On the subgroups of the group $\mathbb{Z}_m \times \mathbb{Z}_n$

Mario Hampejs, Nicki Holighaus, László Tóth and Christoph Wiesmeyr

Abstract

We discuss properties of the subgroups of the group $\mathbb{Z}_m \times \mathbb{Z}_n$, where m and n are arbitrary positive integers. Simple formulae for the total number of subgroups and the number of subgroups of a given order are deduced. The cyclic subgroups and subgroups of a given exponent are also considered.

2010 Mathematics Subject Classification: 20K01, 20K27, 05A15, 11A25

Key Words and Phrases: cyclic group, direct product, Abelian group of rank two, subgroup, exponent of a subgroup, number of subgroups, multiplicative arithmetic function

1 Introduction

Let \mathbb{Z}_m be the group of residue classes modulo m and consider the direct product $G = \mathbb{Z}_m \times \mathbb{Z}_n$, where m and n are arbitrary positive integers. This paper aims to discuss properties of the subgroups of G and to derive simple formulae for the number of certain types of subgroups of G, including the total number $s(m,n)$ of its subgroups and the number $s_k(m,n)$ of its subgroups of order k ($k | mn$).

Subgroups of $\mathbb{Z} \times \mathbb{Z}$ (sublattices of the two dimensional integer lattice) and associated counting functions were considered by several authors in pure and applied mathematics. It is known, for example, that the number of subgroups of index n in $\mathbb{Z} \times \mathbb{Z}$ is $\sigma(n)$, the sum of the (positive) divisors of n. See, e.g., [4], [17], [18, item A001615]. Although features of the subgroups of G are not only interesting by their own but have also applications, one of them described below, it seems that a synthesis on subgroups of G can not be found in the literature.

In the case $m = n$ the subgroups of $\mathbb{Z}_n \times \mathbb{Z}_n$ play an important role in numerical harmonic analysis, more specifically in the field of applied time-frequency analysis. Time-frequency analysis attempts to investigate function behavior via a phase space representation given by the short-time Fourier transform [5]. The short-time Fourier coefficients of a function f are given by inner products with translated modulations (or time-frequency shifts) of a prototype function g, assumed to be well-localized in phase space, e.g. a Gaussian. In applications, the phase space corresponding to discrete, finite functions (or vectors) belonging to \mathbb{C}^n is exactly $\mathbb{Z}_n \times \mathbb{Z}_n$. Concerned with the question of reconstruction from samples of short-time Fourier transforms, it has been found that when sampling on lattices, i.e. subgroups of $\mathbb{Z}_n \times \mathbb{Z}_n$, the associated analysis and reconstruction operators are particularly rich in structure, which, in turn, can be exploited for efficient implementation, cf. [6], [7], [12] and references therein. It is of particular interest to find subgroups in a certain range of cardinality, therefore a complete characterization of these groups helps choosing the best one for the desired application.
It is known that for every finite Abelian group the problem of counting all subgroups and the subgroups of a given order of reduces to p-groups, which follows from the properties of the subgroup lattice of the group (see R. Schmidt [11], M. Suzuki [13]). In particular, for $G = \mathbb{Z}_m \times \mathbb{Z}_n$ this can be formulated as follows. G is an Abelian group of rank two since $G \cong \mathbb{Z}_u \times \mathbb{Z}_v$, where $u = \text{lcm}(m, n)$, $v = \text{gcd}(m, n)$. Let $u = p_1^{a_1} \cdots p_r^{a_r}$ and $v = p_1^{b_1} \cdots p_r^{b_r}$ be the prime power factorizations of u and v, respectively, where $a_j \geq b_j \geq 0$ ($1 \leq j \leq r$). Then

$$s(m, n) = \prod_{j=1}^{r} s(\mathbb{Z}_{p_j^{a_j}}),$$

and

$$s_k(m, n) = \prod_{j=1}^{r} s_{k_j}(\mathbb{Z}_{p_j^{a_j}}),$$

where $k = k_1 \cdots k_r$ and $k_j = p_j^{c_j}$ with some exponents $0 \leq c_j \leq a_j + b_j$ ($1 \leq j \leq r$).

Now let $\mathbb{Z}_{p^a} \times \mathbb{Z}_{p^b}$ be a p-group of rank two, where $1 \leq b \leq a$. Then one has the simple explicit formulae:

$$s(\mathbb{Z}_{p^a} \times \mathbb{Z}_{p^b}) = \frac{(a - b + 1)p^{b+2} - (a - b - 1)p^{b+1} - (a + b + 3)p + (a + b + 1)}{(p - 1)^2},$$

(3)

$$s_p(\mathbb{Z}_{p^a} \times \mathbb{Z}_{p^b}) = \begin{cases} \frac{p^{c+1}-1}{p-1}, & c \leq b \leq a, \\ \frac{p^{b+1}-1}{p-1}, & b \leq c \leq a, \\ \frac{p^{a+b-c+2}-1}{p-1}, & b \leq a \leq c \leq a + b. \end{cases}$$

(4)

Formula (3) was derived by G. Călugăreanu [3, Sect. 4] and recently by J. Petrillo [10, Prop. 2] using Goursat’s lemma for groups. M. Tărnăuceanu [14, Th. 3.3] deduced (3) and (4) by a method based on properties of certain attached matrices.

Therefore, $s(m, n)$ and $s_k(m, n)$ can be computed using (1), (3) and (2), (4), respectively. We deduce other formulae for $s(m, n)$ and $s_k(m, n)$ (Theorems 3 and 4), which generalize (3) and (4), and put them in more compact forms. These are consequences of a simple representation of the subgroups of $G = \mathbb{Z}_m \times \mathbb{Z}_n$, given in Theorem 1. This representation might be known, but we could not locate it in the literature. We also consider the number of cyclic subgroups of $\mathbb{Z}_m \times \mathbb{Z}_n$ (Theorem 5) and the number of subgroups of a given exponent in $\mathbb{Z}_m \times \mathbb{Z}_n$ (Theorem 6).

Our approach is elementary, using only simple group-theoretic and number-theoretic arguments. The proofs are given in Section 4.

Throughout the paper we use the notation: $N = \{1, 2, \ldots\}$, $\mathbb{N}_0 = \{0, 1, 2, \ldots\}$, $\tau(n)$ and $\sigma(n)$ are the number and the sum, respectively, of the positive divisors of n, $\psi(n) = n \prod_{p|n}(1 + 1/p)$ is the Dedekind function, $\omega(n)$ stands for the number of distinct prime factors of n, μ is the Möbius function, ϕ denotes Euler’s totient function, ζ is the Riemann zeta function.
2 Subgroups of \(\mathbb{Z}_m \times \mathbb{Z}_n \)

The subgroups of \(\mathbb{Z}_m \times \mathbb{Z}_n \) can be identified and visualized in the plane with sublattices of the lattice \(\mathbb{Z}_m \times \mathbb{Z}_n \). Every such sublattice is generated by two basis vectors. For example, the Figure shows the subgroup of \(\mathbb{Z}_{12} \times \mathbb{Z}_{12} \) having the basis vectors (3, 0) and (1, 2).

This suggests the following representation of the subgroups:

Theorem 1. For every \(m, n \in \mathbb{N} \) let

\[
I_{m,n} := \{(a,b,t) \in \mathbb{N}^2 \times \mathbb{N}_0 : a \mid m, b \mid n, 0 \leq t \leq \gcd(a,n/b) - 1 \} \tag{5}
\]

and for \((a,b,t) \in I_{m,n} \) define

\[
H_{a,b,t} := \{(ia + jta/\gcd(a,n/b), ja) : 0 \leq i \leq m/a - 1, 0 \leq j \leq n/b - 1 \}. \tag{6}
\]

Then \(H_{a,b,t} \) is a subgroup of order \(mn \frac{a}{ab} \) of \(\mathbb{Z}_m \times \mathbb{Z}_n \) and the map \((a,b,t) \mapsto H_{a,b,t} \) is a bijection between the set \(I_{m,n} \) and the set of subgroups of \(\mathbb{Z}_m \times \mathbb{Z}_n \).

Note that for the subgroup \(H_{a,b,t} \) the basis vectors mentioned above are \((a,0) \) and \((s,b) \), where

\[
s = \frac{ta}{\gcd(a,n/b)}. \tag{7}
\]

This notation for \(s \) will be used also in the rest of the paper. Note also that the area of the parallelogram spaned by the basis vectors is \(ab \), exactly the index of \(H_{a,b,t} \).

We say that a subgroup \(H = H_{a,b,t} \) is a subproduct of \(\mathbb{Z}_m \times \mathbb{Z}_n \) if \(H = H_1 \times H_2 \), where \(H_1 \) and \(H_2 \) are subgroups of \(\mathbb{Z}_m \) and \(\mathbb{Z}_n \), respectively.

Theorem 2.

i) The exponent of the subgroup \(H_{a,b,t} \) is given by

\[
\exp H_{a,b,t} = \frac{mn}{\gcd(mb, na, ns/ab)}. \tag{8}
\]

ii) The subgroup \(H_{a,b,t} \) is cyclic if and only if \(\gcd(m/a, n/b, ns/ab) = 1 \).

iii) The subgroup \(H_{a,b,t} \) is a subproduct if and only if \(t = 0 \) and \(H_{a,b,0} = \mathbb{Z}_{m/a} \times \mathbb{Z}_{n/b} \). Here \(H_{a,b,0} \) is cyclic if and only if \(\gcd(m/a, n/b) = 1 \).
According to Theorem 1, the number \(s(m, n) \) of subgroups of \(\mathbb{Z}_m \times \mathbb{Z}_n \) can be obtained by counting the elements of the set \(I_{m,n} \). We deduce

Theorem 3. For every \(m, n \in \mathbb{N} \), \(s(m, n) \) is given by

\[
\begin{align*}
 s(m, n) &= \sum_{a \mid m, b \mid n} \gcd(a, b) \\
 &= \sum_{d \mid \gcd(m, n)} \phi(d) \tau(m/d) \tau(n/d) \\
 &= \sum_{d \mid \gcd(m, n)} d \tau(mn/d^2).
\end{align*}
\]

Formula (9) is a special case of a formula representing the number of all subgroups of a class of groups formed as cyclic extensions of cyclic groups, deduced by W. C. Calhoun [2] and having a laborious proof. Note that formula (9) is given, without proof in [18, item A054584].

Note also that the function \((m, n) \mapsto s(m, n) \) is representing a multiplicative arithmetic function of two variables, that is, \(s(mn', nn') = s(m, n)s(m', n') \) holds for any \(m, n, m', n' \in \mathbb{N} \) such that \(\gcd(mn, m'n') = 1 \). This property, which is in concordance with (1), is a direct consequence of formula (9). See Section 5.

Let \(N(a, b, c) \) denote the number of solutions \((x, y, z, t) \in \mathbb{N}^4\) of the system of equations \(xy = a, zt = b, xz = c \).

Theorem 4. For every \(k, m, n \in \mathbb{N} \) such that \(k \mid mn \),

\[
\begin{align*}
 s_k(m, n) &= \sum_{a \mid m, b \mid n \mid mb/a = k} \gcd(a, b) \\
 &= \sum_{d \mid \gcd(k, m)} \phi(de/k) \\
 &= \sum_{d \mid \gcd(k, m, n)} \phi(d)N(m/d, n/d, k/d).
\end{align*}
\]

Formulae (3) and (4) can be easily deduced from each of the formulae given in Theorems 3 and 4, respectively.

Theorem 5. Let \(m, n \in \mathbb{N} \).

i) The number \(c(m, n) \) of cyclic subgroups of \(\mathbb{Z}_m \times \mathbb{Z}_n \) is given by

\[
\begin{align*}
 c(m, n) &= \sum_{a \mid m, b \mid n \mid \gcd(m/a, n/b) = 1} \gcd(a, b) \\
 &= \sum_{a \mid m, b \mid n \mid \gcd(a, b)} \phi(\gcd(a, b)).
\end{align*}
\]
\[= \sum_{d \mid \gcd(m,n)} (\mu * \phi)(d) \tau(m/d) \tau(n/d) \tag{17}\]
\[= \sum_{d \mid \gcd(m,n)} \phi(d) \tau(mn/d^2). \tag{18}\]

ii) The number of subproducts of \(\mathbb{Z}_m \times \mathbb{Z}_n\) is \(\tau(m) \tau(n)\) and the number of its cyclic subproducts is \(\tau(mn)\).

Formula (16), as a special case of an identity valid for arbitrary finite Abelian groups, was derived by the third author [15, 16] using different arguments. The function \((m, n) \mapsto c(m, n)\) is also multiplicative.

3 Subgroups of \(\mathbb{Z}_n \times \mathbb{Z}_n\)

In the case \(m = n\), which is of special interest in applications, the results given in the previous section can be easily used. We point out that \(n \mapsto s(n) := s(n, n)\) and \(n \mapsto c(n) := c(n, n)\) are multiplicative arithmetic functions of a single variable (sequences [18, items A060724, A060648]). They can be written in the form of Dirichlet convolutions as shown by the next Corollaries.

Corollary 1. For every \(n \in \mathbb{N}\),
\[s(n) = \sum_{de=n} \phi(d) \tau^2(e) \tag{19}\]
\[= \sum_{de=n} d \tau(e^2). \tag{20}\]

Corollary 2. For every \(n \in \mathbb{N}\),
\[c(n) = \sum_{de=n} d 2^{\omega(e)} \tag{21}\]
\[= \sum_{de=n} \phi(d) \tau(e^2). \tag{22}\]

Further convolutional representations can also be given, for example,
\[s(n) = \sum_{de=n} \tau(d) \psi(e), \quad c(n) = \sum_{d \mid n} \psi(d), \tag{23}\]
all of these follow from the Dirichlet-series representations
\[\sum_{n=1}^{\infty} \frac{s(n)}{n^z} = \frac{\zeta^3(z) \zeta(z - 1)}{\zeta(2z)}, \tag{24}\]
\[\sum_{n=1}^{\infty} \frac{c(n)}{n^z} = \frac{\zeta^2(z) \zeta(z - 1)}{\zeta(2z)}, \tag{25}\]
valid for \(z \in \mathbb{C}, \Re(z) > 2\).
Observe that
\[s(n) = \sum_{d|n} c(d) \quad (n \in \mathbb{N}), \]
which is a simple consequence of (23) or of (24) and (25). It also follows from the next result.

Theorem 6. For every \(n, \delta \in \mathbb{N} \) with \(\delta \mid n \) the number of subgroups of exponent \(\delta \) of \(\mathbb{Z}_n \times \mathbb{Z}_n \) equals the number of cyclic subgroups of \(\mathbb{Z}_\delta \times \mathbb{Z}_\delta \).

4 Proofs

Proof. (for Theorem 1) Let \(H = \mathbb{Z}_m \times \mathbb{Z}_n \). Consider the natural projection \(\pi_2 : G = \mathbb{Z}_m \times \mathbb{Z}_n \) given by \(\pi_2(x, y) = y \). Then \(\pi_2(H) \) is a subgroup of \(\mathbb{Z}_n \) and there is a unique divisor \(b \) of \(n \) such that \(\pi_2(H) = \langle b \rangle := \{ jb : 0 \leq j \leq n/b - 1 \} \). Let \(s \geq 0 \) be minimal such that \((s, b) \in H \).

Furthermore, consider the natural inclusion \(\iota_1 : \mathbb{Z}_m \to G \) given by \(\iota_1(x) = (x, 0) \). Then \(\iota_1^{-1}(H) \) is a subgroup of \(\mathbb{Z}_m \) and there exists a unique divisor \(a \) of \(m \) such that \(\iota_1^{-1}(H) = \langle a \rangle \).

We show that \(H = \{(ia + js, jb) : i, j \in \mathbb{Z}\}. \) Indeed, for every \(i, j \in \mathbb{Z}, (ia + js, jb) = i(a, 0) + j(s, b) \in H \). On the other hand, for every \((u, v) \in H \) one has \(v \in \pi_2(H) \) and hence there is \(j \in \mathbb{Z} \) such that \(v = jb \). We obtain \((u - js, 0) = (u, v) - j(s, b) \in H \), \(u - js \in \iota_1^{-1}(H) \) and there is \(i \in \mathbb{Z} \) with \(u - js = ia \).

Here a necessary condition is that \((sn/b, 0) \in H \) (obtained for \(i = 0, j = n/b \)), that is \(a \mid sn/b \), equivalent to \(a/gcd(a, n/b) \mid s \). Clearly, if this is verified, then for the above representation of \(H \) it is enough to take the values \(0 \leq i \leq m/a - 1 \) and \(0 \leq j \leq n/b - 1 \).

Also, dividing \(s \) by \(a \) we have \(s = qa + r \) with \(0 \leq r < a \) and \((r, b) = (s, b) - q(a, 0) \in H \), showing that \(s < a \), by its minimality. Hence \(s = ta/gcd(a, n/b) \) with \(0 \leq t \leq gcd(a, n/b) - 1 \).

Thus we obtain the given representation.

Conversely, every \((a, b, t) \in I_{m,n} \) generates a subgroup \(H_{a,b,t} \) of order \(mn/(ab) \) of \(\mathbb{Z}_m \times \mathbb{Z}_n \) and the proof is complete.

Proof. (for Theorem 2) i) The subgroup \(H_{a,b,t} \) is generated by \((a, 0) \) and \((s, b) \). Hence the exponent of \(H_{a,b,t} \) is the least common multiple of the orders of these two elements. The order of \((a, 0) \) is \(m/a \). To compute the order of \((s, b) \) note that \(m \mid rs \) if and only if \(m/gcd(m, s) \mid r \).

Thus the order of \((s, b) \) is \(\text{lcm}(m/gcd(m, s), n/b) \). We deduce that the exponent of \(H_{a,b,t} \) is

\[\exp H_{a,b,t} = \text{lcm} \left(\frac{m}{a}, \frac{m}{\text{gcd}(m, s)}, \frac{n}{b} \right) = \text{lcm} \left(\frac{mn}{na}, \frac{mn}{nc, m}, \frac{mn}{mb} \right) = \frac{mn}{\text{gcd}(na, mn, mb)}. \]

ii) Now \(H_{a,b,t} \) is cyclic if and only if its exponent equals its order, that is \(\frac{mn}{\text{gcd}(na, mb, mn)} = \frac{mn}{ab} \), equivalent to \(\text{gcd}(m/a, n/b, ns/ab) = 1 \).

iii) Follows at once from Theorem 1. \(\square \)
Proof. (for Theorem 3) By its definition, the number of elements of the set $I_{m,n}$ is
\[
\sum_{a|m,b|n} \sum_{0 \leq t \leq \gcd(a,n/b)-1} 1 = \sum_{a|m,b|n} \gcd(a,n/b) = \sum_{a|m,b|n} \gcd(a,b),
\]
representing $s(m,n)$. This is formula (9).
To obtain formula (10) apply the Gauss formula $n = \sum d|n \phi(d)$ ($n \in \mathbb{N}$) by writing:
\[
s(m,n) = \sum_{a|m,b|n} \sum_{d|\gcd(a,b)} \phi(d) = \sum_{a|m,b|n} \sum_{d|\gcd(a,b)} \phi(d) = \sum \phi(d)
\]
\[
= \sum_{d|m/d} \sum_{d|n/d} 1 = \sum_{d|\gcd(m,n)} \phi(d)\tau(m/d)\tau(n/d).
\]
Now (11) follows from (10) by the Busche-Ramanujan identity (cf. [8, Ch. 1])
\[
\tau(m)\tau(n) = \sum_{d|\gcd(m,n)} \tau(mn/d^2) \quad (m,n \in \mathbb{N}).
\]
\[\square\]

Proof. (for Theorem 4) According to Theorem 1,
\[
s_k(m,n) = \sum_{a|m,b|n} \gcd(a,n/b),
\]
giving (12), which can be written, by Gauss’ formula again, as
\[
s_k(m,n) = \sum_{a|m,b|n} \sum_{c|a,c|b} \phi(c) = \sum_{c|m|n} \phi(c)
\]
\[\tag{26}
= \sum_{d|m} \sum_{c=d} \phi(c),
\]
where in the inner sum one has $c = de/k$ and obtain (13). Now, to get (14) write (26) as
\[
s_k(m,n) = \sum_{c|m|n} \phi(c) \sum_{u,v,w} 1 = \sum_{c|m|n} \phi(c)N(u,v,w)
\]
\[
\sum_{c|\gcd(m,n,k)} \phi(c)N(m/c,n/c,k/c),
\]
and the proof is complete. \[\square\]
Proof. (for Theorem 5) i) According to Theorems 1 and 2 and using that \(\sum_{d \mid n} \mu(d) = 1 \) or 0, according to \(n = 1 \) or \(n > 1 \),

\[
c(m,n) = \sum_{a \mid m, b \mid n} \sum_{1 \leq s \leq a} \sum_{\substack{1 \leq t \leq b \mid ns \mid ab \mid ns/ab \mid ab/n\mid ns}} 1 = \sum_{a \mid m, b \mid n} \sum_{1 \leq s \leq a} \sum_{\substack{1 \leq t \leq b \mid ns \mid ab \mid ns/ab \mid ab/n\mid ns}} 1,
\]

where the inner sum is \(\gcd(a, j) \). Hence

\[
c(m,n) = \sum_{a \mid m, b \mid n} \mu(e) \gcd(a, j).
\]

(27)

Now regrouping the terms according to \(ei = z \) and \(be = t \) we obtain

\[
c(m,n) = \sum_{a \mid m, b \mid n} \gcd(a, j) \sum_{ei = z} \mu(e) = \sum_{a \mid m, b \mid n} \gcd(a, j) \sum_{e \mid \gcd(z,t)} \mu(e) = \sum_{a \mid m, b \mid n} \gcd(a, j),
\]

which is (15).

The next results follow applying Gauss’ formula and the Busche-Ramanujan formula, similar to the proof of Theorem 3.

ii) For the subproducts \(H_{a,b,0} \) the values \(a \mid m \) and \(b \mid n \) can be chosen arbitrary and it follows at once that the number of subproducts is \(\tau(m) \tau(n) \). The number of cyclic subproducts is

\[
\sum_{a \mid m, b \mid n} 1 = \sum_{a \mid m, b \mid n} \mu(e) = \sum_{e \mid \gcd(m,n)} \tau(A) \tau(B) = \sum_{e \mid \gcd(m,n)} \mu(e) \tau(m/e) \tau(n/e) = \tau(mn),
\]

by the inverse Busche-Ramanujan identity.

Proof. (for Theorem 6) According to Theorem 2/i), the number of subgroups of exponent \(\delta \) of \(\mathbb{Z}_n \times \mathbb{Z}_n \) is

\[
E_\delta(n) = \sum_{a \mid n, b \mid n} \sum_{1 \leq s \leq a} \sum_{\substack{1 \leq t \leq b \mid ns \mid ab \mid ns \mid ab/n\mid ns}} 1 = \sum_{a \mid n, b \mid n} \sum_{1 \leq s \leq a} \sum_{\substack{1 \leq t \leq b \mid ns \mid ab \mid ns \mid ab/n\mid ns}} 1.
\]
Write \(a = a_1 n / \delta, b = b_1 n / \delta, s = s_1 n / \delta \) with \(\gcd(a_1, b_1, s_1) = 1 \). We deduce, similar to the proof of Theorem 5/ii) that
\[
E_\delta(n) = \sum_{\substack{ex = \delta \\varepsilon jy = n}} \mu(e) \gcd(i,j),
\]
which is exactly \(c_\delta(n) \), cf. (27).

5 Further remarks

1) As mentioned in the Section 2 the functions \((m,n) \mapsto s(m,n) \) and \((m,n) \mapsto c(m,n) \) are multiplicative functions of two variables. This follows easily from formulae (9) and (16), respectively. Namely, according to those formulae \(s(m,n) \) and \(c(m,n) \) are two variables Dirichlet convolutions of the functions \((m,n) \mapsto \gcd(m,n) \) and \((m,n) \mapsto \phi(\gcd(m,n)) \), respectively with the constant 1 function, all multiplicative. Since convolution preserves the multiplicativity we deduce that \(s(m,n) \) and \(c(m,n) \) are also multiplicative. See [15, Sect. 2] for details.

2) For any finite groups \(A \) and \(B \) a subgroup \(C \) of \(A \times B \) is cyclic if and only if \(\iota_1^{-1}(C) \) and \(\iota_2^{-1}(C) \) have coprime orders, where \(\iota_1 \) and \(\iota_2 \) are the natural inclusions ([1, Th. 4.2]). In the case \(A = \mathbb{Z}_m, B = \mathbb{Z}_n \) and \(C = H_{a,b,t} \) one has \(\#\iota_1^{-1}(C) = m/a \) and \(\#\iota_2^{-1}(C) = \gcd(n/b, ns/ab) \) and the characterization of the cyclic subgroups \(H_{a,b,t} \) given in Theorem 2/ii) can be obtained also in this way. It turns out that regarding the sublattice, \(H_{a,b,t} \) is cyclic if and only if the numbers of points on the horizontal and vertical axes, respectively, are relatively prime. Note that in the case \(m = n \) the above condition reads \(n \gcd(a, b, s) = ab \). Thus it is necessary that \(n \mid ab \). The subgroup on the Figure is not cyclic.

3) Note also the next formula for the number of cyclic subgroups of \(\mathbb{Z}_m \times \mathbb{Z}_n \), derived in [9, Ex. 2]:
\[
c(n) = \sum_{\substack{\gcd(d,e) = n}} \gcd(d,e) \quad (n \in \mathbb{N}), \tag{28}
\]
where the sum is over all ordered pairs \((d,e)\) such that \(\gcd(d,e) = n \). For a short direct proof of (28) write \(d = \ell a, e = \ell b \) with \(\gcd(a,b) = 1 \). Then \(\gcd(d,e) = \ell, \gcd(d,e) = \ell ab \) and obtain
\[
\sum_{\substack{\gcd(d,e) = n}} \gcd(d,e) = \sum_{\substack{\ell \mid \gcd(a,b) = 1}} \ell = \sum_{\substack{k \mid n}} \ell \sum_{\substack{\ell \mid \gcd(a,b) = 1}} 1 = \sum_{\substack{k \mid n}} \ell 2^{\omega(k)} = c(n),
\]
according to (21).

4) Every subgroup \(K \) of \(\mathbb{Z} \times \mathbb{Z} \) has the representation \(K = \{(ia + js, jb) : i, j \in \mathbb{Z}\} \), where \(0 \leq s \leq a, 0 \leq b \) are unique integers. This follows like in the proof of Theorem 1. Furthermore, in the case \(a, b \geq 1, s < a \) the index of \(K \) is \(ab \) and one obtains at once that the number of subgroups \(K \) having index \(n \) \((n \in \mathbb{N})\) is \(\sum_{ab=n} \sum_{0 \leq s \leq a - 1} 1 = \sum_{ab=n} a = \sigma(n) \), mentioned in the Introduction.

6 Acknowledgement

N. Holighaus was partially supported by the Austrian Science Fund (FWF) START-project FLAME (Y551-N13). L. Tóth gratefully acknowledges support from the Austrian Science Fund.
(FWF) under the project Nr. M1376-N18. C. Wiesmeyr was partially supported by EU FET Open grant UNLocX (255931).

References

M. Hampejs
NuHAG, Faculty of Mathematics, Universität Wien
Nordbergstraße 15, A-1090 Vienna, Austria
E-mail: mario.hampejs@univie.ac.at

N. Holighaus
Acoustics Research Institute, Austrian Academy of Sciences
Wohllebengasse 12-14, A-1040 Vienna, Austria
E-mail: nicki.holighaus@univie.ac.at

L. Tóth
Institute of Mathematics, Universität für Bodenkultur
Gregor Mendel-Straße 33, A-1180 Vienna, Austria
and
Department of Mathematics, University of Pécs
Ifjúság u. 6, H-7624 Pécs, Hungary
E-mail: ltoth@gamma.ttk.pte.hu

C. Wiesmeyr
NuHAG, Faculty of Mathematics, Universität Wien
Nordbergstraße 15, A-1090 Vienna, Austria
E-mail: christoph.wiesmeyr@univie.ac.at