From ancient times, religion and philosophy have regarded language as a faculty bestowed uniquely and suddenly on our own species, primarily as a mode of thought with communication as a byproduct. This view persists among some scientists and linguists and is counter to the theory of evolution, which implies that the evolution of complex structures is incremental. I argue here that language derives from mental processes with gradual evolutionary trajectories, including the generative capacities to travel mentally in time and space and into the minds of others. What may be distinctive in humans is the means to communicate these mental experiences along with knowledge gained from them.

Is Language Uniquely Human?

According to the Old Testament, language was a gift to Adam and was for a time the common language of all humans. When people built the Tower of Babel so that they might reach closer to Heaven, the Lord thought them disrespectful and dispersed them, and confounded their languages so they could no longer communicate. Echoing this story Noam Chomsky has argued that language was bestowed on some individual, whom he whimsically names Prometheus, within the past 100,000 years, well after Homo sapiens is thought to have emerged as a distinct species [1]. Languages subsequently proliferated into the 6,000 or so languages of the world, the vast majority mutually incomprehensible.

The notion that language emerged in humans well after our species itself evolved receives some support from archaeology, based on an apparent explosion of artistic and technological innovation within the past hundred millennia followed by dispersal from Africa in which H. sapiens eventually replaced other large-brained hominins such as the Neanderthals and Denisovans. Human artifacts from this period included cave art, musical instruments, sculpture, bodily embellishments, and notations for record keeping and ended an apparent stasis in tool manufacture toward more innovative and varied forms. This surge of activity has been variously labeled the ‘human revolution’ [2], the ‘great leap forward’ [3], and the last of seven ‘major transitions in evolution’ [4] that began with the emergence of replicating molecules. The paleoanthropologist Ian Tattersall writes ‘The entirely novel competitive entity represented by behaviorally modern Homo sapiens appeared on the planet far too rapidly to be accounted for by the slow workings of natural selection at the individual level’ [5].

The Evolutionary Challenge

Such views are antithetical to the theory of evolution. Charles Darwin himself wrote ‘If it could be demonstrated that any complex organ existed, which could not possibly have been formed by numerous, successive, slight modifications, my theory would absolutely break down. But I can find no such case’ [6].

Could language be the case that Darwin feared? Chomsky has often characterized language as ‘an organ of the body’ and ‘on a par with the digestive and immune systems’ [7]. Language is
also undeniably complex, given that its rules of operation are still not well understood after some 60 years of Chomskian linguistics. The emergence of an organ as complex as language in a single step seems clearly counter to Darwinian theory.

Evolutionary theory, however, has itself undergone changes, with the Modern Synthesis (see Glossary) and the later Extended Evolutionary Synthesis incorporating ideas from genetics, embryology, and population thinking, raising the possibility of more rapid change than that implied by the selection of random mutations [8]. However, it remains problematic whether this can drastically alter the Darwinian scenario, let alone explain the emergence of language in a single step. Pinker and Bloom discuss a number of neo-Darwinian possibilities including the view that language is a ‘spandrel’ – a byproduct of the brain’s evolved capacity for computation [9] – but conclude that ‘there is every reason to believe that language has been shaped by natural selection as it is understood within the orthodox “synthetic” or “neo-Darwinian” theory of evolution’ [10]. Gould and Eldredge wrote of ‘punctuated evolution’, implying that evolution can proceed in spurts, but they were clear that it is ‘not about ecological catastrophe or sudden genetic change’ [11]. Chomsky himself [1] appealed to evo–devo, whereby complex changes can occur through mutations in regulatory genes that orchestrate the timing of development rather than through the emergence of new genes. Such mutations, however, do not add complexity, suggesting they cannot explain the sudden emergence of a system as complex as grammar [12].

Another prediction of the synthesis is that evolutionary change can be hastened through ‘niche construction’, whereby organisms modify their own environments, biasing the process of selection [8]. This might have influenced and perhaps accelerated evolutionary change during the Pleistocene, which saw the emergence of what has been termed the ‘cognitive niche’ [13], but this would imply a gestation period of some 2 million years rather than a sudden change within the past 100 000 years. Some have also contested the archeological evidence for the ‘human revolution’, suggesting either that the changes were continuous and date back to precursors of H. sapiens [14] or that the impression of change was more a question of sporadic regional variation than of discontinuity through time [15].

Language and Thought
A common theme among those who argue for the sudden emergence of language is that it signaled a change in the manner of thought itself. Thus, Tattersall writes that from about 100 000 years ago ‘we start finding plausible indications that members of the new species were starting to think symbolically’ [5]. Chomsky writes of ‘internal language’ (l-language) as the fundamental basis of human symbolic thought with communication merely a byproduct [1,7]. It is, then, through a secondary process of ‘externalization’ that the diverse languages, spoken and signed, are formed. l-language is considered common to all humans, underlying what Chomsky calls ‘universal grammar’ – a term that goes back to 17th-century scholars who sought to identify aspects of language common to all languages [16]. There have been many attempts to specify such a grammar, once satirized by James D. McCawley in his book Thirty Million Theories of Grammar [17], but Chomsky’s most recent and most economical account is the Minimalist Program [18]. The main ingredient is ‘unbounded Merge’, whereby elements are merged recursively to generate a potential infinity of structures.

The burden of explaining language evolution is lessened, however, if language is regarded as communication, not thought. In this case thought can be considered to have precursors in nonhuman animals (e.g., [16,19]) rather than to have appeared in a single step in H. sapiens. Language can then be considered primarily as a device for sharing our thoughts and experiences – more a tool than a fundamental cognitive shift [20,21]. In moving the emphasis to language as communication rather than thought, this more commonsense view, in the words of

Glossary

Evo–devo: derived from evolutionary developmental biology and incorporates the idea that regulatory genes, highly conserved across species, can influence embryonic development through varying the timing and expression of other genes. For example, although different species have dissimilar limbs, such as legs, flippers, or wings, their development is controlled by very similar genes, with the differences due to the way their expression is regulated.

Extended Evolutionary Synthesis: extensions of the Modern Synthesis, dating from the mid-20th century, incorporating further developments in genetics, biology, and population thinking: includes aspects such as evo–devo, punctuated evolution, spandrels, and niche construction.

Modern Synthesis: early 20-century integration of Darwinian evolutionary theory with Mendelian inheritance and population-level ideas.

Niche construction: process by which organisms construct their own environment, which can then alter the selection of traits that are adaptive. For example, traits adapted for survival in a hunter–gatherer society may differ from those adaptive in city life.

Punctuated evolution: the idea that new species evolve relatively rapidly followed by a period of stasis with little genetic change.

Spandrel: an architectural term referring to the triangular space between an arch, a pillar, and a ceiling that is sometimes appropriated by artists for added decoration. The term is borrowed in biology to refer to a byproduct of a feature that evolved for different reasons. A simple example is the use of the nose to hold spectacles. The brain has been claimed to provide a rich source of spandrels, with activities such as music or chess perhaps being byproducts of a computational faculty selected for other adaptive functions.
Dor, ‘turns the Chomsky proposal on its head’ [21]. The ‘great leap forward’, if indeed a reality, can then be attributed to an enhanced capacity to share knowledge and experience rather than the thoughts themselves.

This is not to say that thought is independent of language. Indeed, many if not most of our thoughts and knowledge are derived from what other people tell us. However, thoughts themselves, whether derived from personal experience or from communication with others, are not the same as the language in which they are expressed. We often cannot find words for particular thoughts we have or for individuals we can envisage although their names escape us. Thought cannot be tied to any specific language, and when we translate from one language to another the thought remains – at least ideally – despite being expressed in different words [22].

Even in retelling stories within the same language, we typically do not use the same words or expressions. As a source of knowledge, however, language creates a ratchet effect so that knowledge can build over time and spread among individuals, allowing specializations to develop [4]. In these ways language may have been influential in a human revolution, but through its power of communication rather than from a change in the innate structure of thought itself.

If expressive language is designed for the communication of thought, its properties must be at least partly shaped by the way in which thought itself is structured. In this respect the account to be given here is in accord with Chomsky’s. The difference lies in the suggestion here that the nature and structure of thought have a long and gradual evolutionary history.

Several authors have speculated about possible precursors of language, including the manufacture and use of tools [23,24], navigation [25,26], reciprocal altruism [27], and social understanding [28]. Here I focus on two mental capacities that seem especially critical to the recursive, generative nature of language itself and that may ultimately obviate the need for any special mechanism unique to language, or indeed to our own species.

Mental Time Travel

‘Displacement’ is a design feature of language enabling reference to events at other places and other times, past or future [29], and is increasingly recognized as critical to its evolution (e.g., [30,31]). This in turn must depend on the ability to imagine such events, such as what you did yesterday or plan to do tomorrow. Although some, including myself, have claimed that mental time travel itself is uniquely human [32,33], the evidence increasingly suggests that it may have a long evolutionary pedigree, with behavioral evidence from species as disparate as scrub jays [34], rats [35], and chimpanzees [36,37]. Behavioral evidence, however, can be ambiguous or flawed [38], and my own shift to an acceptance of evolutionary continuity was prompted mainly by evidence from neuroscience [39].

It is well established that the hippocampus in humans is activated when people consciously remember past episodes or imagine future ones [40,41] or even imagine purely fictitious ones [42]. In the rat, ‘place cells’ in the hippocampus record where the animal is located in a spatial environment [43] and sometimes trace out trajectories even when the animal has been removed. The trajectories are sometimes ‘replays’ of trajectories previously taken, sometimes the reverse of those trajectories [44], and sometimes trajectories the animal did not take [45], some of which may be anticipations of future trajectories [46]. Reviewing this evidence, Moser, Rowland, and Moser write that ‘the replay phenomenon may support “mental time travel” . . . through the spatial map, both forward and backward in time’ [47]. Mental travels through known spatial locations may be a common capacity of animals that move about physically in space and need to know whether they are, where they have been, and where they might go next.
In humans the hippocampus seems to be involved in language itself [48,49]. Even in the rat, however, hippocampal activity has some language-like properties. It is influenced by activity in the neighboring entorhinal cortex in a modular fashion, adjusting for parameters like spatial scale, direction of the head, and proximity to borders. Different combinations of modules can result in thousands of combinations, comparable to “that of an alphabet in which all words of a language can be generated by combining only 30 letters or less” [47]. In short, spatial imagination, like language, is generative. I can imagine myself in different locations, such as my office, in many different ways and at different spatial scales. I can zoom out from the office to its location in the house, the location of the house in the city, the city in the country, and so on. Even in the rat, the spatial scale zooms out as recording shifts from the rearward to the forward end of the hippocampus [50] and this arrangement is mirrored in human hippocampal activity as people process narratives linked to videos, with increasingly forward activation as the focus shifts from detail to more global understanding [51].

Generative grammar itself, then, may depend on the generative nature of spatiotemporal imagination rather than on any property unique to language itself. The zooming property implies recursion, in which spatial maps are nested in maps at larger scales. It has even been proposed that Chomsky’s Minimalist Program and the concept of Merge can be applied to simple sensorimotor actions such as grasping and manipulating an object [52]. We are profoundly spatial creatures and even our non-spatial thoughts, such as reasoning and logic, may be grounded in spatial metaphor rather than abstract symbols [53]. The concept of universal grammar has been doubted [54,55], but if it can be said to exist its universality may reside in the common experience of the spatiotemporal world rather than in the innate structure of language.

Theory of Mind

We travel mentally not only in time and space but also into the minds of others. The capacity to understand what others feel, think, or believe is known as theory of mind and underlies the human obsession with storytelling, whether in the form of novels, plays, movies, TV soaps, gossip, or, in earlier times – and among present-day African tribes – stories told around the campfire at night [56]. It has been suggested that storytelling drove the evolution of language itself [57].

Theory of mind is required for language in a capacity other than storytelling. Language is not merely a matter of words; it requires that the speaker and listener (or signer) know what is in each other’s mind and that each knows that the other knows this – requiring metacognition [58,59]. In this sense language is underdetermined [60]. Even individual words may carry multiple meanings depending on context. An extreme example is the English word ‘set’, which, according to the Chambers Dictionary, has 105 different meanings.

Whether nonhuman species possess theory of mind has been much disputed since Premack and Woodruff in 1978 asked ‘Does the chimpanzee have a theory of mind?’ [61] Thirty years later there was still disagreement; in one view, the answer was negative and the very idea that chimpanzees might have theory of mind was deemed ‘Darwin’s mistake’ [62], while others found evidence that chimpanzees could be shown to understanding the goals, intentions, perceptions, and knowledge of others but not their beliefs or desires [63]. A more recent study, however, showed that great apes look in anticipation of where a human agent will falsely believe an object has been hidden [64] – they seem to pass the false-belief test, often regarded as the gold-standard test of theory of mind [65]. This study joins a chorus of studies gradually showing greater mental continuity between humans and other species than is commonly assumed. Even rhesus monkeys may be capable of spontaneous metacognition [66].
A neural network for mental orientation in ‘space, time, and person’ is now fairly well established in humans and includes widespread regions in the frontal, parietal, and temporal cortices [67]. This network overlaps extensively with what has been termed the ‘default mode network’, which is active in ‘mind wandering’ – spontaneous internal activity unrelated to the concerns of the moment [68]. Homologous networks have been identified in monkeys [69] and rats [70], again suggesting evolutionary continuity. Of course, internal thinking may be less complex in rats and monkeys than in humans, but we should bear in mind Darwin’s edict: ‘The difference in mind between man and the higher animals, great as it is, certainly is one of degree and not of kind’ [71].

In summary, comparative research is increasingly drawn to the conclusion that some nonhuman animals are capable of more ‘advanced’ cognition than hitherto realized, suggesting evolutionary continuity rather than a sudden shift in cognition that somehow made humans special. Mental excursions in time and space and into the minds of others may be more comprehensive and sophisticated in humans than in other species in part because of communicative language itself, which feeds our mental travels through storytelling and our minds through the exchange of knowledge. Their origins, however, may go well back in our evolutionary history.

The Communicative Aspect

According to a shifting tide of opinion, it is in our ability to communicate our thoughts, rather than our thoughts themselves, that we differ most profoundly from other species and it is our

Box 1. The Gestural Theory of Language Origins

Among primates only humans appear capable of vocal learning [77] and therefore of speech. Language, however, is not restricted to speech; sign languages have all the hallmarks of true language [78]. This raises the possibility that language originated, not from vocal calls, but from manual gestures. This idea goes back to the 18th century [79–81] and has been increasingly endorsed over the past few decades (e.g., [82–90]).

Captive great apes have never developed anything resembling speech but have learned to use manual gestures [72,91] in ways that have language-like features; great apes in the wild also communicate bodily in ways that are more language-like than their vocalizations [92]. People, too, gesture manually while speaking [93,94], and like speech, gesture involves the hippocampus [95]. Some have supposed that visible gesture and vocal language have always been equal partners [96,97] (but see [98] for a contrary view).

Gestural communication may derive from the primate ‘mirror system’, a brain circuit active during both the production and the perception of intentional movements, suggesting a natural basis for communication [85]. In macaques the system responds to actions perceived acoustically as well as visually but not to animal calls, implying that the incorporation of vocal action evolved relatively late [99]. Brain imaging of a homologous system in humans suggests that it expanded to encompass the language circuit [100].

Bodily actions provide a natural basis for relaying events in our predominantly spatial world, especially through hand and arm movements as exemplified in sign languages. During the Pleistocene, with the emergence of the genus Homo, brain size increased and the hands were increasingly freed by the shift to obligate bipedalism, allowing communication through gesture and mime [101]. In the interests of efficiency, mimed gestures were probably simplified and conventionalized over time, losing their iconic quality [102]. Tomasello writes that human language might have ‘evolved quite a long way in the service of gestural communication alone, and the vocal capacity is actually a very recent overlay’ [89].

To some, a transition from the visible to the acoustic mode seems too extreme to be credible (e.g., [103,104]). Speech, however, is itself a system of gestures of the tongue, lips, and larynx [105]. Movements of the hand and mouth are linked neurally, phylogenetically, developmentally, and behaviorally [106–109], suggesting that mouth gestures might plausibly have blended into manual ones [110], and the visible movements of speech remain verbally informative [111], although adding vocalization makes the gestural content more accessible as audible speech. The acoustic code, however, is more arbitrary and is sustained largely through culture, although it does carry non-arbitrary associations [112,113].

The transition might be an early example of miniaturization – tucking the burden of communication into the mouth and freeing the hands and arms for activities such as carrying or making and using tools. It was perhaps this switch, and not language itself, that produced the ‘human revolution’ [114], but it did not stop there. Subsequent shifts, from writing to the Internet, have profoundly shaped and widened human culture.
capacity to communicate that gives an inflated view of human cognition. The difference has more to do with production than with understanding. Great apes [72] and even dogs [73,74] can understand and respond to spoken requests involving sequential processing and substantial word vocabularies, which implies a degree of symbolic understanding but a lack of the means to produce anything approximating human productive language. Great apes, at least, may come closer through bodily movement and gesture than through vocalization (Box 1).

The pressure to develop output systems flexible enough to communicate our thoughts and experiences probably grew during the Pleistocene when our hominin forebears were increasingly forced from a forested environment to more open territory with dangerous predators, and survival depended on cooperation and social interaction – the aforementioned ‘cognitive niche’ [13]. The initial impetus may have come from the sharing of episodic events, whether remembered, planned, or fictitious but perhaps also increasingly including information about territory, danger, food sources, tool making, and the habits and abilities of individuals. Its course of evolution is probably best indexed by the threefold increase in brain size that began some 2 million years ago and is probably attributable to the emergence of grammatical language [75] and the vast increase in knowledge that it afforded. The increase in brain size was incremental through this period, again suggesting gradual evolution rather than the sudden appearance of a prodigious Prometheus within the past 100 000 years.

Concluding Remarks: Is Rapprochement Possible?

There are some signs that the longstanding divide over language evolution may be softening. Through progressive modifications, Chomsky’s theory of syntax has become simpler. This is suggested in the title of the current Minimalist Program, whose primary ingredient is Merge, recently described as the ‘simplest case’, requiring a ‘slight mutation’ producing a ‘slight rewiring of the brain’ [7]. These descriptions now seem at odds with earlier notions of language as a bodily organ producing a major transition in evolution and are perhaps an attempt to bring the evolution of language within the bounds of evolutionary crediblity.

At the same time, Minimalist theory seems to place a greater burden on externalization to explain how a concept as apparently simple as Merge can account for the complex and varied grammars among the 6000 or so languages, spoken or signed, in the world. A recent article points out that the parsing of a sentence cannot be based simply on the string of words or signs but must depend on an internal device to impose hierarchical structure; in its simplest form, that device is Merge, applied recursively. The question then is whether this internal structuring is ‘uniquely human (species-specific) and uniquely linguistic (domain-specific)’ [76] or whether it depends on the way that experience and knowledge have been incrementally structured over millions of years of evolution (see Outstanding Questions).

Acknowledgments

Three unnamed reviewers provided extremely helpful input.

References

Outstanding Questions

Can we identify aspects of thought that are present only in humans and that have no counterparts in nonhuman animals?

If so, can we find evidence that such aspects evolved suddenly within the time span of Homo sapiens or is it more plausible to suppose that they evolved more gradually, such as during the Pleistocene?

Can we find anatomical, genetic, or fossil evidence that bears on the origins of speech as distinct from language itself?

Or does the evidence further support the origins of expressive language in manual gestures rather than vocal calls?
64. Krupenye, C. et al. (2016) Great apes anticipate that other individuals will act according to false beliefs. Science 354, 110–116
Hewes, G.W. (1973) Primate communication and the gestural
Vico, G. (1744/1953) La Scienza Nova, Laterza
Rousseau, J.-J. (1782)
Savage-Rumbaugh, S.
Darwin, C. (1871)
Lu, H. et al. (2012) Rat brains also have a default mode network.
79. de Condillac, E.B. (1971)
80. Rousseau, J.-J. (1782)
236 Trends in Cognitive Sciences, April 2017, Vol. 21, No. 4
92. Hobaiter, C. and Byrne, R.W. (2011) Serial gesturing by wild
95. Hlverman, C. et al. (2016) Hippocampal declarative memory
67. Peer, M. et al. (2015) Brain system for mental orientation in
function, and relevance to disease. Ann. N. Y. Acad. Sci. 1124,
1–38
69. Vincent, J.L. et al. (2007) Intrinsic functional architecture in the
70. Lu, H. et al. (2012) Rat brains also have a default mode network.
71. Darwin, C. (1871) The Descent of Man and Selection in Relation
to Sex. (2nd edn), Appleton
Mind. Oxford University Press
evidence for ‘fast mapping’. Science 304, 1662–1663
object names as verbal referents. Curr. Anthropol. 52, 188–194
and cognitive journey from Australopithecus to Albert Einstein.
J. Anthropol. Sci. 94, 99–111
as part of the cognitive sciences. Trends Cogn. Sci. 19, 729–
743
in the brains of humans and song-learning birds. Science 346, 1256846
from Sign Language Research, Erlbaum
Knowledge: Being a Supplement to Mr. Locke’s Essay on the
Human Understanding, A Facsimile Reproduction of the 1756
Translation by T. Nugent of Condillac’s 1747 Essay, Scholars’
Facsimiles and Reprints
82. Hewes, G.W. (1973) Primate communication and the gestural
hemisphere. Brain 97, 337–350
84. Armstrong, D.F. et al. (1996) Gesture and the Nature of Lan-
guage. Cambridge University Press
Trends Neurosci. 21, 189–194
86. Corballis, M.C. (2002) From Hand to Mouth: The Origins of
Language, Princeton University Press
Our Minds Share Actions and Emotions, Oxford University Press
MIT Press
System Hypothesis, Oxford University Press
to a chimpanzee. Science 165, 664–672
92. Hobaiter, C. and Byrne, R.W. (2011) Serial gesturing by wild
chimpanzees: its nature and function for communication. Anim.
Cogn. 14, 827–838
handers. Neuropsychologia 11, 45–50
language: the coming of age of sign language and gesture
http://dx.doi.org/10.1017/S0140525X15001247
95. Hlverman, C. et al. (2016) Hippocampal declarative memory
supports gesture production: evidence from amnesia. Cortex
85, 25–36
language origins debate. Gesture 13, 349–370
in Human Evolution, Cambridge University Press
98. Corballis, M.C. (2014) The word according to Adam: The role of
gesture in language evolution. In From Gesture to Conversation
to Visible Action as utterance: Essays in Honor of Adam Kendon
(Seyfeddinifur, M. and Gullberg, M., eds), pp. 177–197, John
Benjamin
99. Kohler, E. et al. (2002) Hearing sounds, understanding actions:
action representation in mirror neurons. Science 297, 846–848
100. Haberling, I.S. et al. (2016) Language, gesture, and handed-
ness: evidence for independent lateralized networks. Cortex 82,
72–85
sity Press
104. Burling, R. (1999) Motivation, conventionalization, and arbitrar-
iness in the origin of language. In The Origins of Language: What
Human Primates can Tell Us (King, B.J., ed.), pp. 307–350,
School of American Research Press
Language Origins: Perspectives on Evolution (Tallerman, M.,
and evolutionary origins for neural basis of vocal-acoustic and
10677–10684
kinematic study on healthy subjects. J. Neurophysiol. 86, 1685–1699
chol. Rev. 92, 350–371
temporal pathways to the homologue of Broca’s area in the
monkey. PLoS One 7, e1000170
gestures. Gesture 12, 200–226
voices. Nature 264, 746–748
a window into perception, thought and language. J. Conscious.
Stud. 8, 3–34
U. S. A. 103, 10918–10923
114. Corballis, M.C. (2004) The origins of modality: was auton-
omous speech the critical factor? Psychol. Rev. 111, 543–552
Letter
What is Language and How Could it Have Evolved?

Martin B.H. Everaert,1 Marinus A.C. Huybregts,1 Robert C. Berwick2,3 Noam Chomsky,4 Ian Tattersall,5 Andrea Moro,6 and Johan J. Bolhuis7,8,*

Unraveling the evolution of human language is no small enterprise. One could start digging somewhere in the largely unobservable past, working forwards to the present, hoping to surface in the right spot. Alternatively, one could start with the currently observed and well-established properties of human language, the phenotype of language, and work backwards, with these ‘knowns’ guiding the search for otherwise speculative historical ‘unknowns’. In a recent issue of Trends in Cognitive Sciences, Corballis [1] appears confident that only the first strategy will serve. Evolutionary explanations necessarily are historical, but few evolutionary biologists faced with such a paucity of historical evidence would forge ahead without first defining what, exactly, the phenotype is that ultimately evolved [2]. Yet, Corballis criticizes what we actually know about the human language phenotype, because it does not conform to his speculations [3]. We believe that Corballis’ odd research inversion suffers from misconceptions regarding what we know about both language and evolution.

The Nature of the Human Language Phenotype (Is Not Communication)

There is no denying that language is sometimes used to communicate, like this Letter. However, this should not lead to the apparently common fallacy that the design of language can be inferred reverse-engineering style from this single functional perspective. Artful kinesthetics of human skeletal structures in motion, aka ‘dance’, also communicates, but one would be hard pressed to derive the evolutionary history of the human tibia from watching Swan Lake. In the same way, linguists now know with near surgical precision how the sentence ‘skeletal structure’ generally fixes meaning. We know how ‘communication’ in the sense of transfer of propositional meaning is

Box 1. Structure Connecting Sound and Meaning

Language is structured at all levels: phonology (sound structure), morphology (word structure), and syntax (phrase structure). The examples below show how structures built by the computational system are systematically mapped onto sound and meaning.

The two ways of pronouncing the string ‘white board eraser’, also reflected in spelling, are paired with a difference in their meaning: (i) whiteboard eraser: an eraser for whiteboards; and (ii) white board eraser: an eraser that is white.

The eraser in (i) itself could have any color, but in (ii) it has to be white. Both meanings and stress patterns are systematically derived from the structural patterns given in Figure 1A,B, respectively.

In Figure 1A, the adjective ‘white’ first merges with the noun ‘board’ and constructs the nominal compound ‘whiteboard’, which, as a unit, is merged with the noun ‘eraser’, yielding a bigger compound, an eraser, erasing what is written on whiteboards. When pronounced, the structure gives rise to the stress pattern [whiteboard eraser].

In Figure 1B, ‘board’ first merges with ‘eraser’, producing the nominal compound ‘board eraser’, which, as a unit, is merged, in syntax, with the adjective ‘white’, yielding a nominal phrase, a board eraser that has a white color. When articulated (in speech), the structure gives rise to the stress pattern [white board eraser].

Figure 1. Nominal compound (A) versus nominal phrase (B). Abbreviations: A, adjective; N, noun; s, strong; w, weak.
facilitated by language: our manipulation of meaning is systematic and relies “on an ingrained ability to recognize structure in language.” [4]. Meaning builds on a computational system that is sensitive to structural factors leading to hierarchical structure (Box 1). All this has been overlooked by Corballis.

‘Language’ reduced to a mode of communication becomes vacuous as an explanatory motivation. Bees communicate with flowers, your router communicates with your computer, we communicate via oil on canvas, and so on [5]. The Corballian world of communication is so diffuse that it becomes all the more puzzling why “the emergence of an organ as complex as language” would apparently be limited to humans.

Structured Thought
Corballis claims thought is structured, and that the “nature and structure of thought have a long and gradual evolutionary history”, suggesting that, on this point, he is in agreement with the position advocated by Berwick and Chomsky [3]. However, all examples we know point to thought structured by syntax, not the reverse. The hierarchical structure built by the brain when processing sentences feeds our conceptual apparatus. Consequently, language is basically a thought-expressing tool [3,6]. For Corballis, ‘thought’ permeates the entire animal kingdom. That may be so, but he fails to give any clue as to what he might mean by this expansive notion of ‘thought’, how we could find out how ants, or songbirds ‘think’, and why, in this view, “expressive language” would take millions of years to appear.

Recursion
Corballis suggests that “generative grammar may [our emphasis] depend on the generative nature of spatiotemporal imagination, rather than on any property unique to language itself.” However, this is merely idle verbiage. There is not even a remote connection between the two. If someone were to say that the waggle dance of the honeybee ‘may’ depend on the laws of motion, no one would pay attention. A recent comparative study of cross-species generative systems asserts that nonhuman animals have nothing resembling human recursive syntax [7]. While many animal species recognize statistical-probabilistic sequences, linear associations, or even algebraic rules, only humans appear capable of internalizing generative algorithms. In line with his view on ‘spatiotemporal imagination’, Corballis appears to assume that language inherits these sorts of property from similarly structured actions. Such an approach, linking recursion to observations from interactive language use, however, fails [8]. Moro has shown that the superficial parallels here between action sequences and sentences are misguided, again essentially backwards [9,10]. Self-reference, a defining property of recursion, appears to be absent from the domain of motor action and spatiotemporal imagination of nested maps [7], yet a rich part of human language.

The Nature of Evolution
We are surprised that Corballis subscribes to the view that anything other than an ancient and gradual origin for language “is counter to the theory of evolution”, for he is clearly aware that our understanding of evolutionary mechanisms has been refined considerably over the past 150 years. Certainly, evolutionary change requires transitions from one viable state to another, but this does not entail that phenotypic steps are necessarily the tiny and incremental ones he favors. It is also unclear why he believes that changes in gene regulation cannot “add complexity”, especially when it is almost certainly the case that modifications at this level gave rise to the anatomically distinctive species *Homo sapiens* [11]. Furthermore, the archeological record contains no evidence of behaviors compatible with the style of linguistic information processing until after anatomical *Homo sapiens* had come on the scene some 200,000 years ago: a fact that Corballis mentions, but whose relevance is left undiscussed.

Mental Time Travel
Corballis also refers to, but regrettably does not discuss, the position that “No other organism, instantaneously and effortlessly extricates from the environment language-relevant data, and in a rather comparable way quickly attains rich linguistic competence, again a feat utterly beyond other organisms even in its rudimentary aspects.” [12]. Corballis attributes these achievements to mental time travel (MTT) and Theory of Mind (ToM), although, as frequently noted, both of these competences are often dissociated from language ability: “autistic children highly defective in theory of mind [. . .] can acquire rich linguistic competence (and in fact a great deal of language acquisition proceeds before a child shows any sign of having attained theory of mind).” [12]. Significantly, again, no mechanism is suggested to lead from ToM to the specific structures of language. Worse, there is no discussion of what the mechanisms of recursive thought in MTT or ToM are, or how they lead to the feat that has to be explained. Shifting the burden from recursive language to recursive thought in MTT and ToM appears to us to leave the problem exactly where it was, adding nothing.

References:
[1] Utrecht Institute of Linguistics, Utrecht University, 3512 JK Utrecht, The Netherlands
[2] Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
[3] Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
[4] Department of Linguistics and Philosophy, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
[6] School of Advanced Studies - Instituto Universitario di Studi Superiori, Pavia 27100, Italy
[7] Cognitive Neurobiology and Helmholtz Institute, Department of Psychology, Utrecht University, 3584 CH Utrecht, The Netherlands
Letter
Leaps of Faith: A Reply to Everaert et al.

Michael C. Corballis

In their comments on my Opinion in TICS [1], Everaert and colleagues [2] make several leaps concerning the evolution of language, including the idea that language implies a mental structure unique to humans, and that this came about through an evolutionary ‘great leap forward’ within our limited time span. Against this backdrop, perspectives on language evolution have changed over the past few decades, with language increasingly regarded as a device for communicating thought rather than as thought itself, with the structure of thought emerging gradually according to neo-Darwinian principles.

Everaert et al. suggest there ‘isn’t even a remote connection’ between spatiotemporal imagination and grammar. There is nevertheless a growing understanding that language evolved primarily as a means of communicating about the non-present, with the property of displacement providing ‘the road into language’ [3]. Neurophysiology shows that the entorhinal-hippocampal complex even in the rat can compute information about events in space and time with language-like generativity, and includes incidental episodic information [4]. These internal events are not language, and the human system has certainly gained in complexity [5], but language may well have evolved primarily as a means to express them.

Theory of mind is also critical to the communicative aspect of language. As Chomsky once wrote, ‘Communication relies on largely shared cognoscenti [sic] powers . . . ’ [6]. Gilles Fauconnier elaborates:

When we engage in any language activity, we draw unconsciously on vast cognitive and cultural resources, call up models and frames, set up multiple connections, coordinate large arrays of information, and engage in creative mappings, transfers, and elaborations [7].

Such resources go well beyond ‘language’, and it is difficult to believe they surfaced in a single step late in the evolution of our species.

On Erasers and Sticks
What of the distinction between a whiteboard eraser and a white board eraser? Analogous distinctions do appear to arise in nonhuman animals. New Caledonian crows can use a short stick to extract a longer stick from a barred cage, and use this longer stick to extract food from a long tube, and do so immediately and spontaneously. Therefore, they might be said to know the distinction between a long-stick extractor and a long stick extractor [8]. Hierarchical structures may well be part of the cognitive apparatus by which humans and animals parse the world, and can exist in the absence of any means to communicate them. Seeking analogs of human cognition does not imply digging into the past and moving forwards, ‘hoping to land in the right spot’, as Everaert et al. suggest [2]; rather it takes what we know about language and human cognition, and seeks likely precursors.

Everaert et al. complain that I do not give evidence as to how nonhuman animals think, and ‘why . . . “expressive language” would take millions of years to appear’ [2]. The extraction techniques used by the crows provide an example of a window into the nonhuman mind. There are others, a few of which are mentioned in my article. Moreover, the actions of the crows might themselves be considered communicative, perhaps to be copied by a watching bird. Expression might then begin with overt behavior, gradually becoming decoupled and conventionalized, especially in social species where survival depends on effective communication transcending time and space. Thus, the emergence of expressive communication can itself be considered a gradual process, as in the gestural theory of language origins I outlined [1].

On Evolution
As for evolution, even Tattersall seems bemused by the idea that the mind could have changed so dramatically in such a short window of time. In a book cited by Everaert et al., he wrote:

‘It is a qualitative leap in cognitive state unparalleled in history. Indeed . . . the only reason we have for believing that such a leap could ever have been made, is that it was made. And it seems to have been made well after the acquisition by our species of its distinctive modern form’ [9].

This sounds more like fiat than fact. Was Homo sapiens really so distinctive? Evidence of mating between early sapiens

References
and both Neanderthals and Denisovans even raises the question of whether sapiens was a species distinct from these other large-brained hominins, uniquely capable of language [10]. Perspectives are indeed changing. As two recent commentators put it:

‘myth of a “modern human revolution” is now rejected by archaeologists, although it lingers on in linguistic circles, as illustrated, for example, by Chomsky (2010). The myth dissolves as soon as one considers the archaeological record of the whole Old World, and especially of Africa, where a gradual, piece-meal process of cultural accretion took hundreds of thousands of years’ [11]. Rather than appearing de novo in Homo sapiens, language was more likely part of that ‘gradual, piece-meal process of cultural accretion’.

The Modern Synthesis does offer a more flexible account of evolution than simple Darwinian theory allows, but the idea that it can really account for the one-step emergence of a faculty as complex as language has been seriously questioned (e.g., [12]). However, I would be glad to hear of any case of a system as complex as the digestive system or the immune system, which Chomsky claimed to be comparable to language, emerging de novo in a single step.

Nevertheless, such a case would still smack of special pleading. Everaert and colleagues appear secure in the belief that the nonhuman mind is unstructured. However, absence of evidence is not evidence of absence, and there are now signs from behavior or neurophysiology that the animal mind is indeed structured. Moreover, our common ancestry with our nearest nonhuman great-ape relatives dates back some 6 million years. That is plenty of time for a gradual increase in cognitive complexity, and includes the emergence, in Homo, of features such as bipedalism and a threefold increase in brain size that appear well adapted to more highly structured thought, action and communication, leading, as Darwin put it, to differences of degree, but not of kind.

1 School of Psychology, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
*Correspondence: m.corballis@auckland.ac.nz (M.C. Corballis).
http://dx.doi.org/10.1016/j.tics.2017.05.006

References

A new study by Parkinson and colleagues [12] is one of the first to shed light on how the brain encodes the dense structure of its social network. Whereas previous work focused primarily on indexing popularity [2], this study used an innovative approach for measuring multiple additional dimensions in a large sample, effectively capturing a more holistic picture of how humans map their social groups. These dimensions included: (i) the number of connections between individuals (social distance); (ii) how well connected individuals are to other well-connected individuals (a robust measure of social status, known as eigenvector centrality); and (iii) the degree to which individuals are connected to other unconnected individuals (to pass on relevant social information, known as brokerage). A subset of participants then partook in an imaging study, in which they passively viewed videos of different members of their group who varied in social distance, social status, and brokerage.

Merging representational similarity analysis (RSA) with a dense topographical social network structure allowed Parkinson and colleagues [12] to not only locate where BOLD activity was occurring in the brain, but to also characterize how these neuronal populations were encoding social information, a more effective method for inferring mental states. This is because RSA capitalizes on fine-grained spatial pattern differences, rather than on the overall activation of specific brain regions. What the authors observed was that a distributed network of separate regions encodes each dimension of the social network: social distance was indexed by the inferior parietal lobule (IPL), social status by the medial prefrontal cortex (mPFC), and brokerage by superior temporal cortex (STC). These findings highlight that social information used in our everyday interactions is encoded in brain regions known to track domain-general spatial navigation and psychological distance (IPL), and

Spotlight
How Does Social Network Position Influence Prosocial Behavior?
Oriol FeldmanHall1,*

Consider the sheer number of people you interact with on any given day. How do you keep up with all the complex bonds, relationships, and hierarchies between people in your social community? Being able to track the quality of your connections to individuals within your social group, and to subsequently track their relationships to others, reflects the topologies of our social networks [1].