Tangled Up in Two
2D-Dilaton Gravity: A Toy Model for Gravity

Jakob Salzer

Institute for Theoretical Physics
TU Vienna

May 12, 2015
Vienna Theory Lunch Club
Outline

1 Motivation

2 Two-dimensional Dilaton Gravity

3 Black Hole Thermodynamics and the Euclidean Path Integral

4 Thermodynamics of 2D Dilaton Gravity

5 Conclusion and Outlook
Motivation

- Fundamental physics is plagued by a set of very deep and hard problems:
Motivation

Fundamental physics is plagued by a set of very deep and hard problems:

Quantum Gravity
Motivation

- Fundamental physics is plagued by a set of very deep and hard problems: **Quantum Gravity**
- Unification of General Relativity with quantum theory
Motivation

- Fundamental physics is plagued by a set of very deep and hard problems: **Quantum Gravity**
- Unification of General Relativity with quantum theory
- What to do when the problem is too hard?
Motivation

- Fundamental physics is plagued by a set of very deep and hard problems: **Quantum Gravity**
- Unification of General Relativity with quantum theory
- What to do when the problem is too hard?
Fundamental physics is plagued by a set of very deep and hard problems:
Quantum Gravity
Unification of General Relativity with quantum theory
What to do when the problem is too hard?
Study simple system = Toy models!
Motivation

- Fundamental physics is plagued by a set of very deep and hard problems: **Quantum Gravity**
- Unification of General Relativity with quantum theory
- What to do when the problem is too hard?
- Study simple system = Toy models!
- Toy models: 3D gravity, higher-spin gravity, 2D dilaton gravity, ...
Outline

1 Motivation

2 Two-dimensional Dilaton Gravity

3 Black Hole Thermodynamics and the Euclidean Path Integral

4 Thermodynamics of 2D Dilaton Gravity

5 Conclusion and Outlook
2D dilaton gravity

- in 2D dilaton gravity spacetime is a two-dimensional manifold \mathcal{M}
2D dilaton gravity

- In 2D dilaton gravity spacetime is a two-dimensional manifold \mathcal{M}
- Two fundamental fields defined on \mathcal{M}: metric g_{ab} and a scalar field X
2D dilaton gravity

- in 2D dilaton gravity spacetime is a two-dimensional manifold \mathcal{M}
- two fundamental fields defined on \mathcal{M}: metric g_{ab} and a scalar field $X \rightarrow$ dilaton gravity belongs to the class of scalar-tensor theories (like e.g. Jordan-Brans-Dicke theory)

The action principle is given by:

$$I = \frac{1}{16\pi G} \int_{\mathcal{M}} d^2x \sqrt{|g|} \left[X R - U(X)(\nabla X)^2 + 2 V(X) \right] + \frac{1}{8\pi G} \int_{\partial \mathcal{M}} d^x \sqrt{|\gamma|} X K$$

where $U(X)$ and $V(X)$ specify particular model
2D dilaton gravity

- In 2D dilaton gravity spacetime is a two-dimensional manifold \mathcal{M}
- Two fundamental fields defined on \mathcal{M}: metric g_{ab} and a scalar field $X \rightarrow$
- Dilaton gravity belongs to the class of scalar-tensor theories (like e.g. Jordan-Brans-Dicke theory)
- Geometric properties determined by g; X determines effective Newton’s constant
2D dilaton gravity

- in 2D dilaton gravity spacetime is a two-dimensional manifold \mathcal{M}
- two fundamental fields defined on \mathcal{M}: metric g_{ab} and a scalar field $X \rightarrow$
- dilaton gravity belongs to the class of scalar-tensor theories (like e.g. Jordan-Brans-Dicke theory)
- geometric properties determined by g; X determines effective Newton’s constant
- without matter: no local degrees of freedom \rightarrow no gravitational waves
2D dilaton gravity

- in 2D dilaton gravity spacetime is a two-dimensional manifold \mathcal{M}
- two fundamental fields defined on \mathcal{M}: metric g_{ab} and a scalar field X → dilaton gravity belongs to the class of scalar-tensor theories (like e.g. Jordan-Brans-Dicke theory)
- geometric properties determined by g; X determines effective Newton’s constant
- without matter: no local degrees of freedom → no gravitational waves

action principle

\[
I = \frac{1}{16\pi G_2} \int_{\mathcal{M}} d^2x \sqrt{|g|} \left[XR - U(X)(\nabla X)^2 + 2V(X) \right] \\
+ \frac{1}{8\pi G_2} \int_{\partial \mathcal{M}} dx \sqrt{|\gamma|} X K
\]
2D dilaton gravity

- in 2D dilaton gravity spacetime is a two-dimensional manifold \mathcal{M}
- two fundamental fields defined on \mathcal{M}: metric g_{ab} and a scalar field $X \rightarrow$
- dilaton gravity belongs to the class of scalar-tensor theories (like e.g. Jordan-Brans-Dicke theory)
- geometric properties determined by g; X determines effective Newton’s constant
- without matter: no local degrees of freedom \rightarrow no gravitational waves

action principle

\[
I = \frac{1}{16\pi G_2} \int_{\mathcal{M}} d^2x \sqrt{|g|} \left[XR - U(X)(\nabla X)^2 + 2V(X) \right] + \frac{1}{8\pi G_2} \int_{\partial \mathcal{M}} dx \sqrt{|\gamma|} X K
\]

$U(X), V(X)$ specify particular model
Motivations for the study of dilaton gravity:

How can one obtain a theory of gravity in two dimension?

Bulk action and GHY term for dilaton gravity

\[
I = -\frac{1}{2} \int_{\mathcal{M}} d^2x \sqrt{|g|} \left(XR - U(X)(\nabla X)^2 - 2V(X) \right) - \int_{\partial \mathcal{M}} dx \sqrt{|\gamma|} X K.
\]

Why not \(I_{EH} = \int_{\mathcal{M}} d^Dx \sqrt{-g} R \) with \(D = 2 \)?

dilaton gravity describes spherically reduced Einstein gravity:
dilaton gravity is obtained from the target space action for the beta functions \(\beta_g, \beta_\Phi \) for strings in background fields

CGHS model, Jackiw–Teitelboim,...
Motivations for the study of dilaton gravity:

How can one obtain a theory of gravity in two dimension?

Bulk action and GHY term for dilaton gravity

\[I = -\frac{1}{2} \int_{\mathcal{M}} d^2x \sqrt{|g|} \left(X R - U(X)(\nabla X)^2 - 2V(X) \right) - \int_{\partial\mathcal{M}} dx \sqrt{|\gamma|} X K. \]

- Why not \(I_{EH} = \int_{\mathcal{M}} d^D x \sqrt{-g} R \) with \(D = 2 \)?
Motivations for the study of dilaton gravity:

How can one obtain a theory of gravity in two dimension?

Bulk action and GHY term for dilaton gravity

\[I = -\frac{1}{2} \int_{\mathcal{M}} d^2x \sqrt{|g|} \left(X R - U(X)(\nabla X)^2 - 2V(X) \right) - \int_{\partial \mathcal{M}} dx \sqrt{|\gamma|} X K. \]

- Why not \(I_{EH} = \int_{\mathcal{M}} d^Dx \sqrt{-g} R \) with \(D = 2 \)?
 topological invariant (cf. Gauß-Bonnet- theorem)
Motivations for the study of dilaton gravity:

How can one obtain a theory of gravity in two dimensions?

Bulk action and GHY term for dilaton gravity

\[I = -\frac{1}{2} \int_M d^2x \sqrt{|g|} \left(X R - U(X)(\nabla X)^2 - 2V(X) \right) - \int_{\partial M} dx \sqrt{\gamma} X K. \]

- Why not \(I_{EH} = \int_M d^D x \sqrt{-g} R \) with \(D = 2 \)?
- dilaton gravity describes spherically reduced Einstein gravity:
Motivations for the study of dilaton gravity:

How can one obtain a theory of gravity in two dimensions?

Bulk action and GHY term for dilaton gravity

\[
I = -\frac{1}{2} \int_{\mathcal{M}} d^2x \sqrt{|g|} \left(X R - U(X)(\nabla X)^2 - 2V(X) \right) - \int_{\partial\mathcal{M}} dx \sqrt{|\gamma|} X K.
\]

- Why not \(I_{EH} = \int_{\mathcal{M}} d^Dx \sqrt{-g} R \) with \(D = 2 \)?
- Dilaton gravity describes spherically reduced Einstein gravity:

\[
ds^2 = g^{(D)}_{\mu\nu} dx^\mu dx^\nu = g_{\mu\nu} dx^\mu dx^\nu + \phi^2 (x^\mu) d\Omega^2_{D-2}
\]

inserted in \(D \)-dimensional EH action and integrated over \(S^{D-2} \).
Motivations for the study of dilaton gravity:

How can one obtain a theory of gravity in two dimension?

Bulk action and GHY term for dilaton gravity

\[I = -\frac{1}{2} \int_{\mathcal{M}} d^2x \sqrt{|g|} \left(XR - U(X)(\nabla X)^2 - 2V(X) \right) - \int_{\partial\mathcal{M}} dx \sqrt{|\gamma|} X K. \]

- Why not \(I_{EH} = \int_{\mathcal{M}} d^Dx \sqrt{-g}R \) with \(D = 2 \)?
- dilaton gravity describes spherically reduced Einstein gravity:
 \[ds^2 = g^{(D)}_{\mu\nu} dx^\mu dx^\nu = g_{\mu\nu} dx^\mu dx^\nu + \phi^2(x^\mu) d\Omega_{D-2}^2 \]
 inserted in \(D \)-dimensional EH action and integrated over \(S^{D-2} \)
Motivations for the study of dilaton gravity:

How can one obtain a theory of gravity in two dimension?

Bulk action and GHY term for dilaton gravity

\[
I = -\frac{1}{2} \int_{\mathcal{M}} d^2 x \sqrt{|g|} \left(X R - U(X)(\nabla X)^2 - 2V(X) \right) - \int_{\partial \mathcal{M}} d x \sqrt{|\gamma|} X K.
\]

- Why not \(I_{EH} = \int_{\mathcal{M}} d^D x \sqrt{-g} R \) with \(D = 2 \)?
- dilaton gravity describes spherically reduced Einstein gravity:

\[
X \propto (\lambda \phi)^{D-2}
\]

\[
U(X) = - \left(\frac{D-3}{D-2} \right) \frac{1}{X}
\]

\[
V(X) = -\frac{1}{2} (D-2)(D-3) \lambda^2 X^{\frac{D-4}{D-2}}
\]
Motivations for the study of dilaton gravity:

How can one obtain a theory of gravity in two dimension?

Bulk action and GHY term for dilaton gravity

\[
I = -\frac{1}{2} \int_{\mathcal{M}} d^2x \sqrt{|g|} \left(X R - U(X)(\nabla X)^2 - 2V(X) \right) - \int_{\partial \mathcal{M}} dx \sqrt{|\gamma|} X K.
\]

- Why not \(I_{EH} = \int_{\mathcal{M}} d^D x \sqrt{-g} R \) with \(D = 2 \)?
- dilaton gravity describes spherically reduced Einstein gravity:
- dilaton gravity is obtained from the target space action for the beta functions \(\beta_g, \beta_\Phi \) for strings in background fields
Motivations for the study of dilaton gravity:

How can one obtain a theory of gravity in two dimension?

Bulk action and GHY term for dilaton gravity

\[I = -\frac{1}{2} \int_{\mathcal{M}} d^2x \sqrt{|g|} \left(XR - U(X)(\nabla X)^2 - 2V(X) \right) - \int_{\partial \mathcal{M}} dx \sqrt{\gamma} X K. \]

- Why not \(I_{EH} = \int_{\mathcal{M}} d^D x \sqrt{-g} R \) with \(D = 2 \)?
- dilaton gravity describes spherically reduced Einstein gravity:
- dilaton gravity is obtained from the target space action for the beta functions \(\beta_g, \beta_\Phi \) for strings in background fields

\[I = \int d^D x \sqrt{g} e^{-2\Phi} \left[R + 4(\nabla \Phi)^2 + \frac{D - 26}{3\alpha'} \right] \]
Motivations for the study of dilaton gravity:

How can one obtain a theory of gravity in two dimension?

Bulk action and GHY term for dilaton gravity

\[I = -\frac{1}{2} \int_{\mathcal{M}} d^2x \sqrt{|g|} \left(X R - U(X)(\nabla X)^2 - 2V(X) \right) - \int_{\partial \mathcal{M}} dx \sqrt{|\gamma|} XK. \]

- Why not \(I_{EH} = \int_{\mathcal{M}} d^Dx \sqrt{-g} R \) with \(D = 2 \)?
- Dilaton gravity describes spherically reduced Einstein gravity:
- Dilaton gravity is obtained from the target space action for the beta functions \(\beta_g, \beta_\Phi \) for strings in background fields

\[I = \int d^D x \sqrt{g} e^{-2\Phi} \left[R + 4(\nabla \Phi)^2 + \frac{D - 26}{3\alpha'} \right] \]

\(X = e^{-2\Phi} \) and \(D = 2 \) with appropriately chosen functions \(U, V \)
Motivations for the study of dilaton gravity:

How can one obtain a theory of gravity in two dimension?

Bulk action and GHY term for dilaton gravity

\[I = -\frac{1}{2} \int_{\mathcal{M}} d^2x \sqrt{|g|} \left(X\,R - U(X)(\nabla X)^2 - 2V(X) \right) - \int_{\partial\mathcal{M}} dx \sqrt{|\gamma|} XK. \]

- Why not \(I_{EH} = \int_{\mathcal{M}} d^Dx \sqrt{-g}\,R \) with \(D = 2 \)?
- dilaton gravity describes spherically reduced Einstein gravity:
- dilaton gravity is obtained from the target space action for the beta functions \(\beta_g, \beta_\Phi \) for strings in background fields
- CGHS model, Jackiw–Teitelboim,...
Outline

1 Motivation

2 Two-dimensional Dilaton Gravity

3 Black Hole Thermodynamics and the Euclidean Path Integral

4 Thermodynamics of 2D Dilaton Gravity

5 Conclusion and Outlook
Black Holes obey laws similar to thermodynamics

Thermodynamics

Zeroth law: $T = \text{const.}$ in equilibrium

First law: $dE = TdS + \mu dN + p dV$

Second law: $dS \geq 0$

Third law: $T \to 0$ not possible

Black Hole Thermodynamics

Zeroth law: κ is constant on the horizon

First law: $dM = \kappa \frac{8\pi}{\kappa} dA + \Phi H dQ + \ldots$

Second law: $dA \geq 0$

Third law: $\kappa \to 0$ not possible
Black Holes obey laws similar to thermodynamics

Thermodynamics
- Zeroth law: $T = \text{const. in equilibrium}$

Black Hole Thermodynamics
- Zeroth law: κ is constant on the horizon
Black Holes obey laws similar to thermodynamics

Thermodynamics

Zeroth law:
\[T = \text{const. in equilibrium} \]

First law:
\[dE = T \, dS + \mu \, dN + p \, dV \]

Black Hole Thermodynamics

Zeroth law:
\[\kappa \text{ is constant on the horizon} \]

First law:
\[dM = \frac{\kappa}{8\pi} \, dA + \Phi_H \, dQ + \ldots \]
Black Holes obey laws similar to thermodynamics

Thermodynamics

Zeroth law:
\[T = \text{const. in equilibrium} \]

First law:
\[dE = T \, dS + \mu \, dN + p \, dV \]

Second law:
\[dS \geq 0 \]

Black Hole Thermodynamics

Zeroth law:
\[\kappa \text{ is constant on the horizon} \]

First law:
\[dM = \frac{\kappa}{8\pi} \, dA + \Phi_H \, dQ + \ldots \]

Second law:
\[dA \geq 0 \]
Black Holes obey laws similar to thermodynamics

Thermodynamics
- Zeroth law: $T = \text{const. in equilibrium}$
- First law: $dE = T \, dS + \mu \, dN + p \, dV$
- Second law: $dS \geq 0$
- Third law: $T \to 0$ not possible

Black Hole Thermodynamics
- Zeroth law: κ is constant on the horizon
- First law: $dM = \frac{\kappa}{8\pi} \, dA + \Phi_H \, dQ + ...$
- Second law: $dA \geq 0$
- Third law: $\kappa \to 0$ not possible
Black Hole Thermodynamics Reminder

Bekenstein (1972): Black holes have an entropy

\[S_{BH} = \frac{c^3 A}{4 \pi G \hbar} \]

Hawking (1974): Black holes emit particles in a thermal spectrum of temperature

\[T_H = \frac{\hbar \kappa}{2 \pi c k_B} \]

Black holes are thermodynamical systems. The laws of black hole mechanics are not a mere analogy but thermodynamics applied to black holes.

\[dM = T_H dS_{BH} + \Phi_H dQ + ... \]
Bekenstein (1972): Black holes have an entropy $S_{BH} = \frac{c^3 A}{4G\hbar}$
Black Hole Thermodynamics Reminder

- Bekenstein (1972): Black holes have an entropy $S_{BH} = \frac{c^3 A}{4G\hbar}$
- Hawking (1974): Black holes emit particles in a thermal spectrum of temperature $T_H = \frac{\hbar \kappa}{2\pi ck_B}$
Bekenstein (1972): Black holes have an entropy $S_{BH} = \frac{c^3 A}{4G\hbar}$

Hawking (1974): Black holes emit particles in a thermal spectrum of temperature $T_H = \frac{\hbar \kappa}{2\pi c k_B}$

Black holes are thermodynamical systems. The laws of black hole mechanics are not a mere analogy but thermodynamics applied to black holes.

$$dM = T_H dS_{BH} + \Phi_H dQ + ...$$
The Euclidean path integral provides an elegant way to BH thermodynamics:

\[Z = \int \mathcal{D}g \mathcal{D}X e^{-I_E[g,X]} \]
The Euclidean path integral provides an elegant way to BH thermodynamics:

\[Z = \int \mathcal{D}g \mathcal{D}X e^{-I_E[g,X]} \]

- Specify boundary conditions for metric
BH Thermodynamics and the Euclidean Path Integral

The Euclidean path integral provides an elegant way to BH thermodynamics:

\[Z = \int \mathcal{D}g \mathcal{D}X e^{-I_E[g,X]} \]

- Specify boundary conditions for metric
- Periodicity in Euclidean time (for gravity: fixed by demanding regularity of the metric at horizon)
BH Thermodynamics and the Euclidean Path Integral I

The Euclidean path integral provides an elegant way to BH thermodynamics:

\[\mathcal{Z} = \int \mathcal{D}g \mathcal{D}X \exp(-I_E[g,X]) \]

- Specify boundary conditions for metric
- Periodicity in Euclidean time (for gravity: fixed by demanding regularity of the metric at horizon)
- Obtain thermodynamic potential \(Y \) from \(\mathcal{Z} \): \(\ln \mathcal{Z} = -\beta Y \)
The Euclidean path integral provides an elegant way to BH thermodynamics:

\[Z = \int \mathcal{D}g \mathcal{D}X e^{-I_E[g,X]} \]

- Specify boundary conditions for metric
- Periodicity in Euclidean time (for gravity: fixed by demanding regularity of the metric at horizon)
- Obtain thermodynamic potential \(Y \) from \(Z \): \(\ln Z = -\beta Y \)

In semiclassical approximation:

\[Z = \exp (-I[\bar{g}, \bar{X}]) \int \mathcal{D}\delta g \mathcal{D}\delta X \exp (-\delta I[\bar{g}, \bar{X}] - \delta^2 I[\bar{g}, \bar{X}] + ...) \]

\(\bar{g}, \bar{X} \) classical saddle-point of the action
Semiclassical approximation to Euclidean path integral of dilaton gravity:

\[Z = \exp (-I[\bar{g}, \bar{X}]) \int \mathcal{D}\delta g \mathcal{D}\delta X \exp (-\delta I[\bar{g}, \bar{X}] - \delta^2 I[\bar{g}, \bar{X}] + \ldots) \]
Semiclassical approximation to Euclidean path integral of dilaton gravity:

\[Z = \exp (-I[\bar{g}, \bar{X}]) \int \mathcal{D}\delta g \mathcal{D}\delta X \exp (-\delta I[\bar{g}, \bar{X}] - \delta^2 I[\bar{g}, \bar{X}] + ...) \]

Variational principle/Thermodynamics well-defined if:

1. \[\delta I = 0 \] for all variations compatible with boundary conditions
2. On-shell action \[I[\bar{g}, \bar{X}] \] finite; then \[I[\bar{g}, \bar{X}] = \beta Y \]
3. Thermodynamically stable if \[\delta^2 I[\bar{g}, \bar{X}] > 0 \]; solved by putting BH in cavity

Euclidean dilaton action

\[I = -\frac{1}{2} \int_M d^2x \sqrt{g} \left(XR - U(X) (\nabla X)^2 - 2 V(X) \right) - \int_{\partial M} d^x \sqrt{\gamma_X} K. \]
Semiclassical approximation to Euclidean path integral of dilaton gravity:

\[Z = \exp \left(-I[\bar{g}, \bar{X}] \right) \int \mathcal{D}\delta g \mathcal{D}\delta X \exp \left(-\delta I[\bar{g}, \bar{X}] - \delta^2 I[\bar{g}, \bar{X}] + \ldots \right) \]

Variational principle/Thermodynamics well-defined if:

1. \(\delta I = 0 \) for all variations compatible with boundary conditions

Euclidean dilaton action

\[I[\bar{g}, \bar{X}] = -\frac{1}{2} \int_{M} d^2x \sqrt{g} \left(XR - U(X)(\nabla X)^2 - 2V(X) \right) - \int_{\partial M} d^x \sqrt{\gamma} X K. \]
Semiclassical approximation to Euclidean path integral of dilaton gravity:

\[Z = \exp (-I[\bar{g}, \bar{X}]) \int D\delta g D\delta X \exp (-\delta I[\bar{g}, \bar{X}] - \delta^2 I[\bar{g}, \bar{X}] + ...) \]

Variational principle/Thermodynamics well-defined if:

1. \(\delta I = 0 \) for all variations compatible with boundary conditions
2. On-shell action \(I[\bar{g}, \bar{X}] \) finite; then \(I[\bar{g}, \bar{X}] = \beta Y \)
Semiclassical approximation to Euclidean path integral of dilaton gravity:

$$Z = \exp (-I[\bar{g}, \bar{X}]) \int \mathcal{D}\delta g \mathcal{D}\delta X \exp (-\delta I[\bar{g}, \bar{X}] - \delta^2 I[\bar{g}, \bar{X}] + ...)$$

Variational principle/Thermodynamics well-defined if:

1. $\delta I = 0$ for all variations compatible with boundary conditions
2. On-shell action $I[\bar{g}, \bar{X}]$ finite; then $I[\bar{g}, \bar{X}] = \beta Y$
3. Thermodynamically stable if $\delta^2 I[\bar{g}, \bar{X}] > 0$; solved by putting BH in cavity
BH Thermodynamics and the Euclidean Path Integral II

Semiclassical approximation to Euclidean path integral of dilaton gravity:

\[Z = \exp (-I[\bar{g}, \bar{X}]) \int D\delta g D\delta X \exp (-\delta I[\bar{g}, \bar{X}] - \delta^2 I[\bar{g}, \bar{X}] + ...) \]

Variational principle/Thermodynamics well-defined if:

1. \(\delta I = 0 \) for all variations compatible with boundary conditions
2. On-shell action \(I[\bar{g}, \bar{X}] \) finite; then \(I[\bar{g}, \bar{X}] = \beta Y \)
3. thermodynamically stable if \(\delta^2 I[\bar{g}, \bar{X}] > 0 \); solved by putting BH in cavity

Euclidean dilaton action

\[I = -\frac{1}{2} \int_{\mathcal{M}} d^2x \sqrt{g} \left(XR - U(X)(\nabla X)^2 - 2V(X) \right) - \int_{\partial \mathcal{M}} dx \sqrt{\gamma}XK. \]

Jakob Salzer

Tangled Up in Two 11 / 25
Semiclassical approximation to Euclidean path integral of dilaton gravity:

\[Z = \exp (-I[\bar{g}, \bar{X}]) \int \mathcal{D}\delta g \mathcal{D}\delta X \exp (-\delta I[\bar{g}, \bar{X}] - \delta^2 I[\bar{g}, \bar{X}] + ...) \]

Variational principle/Thermodynamics well-defined if:

1. \(\delta I = 0 \) for all variations compatible with boundary conditions
2. On-shell action \(I[\bar{g}, \bar{X}] \) finite; then \(I[\bar{g}, \bar{X}] = \beta Y \)
3. thermodynamically stable if \(\delta^2 I[\bar{g}, \bar{X}] > 0 \); solved by putting BH in cavity

Euclidean dilaton action

\[I = -\frac{1}{2} \int_{\mathcal{M}} d^2 x \sqrt{\bar{g}} \left(X R - U(X)(\nabla X)^2 - 2V(X) \right) - \int_{\partial\mathcal{M}} dx \sqrt{\gamma} X K. \]

dilaton gravity violates some conditions
Semiclassical approximation to Euclidean path integral of dilaton gravity:

\[Z = \exp \left(-I[\bar{g}, \bar{X}] \right) \int \mathcal{D}\delta g \mathcal{D}\delta X \exp \left(-\delta I[\bar{g}, \bar{X}] - \delta^2 I[\bar{g}, \bar{X}] + ... \right) \]

Variational principle/Thermodynamics well-defined if:

1. \(\delta I = 0 \) for all variations compatible with boundary conditions
2. On-shell action \(I[\bar{g}, \bar{X}] \) finite; then \(I[\bar{g}, \bar{X}] = \beta Y \)
3. thermodynamically stable if \(\delta^2 I[\bar{g}, \bar{X}] > 0 \); solved by putting BH in cavity

Euclidean dilaton action

\[I = -\frac{1}{2} \int_{\mathcal{M}} d^2 x \sqrt{g} \left(X R - U(X)(\nabla X)^2 - 2V(X) \right) - \int_{\partial \mathcal{M}} dx \sqrt{\gamma} X K. \]

dilaton gravity violates some conditions
Add boundary term!
Outline

1. Motivation

2. Two-dimensional Dilaton Gravity

3. Black Hole Thermodynamics and the Euclidean Path Integral

4. Thermodynamics of 2D Dilaton Gravity

5. Conclusion and Outlook
Euclidean Dilaton Action — Properties

→ identify correct boundary term!

$$I = -\frac{1}{2} \int_{\mathcal{M}} d^2x \sqrt{g} \left(R_X - U_X(\nabla_X)^2 - 2V_X \right) + \int_{\mathcal{M}} d^2x \sqrt{g_f} \left(\mathcal{F}_{\mu\nu} \mathcal{F}^{\mu\nu} - \int_{\partial \mathcal{M}} d x \sqrt{g_X} K \right)$$

All solutions exhibit a Killing vector ∂_{τ}; labelled by conserved quantity $Q_X = \int X \mathcal{Q}(y) dy \quad w_X = \int X e^{Q_X(y)} V(y) dy \quad h_X = \int X dy e^{Q_X(y)} f(y)$

Horizon encountered when $w_X h_X - 2M + q^2/4h_X = 0$
Euclidean Dilaton Action — Properties

→ identify correct boundary term!

Bulk action and GHY term for Maxwell-dilaton gravity

\[I = -\frac{1}{2} \int_{\mathcal{M}} d^2x \sqrt{g} \left(X R - U(X)(\nabla X)^2 - 2V(X) \right) \]

\[+ \int_{\mathcal{M}} d^2x \sqrt{g} f(X) F^{\mu\nu} F_{\mu\nu} - \int_{\partial\mathcal{M}} dx \sqrt{\gamma} X K \]
identify correct boundary term!

Bulk action and GHY term for Maxwell-dilaton gravity

\[
I = -\frac{1}{2} \int_{\mathcal{M}} d^2x \sqrt{g} \left(X R - U(X)(\nabla X)^2 - 2V(X) \right) \\
+ \int_{\mathcal{M}} d^2x \sqrt{g} f(X) F^{\mu\nu} F_{\mu\nu} - \int_{\partial\mathcal{M}} dx \sqrt{\gamma} X K
\]

Solutions in diagonal gauge and \(X = X(r) \)

\[
ds^2 = \xi(X) d\tau^2 + \xi^{-1}(X) dr^2 \quad \partial_r X(r) = e^{-Q(X)}
\]
→ identify correct boundary term!

Bulk action and GHY term for Maxwell-dilaton gravity

\[
I = -\frac{1}{2} \int_{\mathcal{M}} d^2x \sqrt{g} \left(X R - U(X)(\nabla X)^2 - 2V(X) \right) \\
+ \int_{\mathcal{M}} d^2x \sqrt{g} f(X) F_{\mu\nu} F^{\mu\nu} - \int_{\partial\mathcal{M}} dx \sqrt{\gamma} X K
\]

Solutions in diagonal gauge and \(X = X(r) \)

\[
ds^2 = \xi(X) \, d\tau^2 + \xi^{-1}(X) \, dr^2 \quad \partial_r X(r) = e^{-Q(X)}
\]

All solutions exhibit a Killing vector \(\partial_\tau \); labelled by conserved quantity \(M \)
Euclidean Dilaton Action — Properties

→ identify correct boundary term!

Bulk action and GHY term for Maxwell-dilaton gravity

\[I = \frac{-1}{2} \int_{\mathcal{M}} d^2 x \sqrt{g} \left(X R - U(X)(\nabla X)^2 - 2V(X) \right) \]

\[+ \int_{\mathcal{M}} d^2 x \sqrt{g} f(X) F^{\mu\nu} F_{\mu\nu} - \int_{\partial\mathcal{M}} dx \sqrt{\gamma} X K \]

Solutions in diagonal gauge and \(X = X(r) \)

\[ds^2 = \xi(X) d\tau^2 + \xi^{-1}(X) dr^2 \quad \partial_r X(r) = e^{-Q(X)} \]

\[\xi(X) = e^{Q(X)} \left(w(X) - 2M + \frac{q^2}{4} h(X) \right) \]

All solutions exhibit a Killing vector \(\partial_\tau \); labelled by conserved quantity \(M \)
Euclidean Dilaton Action — Properties

→ identify correct boundary term!

Bulk action and GHY term for Maxwell-dilaton gravity

\[I = -\frac{1}{2} \int_M d^2x \sqrt{g} \left(XR - U(X)(\nabla X)^2 - 2V(X) \right) \]

\[+ \int_M d^2x \sqrt{g} f(X) F^{\mu\nu} F_{\mu\nu} - \int_{\partial M} dx \sqrt{\gamma} X K \]

Solutions in diagonal gauge and \(X = X(r) \)

\[ds^2 = \xi(X) \, d\tau^2 + \xi^{-1}(X) \, dr^2 \quad \partial_r X(r) = e^{-Q(X)} \]

\[\xi(X) = e^{Q(X)} \left(w(X) - 2M + \frac{q^2}{4} h(X) \right) \]

All solutions exhibit a Killing vector \(\partial_\tau \); labelled by conserved quantity \(M \)

\[Q(X) = \int^X Q(y) \, dy \quad w(X) = \int^X e^{Q(y)} V(y) \, dy \quad h(X) = \int^X dy e^{Q(y)} f(y) \]
Euclidean Dilaton Action — Properties

→ identify correct boundary term!

Bulk action and GHY term for Maxwell-dilaton gravity

\[
I = -\frac{1}{2}\int_{\mathcal{M}} d^2x \sqrt{g} \left(X R - U(X)(\nabla X)^2 - 2V(X) \right) + \int_{\mathcal{M}} d^2x \sqrt{gf(X)} F_{\mu\nu} F^{\mu\nu} - \int_{\partial\mathcal{M}} dx \sqrt{\gamma} X K
\]

Solutions in diagonal gauge and \(X = X(r) \)

\[
ds^2 = \xi(X)\ d\tau^2 + \xi^{-1}(X)\ dr^2 \quad \partial_r X(r) = e^{-Q(X)}
\]

\[
\xi(X) = e^{Q(X)} \left(w(X) - 2M + \frac{q^2}{4}h(X) \right)
\]

All solutions exhibit a Killing vector \(\partial_\tau \); labelled by conserved quantity \(M \)

\[
Q(X) = \int^X Q(y) \ dy \quad w(X) = \int^X e^{Q(y)} V(y) \ dy \quad h(X) = \int^X dy e^{Q(y)} f(y)
\]

Horizon encountered when \(w(X_h) - 2M + \frac{q^2}{4}h(X_h) = 0 \)
Euclidean Dilaton Action — Three Classes of models

Solutions in diagonal gauge and $X = X(r)$

$$\text{ds}^2 = \xi(X) \, d\tau^2 + \xi^{-1}(X) \, dr^2 \quad \partial_r X(r) = e^{-Q(X)}$$

$$\xi(X) = e^{Q(X)} \left(w(X) - 2M + \frac{q^2}{4} h(X) \right)$$
Euclidean Dilaton Action — Three Classes of models

Solutions in diagonal gauge and $X = X(r)$

$$ds^2 = \xi(X) \, d\tau^2 + \xi^{-1}(X) \, dr^2 \quad \partial_r X(r) = e^{-Q(X)}$$

$$\xi(X) = e^{Q(X)} \left(w(X) - 2M + \frac{q^2}{4} h(X) \right)$$

Correct boundary term depends on specific model!
Solutions in diagonal gauge and \(X = X(r) \)

\[
ds^2 = \xi(X) \, d\tau^2 + \xi^{-1}(X) \, dr^2 \quad \partial_r X(r) = e^{-Q(X)}
\]

\[
\xi(X) = e^{Q(X)} \left(w(X) - 2M + \frac{q^2}{4} h(X) \right)
\]

Correct boundary term depends on specific model!

1. Asymptotic dilaton domination:
\[
\lim_{X \to \infty} w(X) = +\infty \quad \lim_{X \to \infty} h(X) = 0
\]
Euclidean Dilaton Action — Three Classes of models

Solutions in diagonal gauge and $X = X(r)$

$$ds^2 = \xi(X) \, d\tau^2 + \xi^{-1}(X) \, dr^2 \quad \partial_r X(r) = e^{-Q(X)}$$

$$\xi(X) = e^{Q(X)} \left(w(X) - 2M + \frac{q^2}{4} h(X) \right)$$

Correct boundary term depends on specific model!

1. Asymptotic dilaton domination:
 $$\lim_{X \to \infty} w(X) = +\infty \quad \lim_{X \to \infty} h(X) = 0$$

2. Asymptotic dilaton domination (with confining U(1) charge):
 $$\lim_{X \to \infty} w(X) = +\infty \quad \lim_{X \to \infty} |h(X)| = \infty$$
Euclidean Dilaton Action — Three Classes of models

Solutions in diagonal gauge and $X = X(r)$

$$ds^2 = \xi(X) \, d\tau^2 + \xi^{-1}(X) \, dr^2 \quad \partial_r X(r) = e^{-Q(X)}$$

$$\xi(X) = e^{Q(X)} \left(w(X) - 2M + \frac{q^2}{4} h(X) \right)$$

Correct boundary term depends on specific model!

1. Asymptotic dilaton domination:
 $$\lim_{X \to \infty} w(X) = +\infty \quad \lim_{X \to \infty} h(X) = 0$$

2. Asymptotic dilaton domination (with confining U(1) charge):
 $$\lim_{X \to \infty} w(X) = +\infty \quad \lim_{X \to \infty} |h(X)| = \infty$$

3. Asymptotic mass domination:
 $$\lim_{X \to \infty} w(X) = 0 \quad \lim_{X \to \infty} h(X) = 0$$
Solutions in diagonal gauge and $X = X(r)$

$$ds^2 = \xi(X) \, d\tau^2 + \xi^{-1}(X) \, dr^2 \quad \partial_r X(r) = e^{-Q(X)}$$

$$\xi(X) = e^{Q(X)} \left(w(X) - 2M + \frac{q^2}{4} h(X) \right)$$

Correct boundary term depends on specific model!

1. **Asymptotic dilaton domination:**
 $$\lim_{X \to \infty} w(X) = +\infty \quad \lim_{X \to \infty} h(X) = 0$$

2. **Asymptotic dilaton domination (with confining U(1) charge):**
 $$\lim_{X \to \infty} w(X) = +\infty \quad \lim_{X \to \infty} |h(X)| = \infty$$

3. **Asymptotic mass domination:**
 $$\lim_{X \to \infty} w(X) = 0 \quad \lim_{X \to \infty} h(X) = 0$$
Asymptotic Dilaton-dominated models—Examples

Asymptotic dilaton domination: \(\lim_{X \to \infty} w(X) = +\infty \quad \lim_{X \to \infty} h(X) = 0 \)

\(^1\)Grumiller, McNees JHEP 0704 (2007)
Asymptotic Dilaton-dominated models—Examples

Asymptotic dilaton domination: \(\lim_{X \to \infty} w(X) = +\infty \quad \lim_{X \to \infty} h(X) = 0 \)

<table>
<thead>
<tr>
<th>Model</th>
<th>(U(X))</th>
<th>(V(X))</th>
<th>(e^{Q(X)})</th>
<th>(w(X))</th>
<th>(f(X))</th>
<th>(h(X))</th>
</tr>
</thead>
<tbody>
<tr>
<td>4D-Schwarzschild</td>
<td>(- \frac{1}{2X})</td>
<td>(- \frac{1}{2G_4})</td>
<td>(\sqrt{\frac{G_4}{2X}})</td>
<td>(\sqrt{\frac{2X}{G_4}})</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Jackiw-Teitelboim</td>
<td>0</td>
<td>(-\Lambda X)</td>
<td>1</td>
<td>(\Lambda X^2)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Witten BH</td>
<td>(- \frac{1}{X})</td>
<td>(-\frac{\Lambda^2}{2})</td>
<td>(\frac{1}{\Lambda X})</td>
<td>(\Lambda X)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CGHS</td>
<td>0</td>
<td>(-\frac{\Lambda}{2})</td>
<td>1</td>
<td>(\Lambda X)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4D-Reissner-Nordström</td>
<td>(- \frac{1}{2X})</td>
<td>(- \frac{1}{2G_4})</td>
<td>(\sqrt{\frac{G_4}{2X}})</td>
<td>(\sqrt{\frac{2X}{G_4}})</td>
<td>(X)</td>
<td>(-\sqrt{\frac{2G_4}{X}})</td>
</tr>
</tbody>
</table>

\[^1\text{Grumiller, McNees JHEP 0704 (2007)}\]
Asymptotic Dilaton-dominated models— Examples

Asymptotic dilaton domination: \(\lim_{X \to \infty} w(X) = +\infty \) \(\lim_{X \to \infty} h(X) = 0 \)

<table>
<thead>
<tr>
<th>Model</th>
<th>(U(X))</th>
<th>(V(X))</th>
<th>(e^{Q(X)})</th>
<th>(w(X))</th>
<th>(f(X))</th>
<th>(h(X))</th>
</tr>
</thead>
<tbody>
<tr>
<td>4D-Schwarzschild</td>
<td>(-\frac{1}{2X})</td>
<td>(-\frac{1}{2G_4})</td>
<td>(\sqrt{\frac{G_4}{2X}})</td>
<td>(\sqrt{\frac{2X}{G_4}})</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Jackiw-Teitelboim</td>
<td>0</td>
<td>(-\Lambda X)</td>
<td>1</td>
<td>(\Lambda X^2)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Witten BH</td>
<td>(-\frac{1}{X})</td>
<td>(-\frac{\lambda^2}{2} X)</td>
<td>(\frac{1}{\lambda X})</td>
<td>(\lambda X)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CGHS</td>
<td>0</td>
<td>(-\frac{\lambda}{2})</td>
<td>1</td>
<td>(\lambda X)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4D-Reissner-Nordström</td>
<td>(-\frac{1}{2X})</td>
<td>(-\frac{1}{2G_4})</td>
<td>(\sqrt{\frac{G_4}{2X}})</td>
<td>(\sqrt{\frac{2X}{G_4}})</td>
<td>(X)</td>
<td>(-\sqrt{\frac{2G_4}{X}})</td>
</tr>
</tbody>
</table>

Improved action given by \(^1\)

Improved action

\[
\Gamma = I + I_{ct} = I + \int_{\partial M} \, dx \sqrt{\gamma} \sqrt{e^{-Q(X)} w(X)}
\]

\(^1\)Grumiller, McNees JHEP 0704 (2007)
Thermodynamics of the improved action $\Gamma = I + I_{ct}$:
Asymptotic Dilaton-dominated models — Thermodynamics

Thermodynamics of the improved action $\Gamma = I + I_{ct}$:

- fix periodicity of Euclidean time $\tau \sim \tau + \beta$ by regularity of metric at horizon; β^{-1} coincides with Hawking temperature

calculate on-shell action $\Gamma[g_{cl}, X_{cl}]$ (now finite!)
calculate free energy $F(T, q) = -T \ln \Gamma[g_{cl}, X_{cl}]$
calculate thermodynamic quantities e.g. entropy S

$S = -\frac{\partial F}{\partial T} = 2\pi X h$

consistent with Wald’s entropy formula, coincides with spherically reduced Bekenstein–Hawking law

first law holds \rightarrow reproduce correct thermodynamics!
Thermodynamics of the improved action $\Gamma = I + I_{ct}$:

- fix periodicity of Euclidean time $\tau \sim \tau + \beta$ by regularity of metric at horizon; β^{-1} coincides with Hawking temperature
- calculate on-shell action $\Gamma[g_{cl}, X_{cl}]$
Thermodynamics of the improved action $\Gamma = I + I_{ct}$:

- fix periodicity of Euclidean time $\tau \sim \tau + \beta$ by regularity of metric at horizon; β^{-1} coincides with Hawking temperature
- calculate on-shell action $\Gamma[g_{cl}, X_{cl}]$ (now finite!)
- calculate free energy $F(T, q) = -T \ln \Gamma[g_{cl}, X_{cl}]$
Thermodynamics of the improved action $\Gamma = I + I_{ct}$:

- fix periodicity of Euclidean time $\tau \sim \tau + \beta$ by regularity of metric at horizon; β^{-1} coincides with Hawking temperature
- calculate on-shell action $\Gamma[g_{cl}, X_{cl}]$ (now finite!)
- calculate free energy $F(T, q) = -T \ln \Gamma[g_{cl}, X_{cl}]$
- calculate thermodynamic quantities
Asymptotic Dilaton-dominated models — Thermodynamics

Thermodynamics of the improved action $\Gamma = I + I_{ct}$:

- fix periodicity of Euclidean time $\tau \sim \tau + \beta$ by regularity of metric at horizon; β^{-1} coincides with Hawking temperature
- calculate on-shell action $\Gamma[g_{cl}, X_{cl}]$ (now finite!)
- calculate free energy $F(T, q) = -T \ln \Gamma[g_{cl}, X_{cl}]$
- calculate thermodynamic quantities

e.g. entropy S

$$S = -\frac{\partial F}{\partial T} = 2\pi X_h$$
Thermodynamics of the improved action $\Gamma = I + I_{ct}$:

- fix periodicity of Euclidean time $\tau \sim \tau + \beta$ by regularity of metric at horizon; β^{-1} coincides with Hawking temperature
- calculate on-shell action $\Gamma[g_{cl}, X_{cl}]$ (now finite!)
- calculate free energy $F(T, q) = -T \ln \Gamma[g_{cl}, X_{cl}]$
- calculate thermodynamic quantities

\[S = -\frac{\partial F}{\partial T} = 2\pi X_h \]

consistent with Wald’s entropy formula, coincides with spherically reduced Bekenstein–Hawking law
Thermodynamics of the improved action $\Gamma = I + I_{ct}$:

- fix periodicity of Euclidean time $\tau \sim \tau + \beta$ by regularity of metric at horizon; β^{-1} coincides with Hawking temperature
- calculate on-shell action $\Gamma[g_{cl}, X_{cl}]$ (now finite!)
- calculate free energy $F(T, q) = -T \ln \Gamma[g_{cl}, X_{cl}]$
- calculate thermodynamic quantities

\[S = -\frac{\partial F}{\partial T} = 2\pi X_h \]

consistent with Wald’s entropy formula, coincides with spherically reduced Bekenstein–Hawking law
first law holds \rightarrow reproduce correct thermodynamics!
Euclidean Dilaton Action

Solutions in diagonal gauge and \(X = X(r) \)

\[
ds^2 = \xi(X) \, d\tau^2 + \xi^{-1}(X) \, dr^2 \quad \partial_r X(r) = e^{-Q(X)}
\]

\[
\xi(X) = e^{Q(X)} \left(w(X) - 2M + \frac{q^2}{4} h(X) \right)
\]

Correct boundary term depends on specific model!

1. Asymptotic dilaton domination:
 \[
 \lim_{X \to \infty} w(X) = +\infty \quad \lim_{X \to \infty} h(X) = 0
 \]

2. Asymptotic dilaton domination (with confining U(1) charge):
 \[
 \lim_{X \to \infty} w(X) = +\infty \quad \lim_{X \to \infty} |h(X)| = \infty
 \]

3. Asymptotic mass domination:
 \[
 \lim_{X \to \infty} w(X) = 0 \quad \lim_{X \to \infty} h(X) = 0
 \]
Asymp.Dil. Dom. w/ Confining U(1) charge

(In-)equalities \(\lim_{X \to \infty} w(X) \to +\infty \), \(\lim_{X \to \infty} |f(X)V(X)| < \infty \)

(In-)equalities $\lim_{X \to \infty} w(X) \to +\infty$, $\lim_{X \to \infty} |f(X)V(X)| < \infty$ imply $\lim_{X \to \infty} A_\mu \to \infty \Rightarrow$ confining potential

Asymp. Dil. Dom. w/ Confining U(1) charge

(In-)equalities \(\lim_{X \to \infty} w(X) \to +\infty \), \(\lim_{X \to \infty} |f(X)V(X)| < \infty \) imply \(\lim_{X \to \infty} A_{\mu} \to \infty \Rightarrow \text{confining potential} \)

Particularly interesting example: \(f(X) = \frac{1}{X} \)

Asymp.Dil. Dom. w/ Confining U(1) charge

(In-)equalities $\lim_{X \to \infty} w(X) \to +\infty$, $\lim_{X \to \infty} |f(X)V(X)| < \infty$ imply $\lim_{X \to \infty} A_\mu \to \infty \Rightarrow$ confining potential
Particularly interesting example: $f(X) = \frac{1}{X}$
charge q acts as cosmological constant!

(In-)equalities \(\lim_{X \to \infty} w(X) \to +\infty \), \(\lim_{X \to \infty} |f(X)V(X)| < \infty \) imply \(\lim_{X \to \infty} A_\mu \to \infty \Rightarrow \) confining potential

Particularly interesting example: \(f(X) = \frac{1}{X} \)

Charge \(q \) acts as cosmological constant!

2D dilaton action with cosmological constant

\[
I = -\frac{1}{2} \int_\mathcal{M} d^2x \sqrt{g}X(R - 2\Lambda)
\]

(In-)equalities \(\lim_{X \to \infty} w(X) \to +\infty \), \(\lim_{X \to \infty} |f(X)V(X)| < \infty \) imply \(\lim_{X \to \infty} A_\mu \to \infty \Rightarrow \) confining potential

Particularly interesting example: \(f(X) = \frac{1}{X} \)

charge \(q \) acts as cosmological constant!

2D dilaton action with cosmological constant

\[
I = -\frac{1}{2} \int_\mathcal{M} d^2x \sqrt{g}X (R - 2\Lambda)
\]

2D Maxwell-dilaton action

\[
I = -\frac{1}{2} \int_\mathcal{M} d^2x \sqrt{g}X R + \int_\mathcal{M} d^2x \sqrt{g}f(X)F^{\mu\nu}F_{\mu\nu}
\]

(In-)equalities \(\lim_{X \to \infty} w(X) \to +\infty \), \(\lim_{X \to \infty} |f(X)V(X)| < \infty \) imply \(\lim_{X \to \infty} A_{\mu} \to \infty \Rightarrow \) confining potential

Particularly interesting example: \(f(X) = \frac{1}{X} \)

charge \(q \) acts as cosmological constant!

2D dilaton action with cosmological constant

\[
I = -\frac{1}{2} \int_{\mathcal{M}} d^2 x \sqrt{g} X (R - 2\Lambda)
\]

2D Maxwell-dilaton action

\[
I = -\frac{1}{2} \int_{\mathcal{M}} d^2 x \sqrt{g} X R + \int_{\mathcal{M}} d^2 x \sqrt{g} f(X) F^{\mu \nu} F_{\mu \nu}
\]

\(F_{\mu \nu} \propto \frac{q}{f(X)} \epsilon_{\mu \nu} \)

\(^2\text{M. Henneaux, C. Teitelboim} \textit{Phys. Lett.} B143 (1984)\)
(In-)equalities \(\lim_{X \to \infty} w(X) \to +\infty \), \(\lim_{X \to \infty} |f(X) V(X)| < \infty \) imply \(\lim_{X \to \infty} A_\mu \to \infty \Rightarrow \) confining potential

Particularly interesting example: \(f(X) = \frac{1}{X} \)

charge \(q \) acts as cosmological constant!

2D dilaton action with cosmological constant

\[
I = -\frac{1}{2} \int_M d^2x \sqrt{g}X(R - 2\Lambda)
\]

2D Maxwell-dilaton action

\[
I = -\frac{1}{2} \int_M d^2x \sqrt{g}XR + \int_M d^2x \sqrt{g}f(X) F^{\mu\nu} F_{\mu\nu}
\]

\[
F_{\mu\nu} \propto \frac{q}{f(X)} \epsilon_{\mu\nu}
\]

Integrate out \(F_{\mu\nu} \) and set \(f(X) \propto X, \ q^2 \propto \Lambda \)

(In-)equalities \(\lim_{X \to \infty} w(X) \to +\infty \), \(\lim_{X \to \infty} \left| f(X)V(X) \right| < \infty \) imply \(\lim_{X \to \infty} A_\mu \to \infty \Rightarrow \) confining potential

Particularly interesting example: \(f(X) = \frac{1}{X} \)

charge \(q \) acts as cosmological constant!

2D dilaton action with cosmological constant

\[
I = -\frac{1}{2} \int_{\mathcal{M}} d^2 x \sqrt{g} X (R - 2\Lambda)
\]

2D Maxwell-dilaton action

\[
I = -\frac{1}{2} \int_{\mathcal{M}} d^2 x \sqrt{g} X R + \int_{\mathcal{M}} d^2 x \sqrt{g} f(X) F^{\mu \nu} F_{\mu \nu}
\]

\(F^{\mu \nu} \propto \frac{q}{f(X)} \epsilon_{\mu \nu} \)

Integrate out \(F^{\mu \nu} \) and set \(f(X) \propto X \), \(q^2 \propto \Lambda \)

Works in any dimension with rank \(D \)-antisymmetric tensor field

Confining U(1) charge—Thermodynamics

Improved action for this class of models\(^3\)

\[^3\text{D. Grumiller, R. McNees, JS } \text{Phys.Rev. } \text{D90 (2014)}\]

\[^4\text{D. Grumiller } \text{J.Phys.Conf.Ser. } 33 (2006)\]
Confining U(1) charge—Thermodynamics

Improved action for this class of models

\[\Gamma = I + I_{ct} = I + \int_{\partial \mathcal{M}} dx \sqrt{\gamma} \sqrt{e^{-Q} (w + 2 F_{\mu \nu} F^{\mu \nu} f^2 h)} \]

Confining U(1) charge—Thermodynamics

Improved action for this class of models

Improved action

\[
\Gamma = I + I_{ct} = I + \int_{\partial \mathcal{M}} dx \sqrt{\gamma} \sqrt{e^{-Q} (w + 2F_{\mu\nu}F^{\mu\nu} f^2 h)}
\]

Evaluate Euclidean path integral → correct thermodynamics

\(^3\) D. Grumiller, R. McNees, JS *Phys.Rev.* D90 (2014)

Confining U(1) charge—Thermodynamics

Improved action for this class of models\(^3\)

Improved action

\[
\Gamma = I + I_{ct} = I + \int_{\partial \mathcal{M}} \mathrm{d}x \sqrt{\gamma} \sqrt{e^{-Q} (w + 2F_{\mu \nu}F^{\mu \nu} f^2 h)}
\]

Evaluate Euclidean path integral \rightarrow correct thermodynamics
First law of BH thermodynamics with variable Λ:

\[
dM = T \, dS - h(X_h) \, d\Lambda
\]

with \(h(X_h) = \int^{X_h} \mathrm{d}y e^{Q(y)} y\)

\(^3\)D. Grumiller, R. McNees, JS *Phys.Rev.* D90 (2014)

Improved action for this class of models3

\textbf{Improved action}

\[\Gamma = I + I_{ct} = I + \int_{\partial M} dx \sqrt{\gamma} \sqrt{e^{-Q} (w + 2F_{\mu\nu}F^{\mu\nu} f^2 h)} \]

Evaluate Euclidean path integral \(\rightarrow\) correct thermodynamics
First law of BH thermodynamics with variable \(\Lambda\):

\[dM = T \, dS - h(X_h) \, d\Lambda \]

with \(h(X_h) = \int_{X_h}^{X_h} dy e^{Q(y)} y \)
equals proposed definition for volume of 2D black holes4

3D. Grumiller, R. McNees, JS Phys.Rev. D90 (2014)
Confining U(1) charge—Thermodynamics

Improved action for this class of models

\[\Gamma = I + I_{ct} = I + \int_{\partial \mathcal{M}} dx \sqrt{\gamma} \sqrt{\gamma} e^{-Q(w + 2F_{\mu\nu}F^{\mu\nu}f^2h)} \]

Evaluate Euclidean path integral \(\rightarrow\) correct thermodynamics
First law of BH thermodynamics with variable \(\Lambda\):

\[dM = T \, dS - h(X_h) \, d\Lambda \]

with \(h(X_h) = \int_{X_h} dy e^{Q(y)} y \)

equals proposed definition for volume of 2D black holes

\[^4 \text{D. Grumiller, J.Phys.Conf.Ser. 33 (2006)} \]

\[^3 \text{D. Grumiller, R. McNees, JS Phys.Rev. D90 (2014)} \]
Confining U(1) charge—Thermodynamics

Improved action for this class of models\(^3\)

Improved action

\[\Gamma = I + I_{ct} = I + \int_{\partial M} dx \sqrt{\gamma} \sqrt{e^{-Q (w + 2F_{\mu\nu} F^{\mu\nu} f^2 h)}} \]

Evaluate Euclidean path integral \(\rightarrow\) correct thermodynamics

First law of BH thermodynamics with variable \(\Lambda\):

\[dM = T \, dS - h(X_h) \, d\Lambda \]

with \(h(X_h) = \int^{X_h} dy e^{Q(y)} y \)

equals proposed definition for volume of 2D black holes\(^4\)

c.c. and \(h(X_h) \) form \(p - V \) pair

BH thermodynamics in extended phase space

\(^3\) D. Grumiller, R. McNees, JS Phys.Rev. D90 (2014)

Euclidean Dilaton Action

Solutions in diagonal gauge and $X = X(r)$

$$ds^2 = \xi(X)\,d\tau^2 + \xi^{-1}(X)\,dr^2 \quad \partial_r X(r) = e^{-Q(X)}$$

$$\xi(X) = e^{Q(X)} \left(w(X) - 2M + \frac{q^2}{4}h(X) \right)$$

Correct boundary term depends on specific model!

1. Asymptotic dilaton domination:
 $$\lim_{X \to \infty} w(X) = +\infty \quad \lim_{X \to \infty} h(X) = 0$$

2. Asymptotic dilaton domination (with confining U(1) charge):
 $$\lim_{X \to \infty} w(X) = +\infty \quad \lim_{X \to \infty} |h(X)| = \infty$$

3. Asymptotic mass domination: $\lim_{X \to \infty} w(X) = 0 \quad \lim_{X \to \infty} h(X) = 0$
Euclidean Dilaton Action

Solutions in diagonal gauge and $X = X(r)$

$$ds^2 = \xi(X) d\tau^2 + \xi^{-1}(X) dr^2 \quad \partial_r X(r) = e^{-Q(X)}$$

$$\xi(X) = e^{Q(X)} \left(w(X) - 2M + \frac{q^2}{4} h(X) \right)$$

Correct boundary term depends on specific model!

1. Asymptotic dilaton domination:
 $$\lim_{X \to \infty} w(X) = +\infty \quad \lim_{X \to \infty} h(X) = 0$$

2. Asymptotic dilaton domination (with confining U(1) charge):
 $$\lim_{X \to \infty} w(X) = +\infty \quad \lim_{X \to \infty} |h(X)| = \infty$$

3. Asymptotic mass domination: $\lim_{X \to \infty} w(X) = 0 \quad \lim_{X \to \infty} h(X) = 0$
 2D analogues of 3D flat-space cosmology solutions (FSCs)
Flat Space Cosmologies in 3D

Euclidean Einstein–Hilbert action in 3D

\[I_{3D}^{EH} = - \frac{1}{2} \int_{\mathcal{M}} d^3x \sqrt{g} R \]

Euclidean Einstein–Hilbert action in 3D

$$I_{3D}^{EH} = -\frac{1}{2} \int_{\mathcal{M}} d^3x \sqrt{g} R$$

exists a well-defined variational principle?\(^5\)

Flat Space Cosmologies in 3D

Euclidean Einstein–Hilbert action in 3D

\[I_{3D}^{EH} = -\frac{1}{2} \int_{\mathcal{M}} d^3x \sqrt{g} R \]

\[\exists \text{ a well-defined variational principle?}^{5} \]

\[\Gamma_{3D}^{EH} = -\frac{1}{2} \int_{\mathcal{M}} d^3x \sqrt{g} R - \frac{1}{2} \int_{\partial\mathcal{M}} d^2x \sqrt{\gamma} K \]

\[\Omega = r + r_0, \quad T = r^2 + 2\pi r_0 \]

\[\text{phase transition between hot rotating flat space and FSC at } T_c = \frac{\Omega^2}{\pi}; \text{ similar to Hawking–Page phase transition AdS to BH} \]

Flat Space Cosmologies in 3D

Euclidean Einstein–Hilbert action in 3D

\[I_{3D}^{EH} = -\frac{1}{2} \int_M d^3 x \sqrt{g} R \]

\[\exists \text{ a well-defined variational principle?}^5 \]

\[\Gamma_{3D}^{EH} = -\frac{1}{2} \int_M d^3 x \sqrt{g} R - \frac{1}{2} \int_{\partial M} d^2 x \sqrt{\gamma} K \]

yields an interesting class of solutions:^6

Flat Space Cosmologies in 3D

Euclidean Einstein–Hilbert action in 3D

\[I_{3D}^{EH} = -\frac{1}{2} \int_{\mathcal{M}} d^3x \sqrt{g} R \]

\(\exists \) a well-defined variational principle?\(^5\)

\[\Gamma_{3D}^{EH} = -\frac{1}{2} \int_{\mathcal{M}} d^3x \sqrt{g} R - \frac{1}{2} \int_{\partial\mathcal{M}} d^2x \sqrt{\gamma} K \]

yields an interesting class of solutions:\(^6\)

\[ds^2 = r_+^2 \left(1 - \frac{r_0^2}{r^2} \right) d\tau^2 + r_+^{-2} \left(1 - \frac{r_0^2}{r^2} \right)^{-1} dr^2 + r^2 \left(d\phi - \frac{r+r_0}{r^2} d\tau \right)^2 \]

Flat Space Cosmologies in 3D

Euclidean Einstein–Hilbert action in 3D

\[I_{3D}^{EH} = -\frac{1}{2} \int_{\mathcal{M}} d^3x \sqrt{g} R \]

\(\exists \) a well-defined variational principle?\(^5\)

\[\Gamma_{3D}^{EH} = -\frac{1}{2} \int_{\mathcal{M}} d^3x \sqrt{g} R - \frac{1}{2} \int_{\partial \mathcal{M}} d^2x \sqrt{\gamma} K \]

yields an interesting class of solutions:\(^6\)

\[ds^2 = r_+^2 \left(1 - \frac{r_0^2}{r^2} \right) d\tau^2 + r_+^{-2} \left(1 - \frac{r_0^2}{r^2} \right)^{-1} dr^2 + r^2 \left(d\phi - \frac{r_+ + r_0}{r^2} d\tau \right)^2 \]

\[\Omega = \frac{r_+}{r_0}, T = \frac{r_+^2}{2\pi r_0} \]

Flat Space Cosmologies in 3D

Euclidean Einstein–Hilbert action in 3D

\[I^{EH}_{3D} = -\frac{1}{2} \int_M d^3x \sqrt{g} R \]

\(\exists \) a well-defined variational principle?\(^5\)

\[\Gamma^{EH}_{3D} = -\frac{1}{2} \int_M d^3x \sqrt{g} R - \frac{1}{2} \int_{\partial M} d^2x \sqrt{\gamma} K \]

yields an interesting class of solutions:\(^6\)

\[ds^2 = r_+^2 \left(1 - \frac{r_0^2}{r^2} \right) d\tau^2 + r_+^{-2} \left(1 - \frac{r_0^2}{r^2} \right)^{-1} dr^2 + r^2 \left(d\phi - \frac{r_+ + r_0}{r^2} d\tau \right)^2 \]

\[\Omega = \frac{r_+}{r_0}, T = \frac{r_+^2}{2\pi r_0} \]

phase transition between hot rotating flat space and FSC at \(T_c = \frac{\Omega}{2\pi} \); similar to Hawking–Page phase transition AdS to BH

Flat Space Cosmologies in 2D dilaton gravity

Is this phase transition intrinsic to 3D?

Flat Space Cosmologies in 2D dilaton gravity

Is this phase transition intrinsic to 3D? \rightarrow Dimensional reduction

$\text{lim}_{X \rightarrow \infty} w(X) = 0 \quad \text{lim}_{X \rightarrow \infty} h(X) = 0$

e.g. dimensionally reduced from 3D

$ds^2 = (M - q X^2) d\tau^2 + (M - q X^2)^{-1} dr^2$

Study thermodynamics of this class of models

phase transitions between hot flat space and generalized FSCs occur fairly generically!

Is this phase transition intrinsic to 3D? → Dimensional reduction
generalized FSCs belong to class of asymptotic mass dominated models\(^7\):
\[
\lim_{X \to \infty} w(X) = 0 \quad \lim_{X \to \infty} h(X) = 0
\]

Flat Space Cosmologies in 2D dilaton gravity

Is this phase transition intrinsic to 3D? → Dimensional reduction
generalized FSCs belong to class of asymptotic mass dominated models\(^7\):
\[
\begin{align*}
\lim_{X \to \infty} w(X) &= 0 \\
\lim_{X \to \infty} h(X) &= 0
\end{align*}
\]
e.g. dimensionally reduced from 3D
\[
ds^2 = \left(M - \frac{q}{X^2} \right) d\tau^2 + \left(M - \frac{q}{X^2} \right)^{-1} dr^2
\]
\(X = r\)

Is this phase transition intrinsic to 3D? → Dimensional reduction

generalized FSCs belong to class of asymptotic mass dominated models7:

\[
\lim_{X \to \infty} w(X) = 0 \quad \lim_{X \to \infty} h(X) = 0
\]

e.g. dimensionally reduced from 3D

\[
ds^2 = \left(M - \frac{q}{X^2} \right) d\tau^2 + \left(M - \frac{q}{X^2} \right)^{-1} dr^2 \quad X = r
\]

improved action

\[
\Gamma = I + I_{ct} = I + \frac{1}{2} \int_{\partial M} dx \sqrt{\gamma} n^a \partial_a X
\]

Is this phase transition intrinsic to 3D?

Dimensional reduction

generalized FSCs belong to class of asymptotic mass dominated models:
\[
\lim_{X \to \infty} w(X) = 0 \quad \lim_{X \to \infty} h(X) = 0
\]
e.g. dimensionally reduced from 3D
\[
ds^2 = \left(M - \frac{q}{X^2} \right) d\tau^2 + \left(M - \frac{q}{X^2} \right)^{-1} dr^2 \quad X = r
\]

improved action

\[
\Gamma = I + I_{ct} = I + \frac{1}{2} \int_{\partial \mathcal{M}} dx \sqrt{\gamma} n^a \partial_a X
\]

Study thermodynamics of this class of models

Flat Space Cosmologies in 2D dilaton gravity

Is this phase transition intrinsic to 3D? \(\rightarrow\) Dimensional reduction

generalized FSCs belong to class of asymptotic mass dominated models\(^7\):

\[
\lim_{X \to \infty} w(X) = 0 \quad \lim_{X \to \infty} h(X) = 0
\]
e.g. dimensionally reduced from 3D

\[
ds^2 = \left(M - \frac{q}{X^2} \right) d\tau^2 + \left(M - \frac{q}{X^2} \right)^{-1} dr^2 \quad X = r
\]

improved action

\[
\Gamma = I + I_{ct} = I + \frac{1}{2} \int_{\partial M} dx \sqrt{\gamma n^a \partial_a X}
\]

Study thermodynamics of this class of models

phase transitions between hot flat space and generalized FSCs occur fairly
genерically!

Outline

1 Motivation

2 Two-dimensional Dilaton Gravity

3 Black Hole Thermodynamics and the Euclidean Path Integral

4 Thermodynamics of 2D Dilaton Gravity

5 Conclusion and Outlook
Conclusion and Outlook

Dilaton gravity allows to study large class of different models in simple setting.

Complete study of thermodynamics of Maxwell-dilaton gravity, but not only interesting for thermodynamics!

Dilaton gravity allows non-perturbative path-integral quantisation! First order formulation:

\[I[g, X] \rightarrow I[g[e^a, \omega^a, X], X] \]

Plus matter:

\[Z = \int D\phi D[e D\omega D\phi] \]

Study semi-classical and quantum aspects of black holes in 2D!
Dilaton gravity allows to study large class of different models in simple setting.

\[Z = \int D\phi D_e^a D\omega D^2X D^2X [\text{ghosts}] e^{i(I_g + I_m)} \]

Study semi-classical and quantum aspects of black holes in 2D!
Conclusion and Outlook

- Dilaton gravity allows to study large class of different models in simple setting
- Complete study of thermodynamics of Maxwell-dilaton gravity
Conclusion and Outlook

- Dilatonic gravity allows to study large class of different models in simple setting
- Complete study of thermodynamics of Maxwell-dilaton gravity
- But not only interesting for thermodynamics!

\[
\begin{align*}
\mathcal{Z} &= \int \mathcal{D}\phi \mathcal{D}e_a \mathcal{D}\omega_{ab} \mathcal{D}X^a \mathcal{D}X^b \\
&\quad + \mathcal{D}[\text{ghosts}] e^{i(I_g + I_m)}
\end{align*}
\]
Dilaton gravity allows to study large class of different models in simple setting
Complete study of thermodynamics of Maxwell-dilaton gravity
But not only interesting for thermodynamics!
Dilaton gravity allows non-perturbative path-integral quantisation!

\[Z = \int D\phi D\epsilon^{a} D\omega D\epsilon^{b} D\phi^{a} D\phi^{b} e^{i(I_{g} + I_{m})} \]
Conclusion and Outlook

- Dilaton gravity allows to study large class of different models in simple setting
- Complete study of thermodynamics of Maxwell-dilaton gravity
- But not only interesting for thermodynamics!

Dilaton gravity allows non-perturbative path-integral quantisation!

First order formulation: \(I[g, X] \rightarrow I_g[e^a, \omega^a, X, X^a] \) plus matter \(I_m[\phi] \)
Conclusion and Outlook

- Dilaton gravity allows to study large class of different models in simple setting
- Complete study of thermodynamics of Maxwell-dilaton gravity
- But not only interesting for thermodynamics!

Dilaton gravity allows non-perturbative path-integral quantisation!

first order formulation: \(I[g, X] \rightarrow I_g[e^a, \omega^a, X, X^a] \) plus matter \(I_m[\phi] \)

\[
Z = \int D\phi D e^a D\omega D X^a D X D[ghosts] e^{i(I_g + I_m)}
\]
Dilaton gravity allows to study large class of different models in simple setting

Complete study of thermodynamics of Maxwell-dilaton gravity

But not only interesting for thermodynamics!

Dilaton gravity allows non-perturbative path-integral quantisation!

first order formulation: $I[g, X] \rightarrow I_g[e^a, \omega^a_b, X, X^a] \text{plus matter } I_m[\phi]$

$$Z = \int D\phi De^a D\omega DX^a DX D[ghosts] e^{i(I_g + I_m)}$$

$$Z = \int D\phi e^{iI_{eff}[\phi]}$$
Conclusion and Outlook

- Dilaton gravity allows to study large class of different models in simple setting
- Complete study of thermodynamicics of Maxwell-dilaton gravity
- But not only interesting for thermodynamics!

Dilaton gravity allows non-perturbative path-integral quantisation!
first order formulation: \(I[g, X] \rightarrow I_g[e^a, \omega^a_b, X, X^a] \) plus matter \(I_m[\phi] \)

\[
\mathcal{Z} = \int D\phi D_{e^a} D\omega DX^a DX D[\text{ghosts}] e^{i(I_g + I_m)}
\]

\[
\mathcal{Z} = \int D\phi e^{iI_{\text{eff}}[\phi]}
\]

Study semi-classical and quantum aspects of black holes in 2D!
Thank you for your attention