BOUNDEDNESS OF FOURIER INTEGRAL OPERATORS ON
FOURIER LEBESGUE SPACES AND RELATED TOPICS

FABIO NICOLA

(JOINT WORK WITH ELENA CORDERO AND LUIGI RODINO)

Abstract. Hörmander’s Fourier integral operators are, in a simplified local
form, integral operators in \mathbb{R}^d of the type

$$Af(x) = \int e^{2\pi i \Phi(x,\eta)} \sigma(x,\eta) \hat{f}(\eta) \, d\eta.$$

The symbol σ satisfies the growth estimate

$$|\partial_\alpha x \partial_\beta \eta \sigma(x,\eta)| \leq C_{\alpha,\beta}(1 + |\eta|)^{m-|\beta|}, \quad \forall (x,\eta) \in \mathbb{R}^{2d},$$

We also suppose that σ has support with compact projection with respect to x. The phase $\Phi(x,\eta)$ is real-valued, positively homogeneous of degree 1 in η, smooth for $\eta \neq 0$, and non-degenerate. It is easy to see that such an operator maps the space $S(\mathbb{R}^d)$ of Schwartz functions into itself continuously. As basic results, the operator A is L^2-bounded for $m = 0$, as well as L^p-bounded, $1 < p < \infty$, if the order m of σ is negative, satisfying

$$m \leq -(d-1) \left| \frac{1}{2} - \frac{1}{p} \right|,$$

as proved in [3].

Here we present some results from [1] where we studied the action of an operator A as above on the spaces F_L^p of temperate distributions whose Fourier transform is in L^p (with the norm $\|f\|_{F_L^p} = \|\hat{f}\|_{L^p}$). We show that A is bounded as an operator $(F_L^p)_{comp} \rightarrow (F_L^p)_{loc}$, $1 \leq p \leq \infty$, if $m \leq -d(1/2 - 1/p)$. This is similar to (1), but with the difference of one unit in the dimension. Surprisingly, this threshold is shown to be sharp in any dimension $d \geq 1$, even for phases linear with respect to η.

Another related problem is to investigate the global boundedness of such an operator, when σ is no longer compactly supported with respect to x but satisfies suitable decay estimates at infinity. This is the object of [2], which will be briefly discussed as well. In particular, we present some striking examples of failure of global boundedness on L^p. When dealing with such a global perspective, besides the spaces L^p and F_L^p, the modulation spaces represent a natural framework for these problems.

References

Dipartimento di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

E-mail address: fabio.nicola@polito.it