ABSTRACT

Word minimality and non-surface-apparent opacity in Mono
Kenneth S. Olson
SIL
Workshop on the Phonology of African Languages

Two phonological generalizations in Mono (Ubangian, DRC, Olson 2001) interact in such a way as to result in an opacity effect. The first generalization is a word minimality condition: lexical words and pronouns contain at least two syllables. Monosyllabic roots in Mono give rise to initial augmentation, such as found in Shona and Mohawk (the complementary case to the final augmentation observed in Lardil). The second generalization is the occurrence of a statistically significant number of words with a CV₁LV₁ sequence of segments. This can be interpreted as resulting from the epenthesis of a vowel (the first V₁) in order to break up an onset consonant cluster containing a liquid in the second position.

The opacity effect occurs when the processes which produce the two generalizations both apply to a /CLV₁/ root, yielding [V₁CV₁LV₁]. The initial augmentation process is not surface-apparent, since the conditioning environment for bisyllabic word minimality is not observed in the surface representation. In other words, initial augmentation overapplies (cf. McCarthy 1999: 3).

Rule-based accounts treat (and even predict) such non-surface-apparent effects via the counterbleeding ordering of rules. In the case at hand, the initial augmentation rule precedes the epenthesis of a vowel between a consonant and a liquid. A constraint-based account captures the typological observation that augmentation can be initial or final via the respective ranking of two anchoring constraints. The word minimality condition itself is accounted for via the interaction of the prosodic hierarchy and foot binarity. An important observation here is that word minimality is enforced even in a language in which stress effects are not otherwise evident. However, as with most opacity effects, an Optimality Theoretic account must resort to additional theoretical machinery (such as Sympathy Theory) in order to account for the data.

References