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The Density Operator

Let H be a Hilbert space. A density operator on H is a bounded operator
0 : H — 'H having the three following properties:

@ It is a self-adjoint operator: p =p"* ;
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The Density Operator

Let H be a Hilbert space. A density operator on H is a bounded operator
0 : H — 'H having the three following properties:

@ It is a self-adjoint operator: p =p"* ;
@ It is of trace class (and hence compact) and has trace one: Trp =1 ;

Q It is positive semidefinite p > 0 that is (pyp|yp) > 0 for all ¥ in H.

@ [t is the last property which causes problems, because the condition
0 > 0 usually holds for some values of h and is violated for others...
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The Density Operator

It follows from the spectral theorem for compact operators that there exist
normalized functions ¢, ¥,, ... in H such that

p=)Y ajP; withaj>0and ) a;j=1
j j

where P; is the orthogonal projection of the ray generated by ¥ that is

P = (wlo) ;.
The operator p is the density operator of the mixed state ¢ = }; ajp;.
The average (mean value) of an operator A (or “observable”) is given by

the formula R R
<A>A = Tr(Ap).
P
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Density Operator and Wigner Distribution

We now assume H = L?(IR").

@ The operator kernel of the density operator p = YjiPiis
Ks = L aj; @ P hence we can write p as a Weyl pseudodifferential
operator

pP(x) = //MRH 7 (L (x +y), )i (y)dydp.

where p is the Wigner distribution of p:

p(x.p) = (z25)" /R eIV (x + 3y, x — 3y)dy .
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Density Operator and Wigner Distribution

We now assume H = L?(IR").

@ The operator kernel of the density operator p = YjiPiis
Ks = L aj; @ P hence we can write p as a Weyl pseudodifferential
operator

pp(x) = // . e%p'(X*Y)p(%(X—i—y),p)?,b(y)dydp.
where p is the Wigner distribution of p:
p(x.p) = (z25)" /R eIV (x + 3y, x — 3y)dy .
o Equivalently: p(x,p) = ¥ «; W1/Jj(X, p) where
Wy, (x.p) = (35)" [ & 527, (e L)) (x — vy
is the Wigner distribution of ¥,
@ The condition Trp = 1 is equivalent to [p,. . P(X, p)dpdx = 1.
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Density operator and Wigner Distribution for Physicists!

If you really insist on preferring bra-ket notation:
The density operator can be written as

p= ;"‘j ‘l/"]> <1PJ‘ .
and

plxp) = (55)" [ (x+1y|plx— ) db.

Also: the kernel can be rewritten:

WPl = [ e8P0 (x+y). P,
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Density operator and Weyl-Heisenberg Operators

o Let z = (x,p) and 2/ = (X', p’). The symplectic Fourier p! = Fyp
transform of the Wigner distribution p of p is defined by

p22) = (3h5)" [, &+ (2 d

where 0(z;2) = p-x' — p’ - x is the standard symplectic form.
Notice that the condition Trp = 1 is equivalent to p(0) = (51+)".
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Density operator and Weyl-Heisenberg Operators

o Let z = (x,p) and 2/ = (X', p’). The symplectic Fourier p! = Fyp
transform of the Wigner distribution p of p is defined by

p22) = (3h5)" [, &+ (2 d

where 0(z;2) = p-x' — p’ - x is the standard symplectic form.
Notice that the condition Trp = 1 is equivalent to p(0) = (51+)".

@ We then have the beautiful formula

P= e pa(20)T"(20)dzo

where /7\'7’(20) is the Heisenberg—Weyl operator:

T (20)(x) = eFPox =20y (x — xq).
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Positivity and Uncertainty Principle

@ The positivity of a density operator is related to the uncertainty
principle of quantum mechanics in its strong (Robertson—-Schrédinger)
form. This principle can be stated as follows: let p be a putative
density operator. Then

(AX))5(AP)3 > [Cov (X, Py)p)* +
where, by definition,
(BX))3 = (XP), = (X5 o (BP3=(PF). —(P));

and

Cov(X, Pl = [ (5= (), (5 = () Do)z
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Positivity and Uncertainty Principle

@ The positivity of a density operator is related to the uncertainty
principle of quantum mechanics in its strong (Robertson—-Schrédinger)
form. This principle can be stated as follows: let p be a putative
density operator. Then

(AX))5(AP)3 > [Cov (X, Py)p)* +
where, by definition,
(BX))3 = (XP), = (X5 o (BP3=(PF). —(P));

and
Cov(X;, Py = [ (3= (x),) (56 = (x0) Jo(2) .
@ The condition p > 0 implies the UP.

e However: the UP is not sufficient to ensure that p > 0!
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Positivity and UP

...here is a counterexample due to Narcowich: take for simplicity h =1
and choose

2p%)

0, (x.p) = (1= 3a® — L pp?)e (XY g B> 0.
One verifies that although the uncertainty relations are satisfied we have
4\ _ 4 — _oa,2
(P >ﬁ = /]RZ p*p(x, p)dxdp = —24a* < 0
so that p is not positive semi-definite! So the UP is not a sufficient

condition for a self-adjoint operator with trace one to be a density
operator.
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Positivity and the KLM conditions

@ It turns out that the “true” conditions ensuring positive
semi-definiteness are known in mathematics; they are the KLM
(Kastler, Loupias, Miracle-Sole) conditions. Defining the h =1
symplectic Fourier transform p_(z) = p=!(z)the KLM conditions
can be stated in the following way:
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Positivity and the KLM conditions

@ It turns out that the “true” conditions ensuring positive
semi-definiteness are known in mathematics; they are the KLM
(Kastler, Loupias, Miracle-Sole) conditions. Defining the h =1
symplectic Fourier transform p_(z) = p=!(z)the KLM conditions
can be stated in the following way:

e For any sequence z1, ..., zy of phase space points z; = (x;, p;) the

Hermitian N x N operator M" = (sz)lgj,ng with (J, k) entry

M} = p, (2 — 2)e™ %)
is positive-definite, that is

Y oz —z)e i@ A >0
1<j k<N

for all complex numbers Ay, ..., Ay. (We assume from now on that p
is continuous).
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Positivity and the KLM conditions

The KLM conditions serve to clarify the connection between classical and
quantum states. When h = 0 the KLM conditions reduce to the condition
for p, to be a function of positive type:

Y. p.(z—z)AjAL > 0.
N

1<j,k<

By Bochner's theorem p, is then the (symplectic) Fourier transform of a
non-negative finite measure on phase space, that is, of a classical state.

Suppose that p is the density operator of a pure state: p = W1. Then

p > 0 (strict inequality!) if and only if ¢ is a Gaussian: this is the famous
“Hudson’s theorem"”.
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KLM, UP, and symplectic camel

Consider now the covariance operator of p; it is defined as in classical
statistical mechanics by

5 |:COV(X,X)

0

0 COV(X, P)§:|
Cov(P,X)ﬁ Cov (P, P)ﬁ

where Cov(X, X)5 = (Cov(Xj, Xk)5)1<)k<n With

Cov(X, Pl = [ (5= 09)p) (5 = (x) o (2) oz

etc.... For instance, when n = 1:

(AX)2  Cov(X,P);

= |Cov(P.X);  (AP)2
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Positivity and the KLM conditions

@ It turns out that the KLM conditions ensuring positive
semi-definiteness of p imply (but are not equivalent to, except in the
Gaussian case) the following condition on the condition ¥5:

1.
S+ 5ih) 2 0.

This condition, well-known in quantum optics, is rigorously equivalent
to the UP! But it is also equivalent to a topological condition, which
can be stated in two equivalent ways. Consider the “Wigner ellipsoid”
Wﬁ : %25121 < 1; then

@ There is no way one can embed a phase space ball with radius Vh
into W; using only canonical transformations (but one can always find
a general volume preserving transformations which does the job!).

@ The symplectic capacity of the Wigner ellipsoid W; is > w'h = %h
(half the quantum of action...)
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The Narcowich—Wigner Spectrum

@ As we mentioned before, a given self-adjoint operator with trace one
can be positive semi-definite for some values of Planck’s constant,
and not for others. The situation is particularly embarrassing when
one wants to study the classical limit h — 0...
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The Narcowich—Wigner Spectrum

@ As we mentioned before, a given self-adjoint operator with trace one
can be positive semi-definite for some values of Planck’s constant,
and not for others. The situation is particularly embarrassing when
one wants to study the classical limit h — 0...

o Narcowich (1986) has introduced the notion of “Wigner spectrum”. It
is defined as follows: let p be such that [ p(z)dz = 1. Then W5(p)
is the set of all numbers 77 > 0 for which the KLM conditions are
satisfied by p: for any sequence z1, ..., zy of phase space points
zj = (xj, pj) the Hermitian N x N operator M" = (Mﬂ()lgj,ng with
(J, k) entry

Mﬂ = p,(z — Zk)eféw(zjvzk)

is positive-definite.
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The Narcowich—Wigner Spectrum

@ Here are a few properties of the Wigner spectrum:

@ [ is a density operator if (and only if) h € WS(p) ;

@ If 0isin WS(p) then p > 0 (it is thus a classical probability) density;
Q If n € WS(p) then —yy € WS(p);

Q WS(p) C [—A, A] for some A > 0.

Q@ WS(p=p') contains WS(p) + WS(p’).
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@ Question 1: For which quantum states p do we have
WS(p) = [—"h, h] ? This is an interesting question, because (if they
exist) such states go “smoothly” to classical states when h — 0.
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@ Question 1: For which quantum states p do we have
WS(p) = [—"h, h] ? This is an interesting question, because (if they
exist) such states go “smoothly” to classical states when h — 0.

e Question 2: What about the condition {—"h,0, h} C WS(p) ?

@ Answers: Unknown in general.... Werner and Brocker have shown
that in general a mixture of the three first states of the harmonic
oscillator does not satisfy WS(p) = [—h, h], so such a mixture does
not qualify for the limit &~ — 0. We can however give a
characterization of pure states, following ideas of Narcowich,
O’'Connell, Dias, Prata....

(Institute) Density Operators 26.11. 2008 16 / 29



Wigner Spectrum of Pure States

The following result completely describes the Wigner spectrum of the
Wigner transform of a function in L2(IR"):

Let p = W1. Then:
(i) If ¢ is (and hence p) a Gaussian then WS(p) D [—h, h];
(ii) Otherwise WS(p) = {—"h, h}.

Proof.

(i) Since the state is Gaussian we have 7 € WS(p) if and only if
Y5+ 5inJ > 0. Since h € WS(p) we haveX; + 3ihJ > 0. Set now
n =rhwith 0 <r <1. We have

1. 1,
i - 5/17J: (1-— r)Zﬁ—Fr <Zﬁ+ 2/71J> > 0.

O

v
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Proof.
(ii) Set G,(z) = (rtn)~" exp(—%|z|2) for y > 0. Assume WS(p) contains
7 < h (and > 0). We have

WS(Gy xp) D WS(Gy) + WS(p) D {—h,0, h}

since WS(Gy) = [—7,1] and WS(p) D {—",%,0,7, h}. It follows that
G,7 * 0 is the Wigner distribution of some state; in view of the KLM
conditions we also have G, * p > 0. Define F = G, % p; we have F > 0 (it
is a “Husimi distribution”). Since G, * G = G, y,» we can write

F = Gy % (Gy % p) for 0 <7 < h. But F is not a Gaussian (because p
isn't) and hence there exists zy such that

F(z) = /IR e 7102 (G, % p)(2)dz = 0.

But this forces G,] * 0 to be < 0 on a whole set with measure > 0, which
is impossible because G,7 xp > 0. ]
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Symplectic capacities

A symplectic capacity on the symplectic space (IR?", o) assigns to every
subset Q of IR?" a number c(Q)) > 0 or +oo; this assignment has the four
properties listed below. We denote by B(R) the ball |z| < R and by
Z;(R) the cylinder x? 4 p? < R*.

@ Monotonicity: ¢(Q) < c(QY) if Q C QY;

e Symplectic invariance: ¢(f(Q)) = c(Q) for every canonical

transformation f (linear, or not);
e Conformality: c(AQ) = A%c(Q) if A € R;
o Nontriviality: We have c(B(R)) = c(Z;(R)) = nR®.

Example

The “symplectic area” or “Gromov width”

cer(Q) = sup {mr?:f(B(R)) C Q}.

f canonical

That cg, is a symplectic capacity follows from Gromov's non-squeezing
theorem (it is in fact equivalent to it
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Symplectic capacities and the UP

The Robertson—Schrédinger uncertainty principle
(AX)3(AP)3 > [Cov(X;, P)p)* + 177
is equivalent to the condition
Y5+ %i'hJ >0
which is equivalent to the condition

cOW)>nh= %h

for every symplectic capacity; here
Wils 1z, <1
. 5 ﬁ ZZ X

is the so-called “Wigner ellipsoid”.
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Application: Sub-Gaussian Pure states

Let i be a normalized pure state (=wavefunction).

Theorem

Assume that there exists a real symmetric operator M > 0 such that

p(z) = Wi(z) < Ce hMe2.

(i) The ellipsoid M = {z : Mz - z < 'h} has symplectic capacity

c(M) > h.

(ii) If M is the image of the ball B(v/h) : |z|? < T by a linear symplectic
transformation S then and  is a squeezed coherent state Ne—zr (X+iY)xx,
image of ,(x) = (7r'h)*”/4e*ﬁ|x|2 by any one of the two metaplectic
operators corresponding to the symplectic operator S;

(iii) In this case the Wigner spectrum of p = W is [—h, h| (and
limy_0p(2) =6(2)).
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Sub-Gaussian Pure states

Proof.

(i) (Askloster 2007!). The idea is to perform a symplectic diagonalization:
M = ST DS and to use Hardy's uncertainty principle: Let Y be square
integrable and let ¥(p) be its h-Fourier transform. Assume that for some
constant C > 0:

b 2

[p(x)| < Ce % and [P(p)| < Ce 2.

If ab > 1 then 1y = O; If ab = 1 then §(x) ~ e~ 77*". This leads to

1 n
Wip(Sz) < Cexp [—77 Y A6+ p7)
j=1

where Ay > ... > A, are positive real numbers such that A; < 1. The
symplectic capacity of M = {z: Mz-z < h} is
c(M)=mh/A > 1th, O]
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Sub-Gaussian Pure states

(i) We have M = ST S and Wp(Sz) < Ce 712" Since

Wp(Sz) = WS 1p(z) (symplectic/metaplectic covariance of the Wigner
transform) Hardy's theorem now implies that we must have ¢ = §1p0. (iii)
is obvious. O
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Sub-Gaussian Mixed states

Here is a generalization of the previous result:

Assume that there exists a real symmetric operator M > 0 such that
p(z) < Ce~wMzz, If p is a density operator then the ellipsoid

M ={z: Mz-z < h} has symplectic capacity c(M) > Lh. (ii) If M is
the image of the ball B(~/h) : |z|?> < h by a linear symplectic
transformation S then c(M) = h has full Wigner spectrum:

WS (p) = [0, h|; in fact the state represented by p is a pure (Gaussian)
state.

Using a symplectic diagonalization of M reduces the problem to the case
where M is a diagonal operator; one then applies Hardy's uncertainty
principle (cf. Askloster 2007...) to show that M must satisfy the condition
M~1 +iJ > 0, which is equivalent to c(M) > %h. O
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Here is a result that generalizes the Gaussian case:

Theorem

Let Q be a real C? function on R" which is strictly and uniformly convex.
Assume that there exists C > 0 such that p(z) < Ce=#Q(2).

(i) If p is a density operator then the set C = {z: Q(z) < h} has
symplectic capacity ¢(C) > %h for every symplectic capacity c;

(ii) equivalently fv pdx > %h for every Hamiltonian periodic orbit y
carried by the boundary oC.

Remark 1: Q is strictly and uniformly convex if and only if there exists

¢ > 0 such that Q" (zy)z -z > c|z|? for all zg, z. It follows that the set C
is compact and convex.

Remark 2: Periodic Hamiltonian orbits on a hypersurface are defined
unambiguously; such orbits always exist when dC bounds a convex and
bounded set.
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Sketch of Proof

@ We may assume Q(0) = 0 (trivial!) and Q'(0) = V,Q(0) =0
(replace p(z) by p(z — zy) for a suitably chosen z).
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Sketch of Proof

@ We may assume Q(0) = 0 (trivial!) and Q'(0) = V,Q(0) =0
(replace p(z) by p(z — zy) for a suitably chosen z).

@ The condition Q" (z)z -z > c|z|? is equivalent to Ag > 0 where
Ag = I?[Iz {\(z) : A(2) is an eigenvalue of Q"(z)}.
zeRe"
@ We have (Taylor's formula) Q(z) > 3Aq|z|? ) hence Q(z) < h
implies 1¢|z|? < h so that B(y/2h/Aq) C C
© We have p(z) < Ce~272l2I* and we have proven elsewhere (cf.

Askloster 2007...) that Hardy's uncertainty principle implies that we
must have Ag/2 < 1 hence
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Sketch of Proof

5. That we have ¢(C) > %h — fy ~pdx > %h in the Theorem follows
from the existence of a particular ng}n/mplectic capacity, the
Hofer—Zehnder capacity cqz, which has the property that it is given by
cnz(Q) = 557 ~ pdx when () is a compact and convex set. (See H.
Hofer and E. Zehnder. Symplectic Invariants and Hamiltonian
Dynamics. Birkhduser 1994.)
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Sketch of Proof

@ We may assume Q(0) = 0 (trivial!) and Q'(0) = V,Q(0) =0
(replace p(z) by p(z — zp) for a suitably chosen z).
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@ The condition Q" (z)z -z > c|z|? is equivalent to Ag > 0 where
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Sketch of Proof

@ We may assume Q(0) = 0 (trivial!) and Q'(0) = V,Q(0) =0
(replace p(z) by p(z — zp) for a suitably chosen z).

@ The condition Q" (z)z -z > c|z|? is equivalent to Ag > 0 where
Ag = I?[jz {A(z) : A(2) is an eigenvalue of Q"(z)}.
zeR*"
@ We have (Taylor's formula) Q(z) > 3Aq|z|? ) hence Q(z) < h
implies 2Aq|z|?> < hso that B(y/2h/Aq) C C
Q We have p(z) < Ce~27*2lzI" and we have proven elsewhere (cf.

Askloster 2007...) that Hardy's uncertainty principle implies that we
must have Ag/2 < 1 hence

c(C) > c(B(y/2h/rq)) >

N =
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THANK YOU!
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