stress testing

Ensure sufficient liquidity risk bearing capacity

- HQLA must be composed of assets that are (extremely) highly liquid → no asset fire sale externality

CB operations should be treated like other repos

- Except for standard monetary policy implementation
- Consistency between the individual building blocks of liquidity stress tests

Liquidity stress testing must ensure self-insurance

- No room for LoLR in liquidity stress testing
- Only standard monetary policy operations
Scenario & parameter uncertainty

Scenario severity increases (for inflows, outflows, counter balancing capacity)

30 day Scenario

<table>
<thead>
<tr>
<th>CBC Type</th>
<th>Baseline</th>
<th>Market Mild</th>
<th>Market Medium</th>
<th>Market Severe</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full CBC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increased focus on market liquidity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Market liquidity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

90 day Scenario

<table>
<thead>
<tr>
<th>CBC Type</th>
<th>Baseline</th>
<th>Market Mild</th>
<th>Market Medium</th>
<th>Market Severe</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full CBC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increased focus on market liquidity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Market liquidity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Year Scenario

<table>
<thead>
<tr>
<th>CBC Type</th>
<th>Baseline</th>
<th>Market Mild</th>
<th>Market Medium</th>
<th>Market Severe</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full CBC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increased focus on market liquidity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Market liquidity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Agenda

Austrian stress test models

Solvency stress test model

Liquidity stress test model

Interaction solvency/liquidity

Results & conclusions
Interlinkages solvency / liquidity

<table>
<thead>
<tr>
<th>Solvency Stress Test</th>
<th>Mapping to Liquidity Stress Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deteriorating Capital Position</td>
<td>Ability to issue new CP & bonds (12M scenario)</td>
</tr>
<tr>
<td>Increase in Expected NPLs</td>
<td>Reduction in expected inflows from loan repayments</td>
</tr>
<tr>
<td></td>
<td>Reduction of expected inflows from NFC bonds</td>
</tr>
<tr>
<td>Macro-driven PD Shifts</td>
<td>Implied rating migration of banks unencumbered collateral deposited at CB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Liquidity Stress Test</th>
<th>Mapping to Solvency Stress Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquidity gap</td>
<td>Asset fire sales</td>
</tr>
<tr>
<td>Increase in Funding Costs</td>
<td>P&L effects</td>
</tr>
</tbody>
</table>
Timing / sequenzing of interaction

Solvency Bank B (quarterly freq.)
- Solvency Scenario
 - Solvency Position t_{Q1}
 - Solvency Position t_{Q2}
 - Solvency Position t_{Q3}
 - Solvency Position t_{Q4}

Liquidity Bank B (weekly freq.)
- Liquidity Scenario
 - Liquidity Position t_{Q1}
 - Liquidity Position t_{Q2}
 - Liquidity Position t_{Q3}
 - Liquidity Position t_{Q4}

- PD shifts
- Deteriorating capital position
- NPLs t_{Q1}
- Funding costs t_{Q1}
- NPLs t_{Q2}
- Funding costs t_{Q2}
- NPLs t_{Q3}
- Funding costs t_{Q3}
- NPLs t_{Q4}
- Funding costs t_{Q4}

Interbank contagion t_{Q4}
The interaction of solvency and liquidity

Solvency Stress Test
- Rating Migration
- Credit Losses
- Operating Result
- Valuation Losses
- Capital Position
- Risk-weighted Assets
- Solvency Position

Liquidity Stress Test
- Collateral Quality
- Defaulted Assets
- Cost of Funding
- Fire Sales
- Counter Balancing Capacity
- Cash Inflows
- Cash Outflows
- Funding Gap

reduced pledgeability of assets
- reduced inflows

(-) Negative impact (from a bank’s point of view).
(+/-) Neutral impact.
(+/-) Positive impact.

impact on behavioural cash flows

(-) Impact on volume effect.
(-) Impact on price effect.
The interaction of solvency and liquidity

Macro-to-PD impact [reduced pledgeability of assets]
- Banks' credit claims pledged at CB – decreases CBC
- Calibration: Detailed bank-level collateral data (incl. fixed/variable rate; time to maturity)
- Assume iid across PD range within credit quality steps
 - PD impact of macro scenario shifts PDs of CCs upward
 - Migration into higher credit quality steps increases haircuts (up to 100%)
 - Volume weighted average across credit quality steps
- Again weighted by share of non-marketable assets in unencumbered collateral pledged at CB

(-) Negative impact (from a bank’s point of view).
(+/-) Positive impact.
The interaction of solvency and liquidity

Solvency Stress Test
- Rating Migration
- Credit Losses
- Operating Result
- Valuation Losses
- Capital Position
- Risk-weighted Assets
- Solvency Position

Liquidity Stress Test
- Collateral Quality
- Defaulted Assets
- Counter Balancing Capacity
- Cash Inflows

NPL impact [reduced inflows]
- Expected inflows from performing loans – decreases inflows
- Calibration: Direct output of solvency stress test
- Expected inflows from performing NFC bonds – decreases inflows
- Calibration: Assume similar distribution of exposure as in loan exposure
- Output of solvency stress test weighted by share of NFC non-loan exposure to liquid assets

(+/-) Positive impact.
Solvency impact on funding [impact on behavioural cash flows]

- Inspired by dynamics in ABCP market after Lehman
- t_0: all banks shut out of issuance markets
- t_1: markets differentiate across banks based on expected solvency evolution
- Based on similar scenario/model as solvency stress test
- Banks with CET1 ratio $>10\%$ or $+100$ bp at t_4 regain market access (70%)
- Empirical foundation is work in progress

Impact on unsecured MM – complete dry-up pre-empts potential impact of this channel
Cost of funding shock [credit spread increase – price effect]

- Increasing funding costs – impact on P&L
- Calibration: Based on post Lehman spread evolution in AT (not bank specific)
- Impact on stress cash-flows
- New issuance play minor role (loss of/reduced market access)
- Repricing of maturing funding, pass-through to new loans
- Cost of funding shock driven by maturity mismatch (bank specific)

(-) Negative impact (from a bank’s point of view).
(+) Positive impact.
Asset fire sales losses [volume effect]

- Captures common exposure to market price & market liquidity effects
- Calibration: Based on HC of liquidity stress scenario & CC migration due to solvency
- Assets: Full CBC except callable, committed credit-lines, liquidity support received from holding company (binding commitment)
- Assumption: banks sell assets proportionally to composition of CBC
- Empirical evidence inconclusive

\[
ASFL_t = \begin{cases}
0, & \text{if } CNFG_t \leq (\text{cash + excess reserves}) \\
(CBC_{\text{unstressed}} - CBC_{\text{stressed}}) \times \left(\frac{\text{cash + excess reserves + } CBC_{t,\text{stressed}}}{CBC_{t,\text{unstressed}}} \right), & \text{otherwise}
\end{cases}
\]

- Effect: Banks with same level of CBC but higher shares of less liquid assets face higher asset fire sale losses
- Caveats: CB treatment; static, non-behavioural; no additional fire sale loss haircuts

(-) Negative impact (from a bank’s point of view).
(+ Positive impact.)
Important channels disregarded

- Impact of solvency on access to unsecured money market
 - Pre-empt by assumption of complete dry-up
- Impact of own liquidity position on supply of funds on unsecured money market & network dynamics
 - Pre-empt by assumption of complete dry-up
- Contagious bank runs
- Margin calls due to rating downgrades
- Deposit outflows due to rating downgrades
Agenda

Austrian stress test models

Solvency stress test model

Liquidity stress test model

Interaction solvency/liquidity

Results & conclusions
Measuring the impact of interaction channels

Liquidity Stress Test
(share of total impact on cumulated counter balancing capacity)

- Rating migration impact on banks’ credit claims (i.) 54%
- NPL effect on expected inflows from performing loans to non-banks (ii.) 11%
- Losses on inflows from paper in own portfolio maturing (iii.) <4%
- Market funding due to solvency position (iv.) 31%
- Other liquidity impact not associated with solvency stress

Solvency Stress Test
(share of total impact on P&L losses)

- Cost of funding 52%
- Fire sale losses 15%
- Credit risk costs 8%
- Other risk costs through P&L 25%
Conclusions

• Supervisory experience, case studies, and the theoretical literature point at a number of potential channels for the interaction between solvency and liquidity stress testing

• Supervisory experience and the example demonstrate that these interactions are material

• Failure to integrate leads to substantially underestimation of the risk exposure of individual banks and banking systems

• Two interesting trade-offs:
 • Trade-off between the quantitative impact of channels and their respective model risk and/or parameter uncertainty
 • Trade-off between conceptual quality and actionable output
Policy recommendations

• The main policy recommendation is the **need to integrate** solvency and liquidity stress tests in order not to underestimate risk
 • Complex interactions require adequately complex models
 • Further research required

• Main **objectives for solvency** stress tests
 • Soundly integrate methodologies to cover the cost of funding
 • Move beyond the constant balance sheet assumption

• Main **objectives for liquidity** stress test
 • Consider the solvency impact on funding costs / volumes
 • Invest in the calibration of asset fire sales

• Decision makers have to understand that even the best models and calibrations cannot exonerate them from the burden of subjective judgement in risk assessment
Further research

- Identify further channels of interaction
- Empirical foundations for calibration
 - Event studies
 - Econometric analysis
- Second round effects
 - Incorporate dynamic balance-sheet
 - Balance-sheet optimisation rather than quantity restrictions
 - Price effects rather than quantity effects in macro-models
- Indirect contagion
 - Empirical evidence
- BCBS RTF TF on Liquidity Stress Testing
 - Studies some of these topics → paper in March 2015
Literature

