Density Operators and the Uncertainty Principle NuHAG/WPI 2008

Maurice de Gosson

University of Vienna-NuHAG

26.11. 2008

(Institute)

26.11. 2008 1 / 29

References

- M. de Gosson and F. Luef, Remarks on the fact that the uncertainty principle does not characterize the quantum state. *Phys. Lett. A.* 364 (2007) 453–457.
- M. de Gosson and F. Luef, Quantum States and Hardy's Formulation of the Uncertainty Principle: a Symplectic Approach. *Lett. Math. Phys.* 80 (2007) 69–82
- M. de Gosson and F. Luef, Principe d'Incertitude et Positivité des Opérateurs à Trace ; Applications aux Opérateurs Densité. Ann. H. Poincaré 9(2) (2008) 329–346.
- F. J. Narcowich and R. F. O'Connell, Necessary and sufficient conditions for a phase-space function to be a Wigner distribution. *Phys. Rev. A* 34(1) (1986) 1–6
- F. J. Narcowich, Geometry and uncertainty, J. Math. Phys. 31(2) (1990)t, 2008.

(Institute)

 ${\small \textcircled{0}} \ \ \, {\rm It \ is \ a \ self-adjoint \ operator: \ } \widehat{\rho} = \widehat{\rho}^* \ ;$

 ${\small {\small 0}} \ \ {\rm It \ is \ a \ self-adjoint \ operator: \ } \widehat{\rho}=\widehat{\rho}^* \ ;$

2) It is of trace class (and hence compact) and has trace one: ${
m Tr}\,\widehat
ho=1$;

- ${\small {\small 0}} \ \ {\rm It \ is \ a \ self-adjoint \ operator: \ } \widehat{\rho}=\widehat{\rho}^* \ ;$
- 2) It is of trace class (and hence compact) and has trace one: ${
 m Tr}\,\widehat
 ho=1$;
- It is positive semidefinite $\hat{\rho} \ge 0$ that is $\langle \hat{\rho} \psi | \psi \rangle \ge 0$ for all ψ in \mathcal{H} .

- ${\small {\small 0}} \ \ {\rm It \ is \ a \ self-adjoint \ operator: \ } \widehat{\rho}=\widehat{\rho}^* \ ;$
- 2) It is of trace class (and hence compact) and has trace one: ${
 m Tr}\,\widehat
 ho=1$;
- It is positive semidefinite $\hat{\rho} \ge 0$ that is $\langle \hat{\rho} \psi | \psi \rangle \ge 0$ for all ψ in \mathcal{H} .
 - It is the last property which causes problems, because the condition $\hat{\rho} \geq 0$ usually holds for some values of Th and is violated for others...

It follows from the spectral theorem for compact operators that there exist normalized functions ψ_1, ψ_2, \dots in \mathcal{H} such that

$$\widehat{
ho} = \sum_j lpha_j P_j \;\; ext{with} \; lpha_j \geq 0 \; ext{and} \; \sum_j lpha_j = 1$$

where P_j is the orthogonal projection of the ray generated by ψ_j , that is $P_j \phi = \left\langle \psi_j | \phi \right\rangle \psi_j$. The operator $\hat{\rho}$ is the density operator of the mixed state $\psi = \sum_j \alpha_j \psi_j$. The average (mean value) of an operator \hat{A} (or "observable") is given by the formula

$$\left\langle \widehat{A} \right\rangle_{\widehat{\rho}} = \operatorname{Tr}(\widehat{A}\widehat{\rho}).$$

Density Operator and Wigner Distribution

We now assume $\mathcal{H} = L^2(\mathbb{R}^n)$.

• The operator kernel of the density operator $\widehat{\rho} = \sum_j \alpha_j P_j$ is $\mathcal{K}_{\widehat{\rho}} = \sum_j \alpha_j \psi_j \otimes \psi_j^*$ hence we can write $\widehat{\rho}$ as a Weyl pseudodifferential operator

$$\widehat{
ho}\psi(x) = \iint_{\mathbb{R}^n imes \mathbb{R}^n} e^{rac{i}{\hbar} p \cdot (x-y)}
ho(rac{1}{2}(x+y), p) \psi(y) dy dp.$$

where ρ is the *Wigner distribution* of $\hat{\rho}$:

$$ho(x,p)=ig(rac{1}{2\pi\hbar}ig)^n\int_{\mathbb{R}^n}e^{-rac{i}{\hbar}p\cdot y}K_{\widehat
ho}(x+rac{1}{2}y,x-rac{1}{2}y)dy$$
 .

Density Operator and Wigner Distribution

We now assume $\mathcal{H} = L^2(\mathbb{R}^n)$.

• The operator kernel of the density operator $\widehat{\rho} = \sum_j \alpha_j P_j$ is $\mathcal{K}_{\widehat{\rho}} = \sum_j \alpha_j \psi_j \otimes \psi_j^*$ hence we can write $\widehat{\rho}$ as a Weyl pseudodifferential operator

$$\widehat{
ho}\psi(x) = \iint_{\mathbb{R}^n imes \mathbb{R}^n} e^{rac{j}{\hbar} p \cdot (x-y)}
ho(rac{1}{2}(x+y), p) \psi(y) dy dp.$$

where ρ is the *Wigner distribution* of $\hat{\rho}$:

$$ho(x,p) = \left(rac{1}{2\pi\hbar}
ight)^n \int_{\mathbb{R}^n} e^{-rac{i}{\hbar}p\cdot y} K_{\widehat{
ho}}(x+rac{1}{2}y,x-rac{1}{2}y) dy$$
 .

• Equivalently: $ho(x,p) = \sum_j \alpha_j W \psi_j(x,p)$ where

$$W\psi_j(x,p) = \left(\frac{1}{2\pi\hbar}\right)^n \int_{\mathbb{R}^n} e^{-\frac{i}{\hbar}p \cdot y} \psi_j(x+\frac{1}{2}y)\psi_j^*(x-\frac{1}{2}y) dy$$

is the Wigner distribution of ψ_i .

Density Operator and Wigner Distribution

We now assume $\mathcal{H} = L^2(\mathbb{R}^n)$.

• The operator kernel of the density operator $\widehat{\rho} = \sum_j \alpha_j P_j$ is $\mathcal{K}_{\widehat{\rho}} = \sum_j \alpha_j \psi_j \otimes \psi_j^*$ hence we can write $\widehat{\rho}$ as a Weyl pseudodifferential operator

$$\widehat{
ho}\psi(x) = \iint_{\mathbb{R}^n imes \mathbb{R}^n} e^{rac{j}{\hbar} p \cdot (x-y)}
ho(rac{1}{2}(x+y), p) \psi(y) dy dp.$$

where ρ is the *Wigner distribution* of $\hat{\rho}$:

$$ho(x,p) = \left(rac{1}{2\pi\hbar}
ight)^n \int_{\mathbb{R}^n} e^{-rac{i}{\hbar}p\cdot y} K_{\widehat{
ho}}(x+rac{1}{2}y,x-rac{1}{2}y) dy$$
 .

• Equivalently: $ho({\sf x},{\sf p})=\sum_j lpha_j W \psi_j({\sf x},{\sf p})$ where

$$W\psi_j(x,p) = \left(\frac{1}{2\pi\hbar}\right)^n \int_{\mathbb{R}^n} e^{-\frac{i}{\hbar}p \cdot y} \psi_j(x+\frac{1}{2}y)\psi_j^*(x-\frac{1}{2}y) dy$$

is the Wigner distribution of ψ_i .

• The condition $\operatorname{Tr}\widehat{\rho}=1$ is equivalent to $\int_{\mathbb{R}^n\times\mathbb{R}^n}\rho(x,p)dpdx=1.$

If you *really* insist on preferring bra-ket notation: The density operator can be written as

$$\widehat{
ho} = \sum_{j} lpha_{j} \left| \psi_{j}
ight
angle \left\langle \psi_{j}
ight|.$$

and

$$\rho(x,p) = \left(\frac{1}{2\pi\hbar}\right)^n \int_{\mathbb{R}^n} \left\langle x + \frac{1}{2}y \right| \widehat{\rho} \left| x - \frac{1}{2}y \right\rangle dy.$$

Also: the kernel can be rewritten:

$$\langle y | \widehat{\rho} | x \rangle = \int_{\mathbb{R}^n} e^{\frac{i}{\hbar}(y-x)\cdot p} \rho(\frac{1}{2}(x+y), p) dp.$$

Density operator and Weyl-Heisenberg Operators

• Let z = (x, p) and z' = (x', p'). The symplectic Fourier $\rho_{\sigma}^{h} = \mathcal{F}_{\sigma}\rho$ transform of the Wigner distribution ρ of $\hat{\rho}$ is defined by

$$ho_{\sigma}^{\hbar}(z) = \left(rac{1}{2\pi\hbar}
ight)^n \int_{\mathbb{R}^{2n}} e^{-rac{i}{\hbar}\sigma(z,z')}
ho(z') dz'$$

where $\sigma(z; z') = p \cdot x' - p' \cdot x$ is the standard symplectic form. Notice that the condition $\operatorname{Tr} \hat{\rho} = 1$ is equivalent to $\rho_{\sigma}^{h}(0) = \left(\frac{1}{2\pi\hbar}\right)^{n}$.

Density operator and Weyl-Heisenberg Operators

• Let z = (x, p) and z' = (x', p'). The symplectic Fourier $\rho_{\sigma}^{h} = \mathcal{F}_{\sigma}\rho$ transform of the Wigner distribution ρ of $\hat{\rho}$ is defined by

$$\rho_{\sigma}^{h}(z) = \left(\frac{1}{2\pi\hbar}\right)^{n} \int_{\mathbb{R}^{2n}} e^{-\frac{i}{\hbar}\sigma(z,z')} \rho(z') dz'$$

where $\sigma(z; z') = p \cdot x' - p' \cdot x$ is the standard symplectic form. Notice that the condition $\operatorname{Tr} \widehat{\rho} = 1$ is equivalent to $\rho_{\sigma}^{h}(0) = \left(\frac{1}{2\pi\hbar}\right)^{n}$. • We then have the beautiful formula

$$\widehat{
ho} = \int_{\mathbb{R}^{2n}}
ho_{\sigma}^{\hbar}(z_0) \widehat{T}^{\hbar}(z_0) dz_0$$

where $\hat{T}^{h}(z_0)$ is the Heisenberg–Weyl operator:

$$\widehat{T}^{h}(z_0)\psi(x)=e^{\frac{i}{\hbar}(p_0\cdot x-\frac{1}{2}p_0\cdot x_0)}\psi(x-x_0).$$

Positivity and Uncertainty Principle

• The positivity of a density operator is related to the *uncertainty* principle of quantum mechanics in its strong (Robertson-Schrödinger) form. This principle can be stated as follows: let $\hat{\rho}$ be a putative density operator. Then

$$(\Delta X_j)_{\widehat{\rho}}^2 (\Delta P_j)_{\widehat{\rho}}^2 \ge [\operatorname{Cov}(X_j, P_j)_{\widehat{\rho}}]^2 + \frac{1}{4} \hbar^2$$

where, by definition,

$$(\Delta X_j)_{\hat{\rho}}^2 = \langle X_j^2 \rangle_{\hat{\rho}} - \langle X_j \rangle_{\hat{\rho}}^2$$
, $(\Delta P_j)_{\hat{\rho}}^2 = \langle P_j^2 \rangle_{\hat{\rho}} - \langle P_j \rangle_{\hat{\rho}}^2$

and

$$\operatorname{Cov}(X_j, P_j)_{\widehat{\rho}} = \int_{\mathbb{R}^{2n}} (x_j - \langle x_j \rangle_{\rho}) (x_k - \langle x_k \rangle_{\rho}) \rho(z) dz.$$

Positivity and Uncertainty Principle

• The positivity of a density operator is related to the *uncertainty* principle of quantum mechanics in its strong (Robertson-Schrödinger) form. This principle can be stated as follows: let $\hat{\rho}$ be a putative density operator. Then

$$(\Delta X_j)_{\widehat{\rho}}^2 (\Delta P_j)_{\widehat{\rho}}^2 \ge [\operatorname{Cov}(X_j, P_j)_{\widehat{\rho}}]^2 + \frac{1}{4} \hbar^2$$

where, by definition,

$$(\Delta X_j)_{\hat{\rho}}^2 = \langle X_j^2 \rangle_{\hat{\rho}} - \langle X_j \rangle_{\hat{\rho}}^2$$
, $(\Delta P_j)_{\hat{\rho}}^2 = \langle P_j^2 \rangle_{\hat{\rho}} - \langle P_j \rangle_{\hat{\rho}}^2$

and

$$\operatorname{Cov}(X_j, P_j)_{\widehat{\rho}} = \int_{\mathbb{R}^{2n}} (x_j - \langle x_j \rangle_{\rho}) (x_k - \langle x_k \rangle_{\rho}) \rho(z) dz.$$

• The condition $\hat{\rho} \ge 0$ implies the UP.

Positivity and Uncertainty Principle

• The positivity of a density operator is related to the *uncertainty* principle of quantum mechanics in its strong (Robertson-Schrödinger) form. This principle can be stated as follows: let $\hat{\rho}$ be a putative density operator. Then

$$(\Delta X_j)_{\widehat{\rho}}^2 (\Delta P_j)_{\widehat{\rho}}^2 \ge [\operatorname{Cov}(X_j, P_j)_{\widehat{\rho}}]^2 + \frac{1}{4} \hbar^2$$

where, by definition,

$$(\Delta X_j)_{\hat{\rho}}^2 = \langle X_j^2 \rangle_{\hat{\rho}} - \langle X_j \rangle_{\hat{\rho}}^2 \quad , \quad (\Delta P_j)_{\hat{\rho}}^2 = \langle P_j^2 \rangle_{\hat{\rho}} - \langle P_j \rangle_{\hat{\rho}}^2$$

and

$$\operatorname{Cov}(X_j, P_j)_{\widehat{\rho}} = \int_{\mathbb{R}^{2n}} (x_j - \langle x_j \rangle_{\rho}) (x_k - \langle x_k \rangle_{\rho}) \rho(z) dz.$$

• The condition $\widehat{\rho} \ge 0$ implies the UP.

• However: the UP is not sufficient to ensure that $\hat{\rho} \geq 0!$

(Institute)

...here is a counterexample due to Narcowich: take for simplicity $\mathcal{T}=1$ and choose

$$\rho_{\sigma}(x,p) = (1 - \frac{1}{2}\alpha x^2 - \frac{1}{2}\beta p^2)e^{-(\alpha^2 x^4 + \beta^2 p^4)} \ , \ \alpha,\beta > 0.$$

One verifies that although the uncertainty relations are satisfied we have

$$\langle P^4 \rangle_{\widehat{\rho}} = \int_{\mathbb{R}^2} p^4 \rho(x, p) dx dp = -24 \alpha^2 < 0$$

so that $\hat{\rho}$ is not positive semi-definite! So the UP is not a sufficient condition for a self-adjoint operator with trace one to be a density operator.

Positivity and the KLM conditions

• It turns out that the "true" conditions ensuring positive semi-definiteness are known in mathematics; they are the KLM (Kastler, Loupias, Miracle-Sole) conditions. Defining the $\hbar = 1$ symplectic Fourier transform $\rho_{\sigma}(z) = \rho_{\sigma}^{\hbar=1}(z)$ the KLM conditions can be stated in the following way:

Positivity and the KLM conditions

- It turns out that the "true" conditions ensuring positive semi-definiteness are known in mathematics; they are the KLM (Kastler, Loupias, Miracle-Sole) conditions. Defining the $\hbar = 1$ symplectic Fourier transform $\rho_{\sigma}(z) = \rho_{\sigma}^{\hbar=1}(z)$ the KLM conditions can be stated in the following way:
- For any sequence $z_1, ..., z_N$ of phase space points $z_j = (x_j, p_j)$ the Hermitian $N \times N$ operator $M^{\frac{1}{p}} = (M_{jk}^{\frac{1}{p}})_{1 \le j,k \le N}$ with (j, k) entry

$$M_{jk}^{\hbar} =
ho_{\sigma}(z_j - z_k) e^{-i \hbar \sigma(z_j, z_k)}$$

is positive-definite, that is

$$\sum_{1 \le j,k \le N} \rho_{\sigma}(z_j - z_k) e^{-\frac{j}{2} \ln \sigma(z_j, z_k)} \lambda_j \lambda_k^* \ge 0$$

for all complex numbers $\lambda_1,...,\lambda_N.$ (We assume from now on that ρ_σ is continuous).

(Institute)

26.11. 2008 10 / 29

The KLM conditions serve to clarify the connection between classical and quantum states. When $\hbar = 0$ the KLM conditions reduce to the condition for ρ_{σ} to be a function of positive type:

$$\sum_{1\leq j,k\leq N}\rho_{\sigma}(z_j-z_k)\lambda_j\lambda_k^*\geq 0.$$

By Bochner's theorem ρ_{σ} is then the (symplectic) Fourier transform of a non-negative finite measure on phase space, that is, of a *classical state*.

Example

Suppose that $\hat{\rho}$ is the density operator of a pure state: $\rho = W\psi$. Then $\hat{\rho} > 0$ (strict inequality!) if and only if ψ is a Gaussian: this is the famous "Hudson's theorem".

Consider now the covariance operator of $\widehat{\rho};$ it is defined as in classical statistical mechanics by

$$\Sigma_{\widehat{\rho}} = \begin{bmatrix} \operatorname{Cov}(X, X)_{\widehat{\rho}} & \operatorname{Cov}(X, P)_{\widehat{\rho}} \\ \operatorname{Cov}(P, X)_{\widehat{\rho}} & \operatorname{Cov}(P, P)_{\widehat{\rho}} \end{bmatrix}$$

where $\operatorname{Cov}(X, X)_{\widehat{
ho}} = (\operatorname{Cov}(X_j, X_k)_{\widehat{
ho}})_{1 \leq j,k \leq n}$ with

$$\operatorname{Cov}(X_j, P_j)_{\widehat{\rho}} = \int_{\mathbb{R}^{2n}} (x_j - \langle x_j \rangle_{\widehat{\rho}}) (x_k - \langle x_k \rangle_{\widehat{\rho}}) \rho(z) dz$$

etc.... For instance, when n = 1:

$$\Sigma_{\widehat{\rho}} = \begin{bmatrix} (\Delta X)_{\widehat{\rho}}^2 & \operatorname{Cov}(X, P)_{\widehat{\rho}} \\ \operatorname{Cov}(P, X)_{\widehat{\rho}} & (\Delta P)_{\widehat{\rho}}^2 \end{bmatrix}.$$

Positivity and the KLM conditions

$$\Sigma_{\widehat{
ho}}+rac{1}{2}i\,\hbar J\geq 0.$$

This condition, well-known in quantum optics, is rigorously equivalent to the UP! But it is also equivalent to a topological condition, which can be stated in two equivalent ways. Consider the "Wigner ellipsoid" $W_{\hat{\rho}}: \frac{1}{2}\Sigma_{\hat{\rho}}^{-1}z \cdot z \leq 1$; then

- There is no way one can embed a phase space ball with radius \sqrt{h} into $W_{\hat{\rho}}$ using only *canonical transformations* (but one can always find a general volume preserving transformations which does the job!).
- The symplectic capacity of the Wigner ellipsoid $W_{\hat{\rho}}$ is $\geq \pi \hbar = \frac{1}{2}h$ (half the quantum of action...)

 As we mentioned before, a given self-adjoint operator with trace one can be positive semi-definite for some values of Planck's constant, and not for others. The situation is particularly embarrassing when one wants to study the classical limit ħ → 0...

- As we mentioned before, a given self-adjoint operator with trace one can be positive semi-definite for some values of Planck's constant, and not for others. The situation is particularly embarrassing when one wants to study the classical limit ħ → 0...
- Narcowich (1986) has introduced the notion of "Wigner spectrum". It is defined as follows: let ρ be such that $\int \rho(z) dz = 1$. Then $WS(\rho)$ is the set of all numbers $\eta \ge 0$ for which the KLM conditions are satisfied by ρ_{σ} : for any sequence $z_1, ..., z_N$ of phase space points $z_j = (x_j, p_j)$ the Hermitian $N \times N$ operator $M^{\eta} = (M_{jk}^{\eta})_{1 \le j,k \le N}$ with (j, k) entry

$$M_{jk}^{\eta} = \rho_{\sigma}(z_j - z_k) e^{-\frac{i}{2}\eta\sigma(z_j, z_k)}$$

is positive-definite.

• Here are a few properties of the Wigner spectrum:

- Here are a few properties of the Wigner spectrum:
- $\label{eq:phi} \mathbf{\hat{\rho}} \text{ is a density operator if (and only if) } \mathbf{\hat{h}} \in WS(\rho) \ ;$

- Here are a few properties of the Wigner spectrum:
- $\label{eq:phi} \mathbf{\hat{\rho}} \text{ is a density operator if (and only if) } \mathbf{\hat{h}} \in WS(\rho) \ ;$
- 2 If 0 is in $WS(\rho)$ then $\rho \ge 0$ (it is thus a classical probability) density;

- Here are a few properties of the Wigner spectrum:
- **(**) $\widehat{
 ho}$ is a density operator if (and only if) $\hbar \in WS(\rho)$;
- 2 If 0 is in WS(
 ho) then $ho \geq$ 0 (it is thus a classical probability) density;
- If $\eta \in WS(\rho)$ then $-\eta \in WS(\rho)$;

- Here are a few properties of the Wigner spectrum:
- **(**) $\widehat{
 ho}$ is a density operator if (and only if) $\hbar \in WS(\rho)$;
- 2 If 0 is in $WS(\rho)$ then $\rho \ge 0$ (it is thus a classical probability) density;
- If $\eta \in WS(\rho)$ then $-\eta \in WS(\rho)$;
- $WS(\rho) \subset [-A, A]$ for some $A \ge 0$.

- Here are a few properties of the Wigner spectrum:
- **(**) $\widehat{\rho}$ is a density operator if (and only if) $\widehat{h} \in WS(\rho)$;
- 2 If 0 is in WS(
 ho) then $ho \geq$ 0 (it is thus a classical probability) density;
- If $\eta \in WS(\rho)$ then $-\eta \in WS(\rho)$;
- $WS(\rho) \subset [-A, A]$ for some $A \ge 0$.
- $WS(\rho * \rho')$ contains $WS(\rho) + WS(\rho')$.

 Question 1: For which quantum states p̂ do we have WS(p) = [-ħ, ħ]? This is an interesting question, because (if they exist) such states go "smoothly" to classical states when ħ → 0.

- Question 1: For which quantum states $\hat{\rho}$ do we have $WS(\rho) = [-\hbar, \hbar]$? This is an interesting question, because (if they exist) such states go "smoothly" to classical states when $\hbar \to 0$.
- Question 2: What about the condition $\{-\hbar, 0, \hbar\} \subset WS(\rho)$?

- Question 1: For which quantum states $\hat{\rho}$ do we have $WS(\rho) = [-\hbar, \hbar]$? This is an interesting question, because (if they exist) such states go "smoothly" to classical states when $\hbar \to 0$.
- Question 2: What about the condition $\{-\hbar, 0, \hbar\} \subset WS(\rho)$?
- Answers: Unknown in general.... Werner and Bröcker have shown that in general a mixture of the three first states of the harmonic oscillator does not satisfy WS(ρ) = [-ħ, ħ], so such a mixture does not qualify for the limit ħ → 0. We can however give a characterization of pure states, following ideas of Narcowich, O'Connell, Dias, Prata....

Wigner Spectrum of Pure States

The following result completely describes the Wigner spectrum of the Wigner transform of a function in $L^2(\mathbb{R}^n)$:

Theorem

Let $\rho = W\psi$. Then: (i) If ψ is (and hence ρ) a Gaussian then $WS(\rho) \supset [-\hbar, \hbar]$; (ii) Otherwise $WS(\rho) = \{-\hbar, \hbar\}$.

Proof.

(i) Since the state is Gaussian we have $\eta \in WS(\rho)$ if and only if $\Sigma_{\hat{\rho}} + \frac{1}{2}i\eta J \ge 0$. Since $\hbar \in WS(\rho)$ we have $\Sigma_{\hat{\rho}} + \frac{1}{2}i\hbar J \ge 0$. Set now $\eta = r\hbar$ with $0 \le r \le 1$. We have

$$\Sigma_{\widehat{\rho}} + \frac{1}{2}i\eta J = (1-r)\Sigma_{\widehat{\rho}} + r\left(\Sigma_{\widehat{\rho}} + \frac{1}{2}i\hbar J\right) \ge 0.$$

Proof.

(ii) Set $G_{\eta}(z) = (\pi \eta)^{-n} \exp(-\frac{1}{\eta}|z|^2)$ for $\eta > 0$. Assume $WS(\rho)$ contains $\eta < \hbar$ (and > 0). We have

$$\mathcal{WS}(\mathcal{G}_\eta*
ho)\supset\mathcal{WS}(\mathcal{G}_\eta)+\mathcal{WS}(
ho)\supset\{-\hbar,0,\hbar\}$$

since $WS(G_{\eta}) = [-\eta, \eta]$ and $WS(\rho) \supset \{-\eta, \eta, 0, \eta, \eta\}$. It follows that $G_{\eta} * \rho$ is the Wigner distribution of some state; in view of the KLM conditions we also have $G_{\eta} * \rho \ge 0$. Define $F = G_{\pi} * \rho$; we have $F \ge 0$ (it is a "Husimi distribution"). Since $G_{\eta} * G_{\eta'} = G_{\eta+\eta'}$ we can write $F = G_{\pi-\eta} * (G_{\eta} * \rho)$ for $0 < \eta < \pi$. But F is not a Gaussian (because ρ isn't) and hence there exists z_0 such that

$$F(z_0)=\int_{\mathbb{R}^n}e^{-\frac{1}{h-\eta}|z_0-z|^2}(G_\eta*\rho)(z)dz=0.$$

But this forces $G_{\eta} * \rho$ to be < 0 on a whole set with measure > 0, which is impossible because $G_{\eta} * \rho \ge 0$.

Symplectic capacities

A symplectic capacity on the symplectic space $(\mathbb{R}^{2n}, \sigma)$ assigns to every subset Ω of \mathbb{R}^{2n} a number $c(\Omega) \ge 0$ or $+\infty$; this assignment has the four properties listed below. We denote by B(R) the ball $|z| \le R$ and by $Z_j(R)$ the cylinder $x_j^2 + p_j^2 \le R^2$.

- Monotonicity: $c(\Omega) \leq c(\Omega')$ if $\Omega \subset \Omega'$;
- Symplectic invariance: c(f(Ω)) = c(Ω) for every canonical transformation f (linear, or not);
- Conformality: $c(\lambda \Omega) = \lambda^2 c(\Omega)$ if $\lambda \in \mathbb{R}$;
- Nontriviality: We have $c(B(R)) = c(Z_j(R)) = \pi R^2$.

Example

The "symplectic area" or "Gromov width"

$$c_{\mathsf{Gr}}(\Omega) = \sup_{f \text{ canonical}} \{ \pi r^2 : f(B(R)) \subset \Omega \}.$$

That c_{Gr} is a symplectic capacity follows from Gromov's non-squeezing theorem (it is in fact equivalent to it). (Institute) Density Operators 26.11, 2008 19 / 29

Symplectic capacities and the UP

The Robertson-Schrödinger uncertainty principle

$$(\Delta X_j)_{\widehat{\rho}}^2 (\Delta P_j)_{\widehat{\rho}}^2 \ge [\operatorname{Cov}(X_j, P_j)_{\widehat{\rho}}]^2 + \frac{1}{4}\hbar^2$$

is equivalent to the condition

$$\Sigma_{\widehat{
ho}}+rac{1}{2}i\,\hbar J\geq 0$$

which is equivalent to the condition

$$c(\mathcal{W}) \geq \pi h = rac{1}{2}h$$

for every symplectic capacity; here

$$\mathcal{W}: rac{1}{2}\Sigma_{\widehat{
ho}}^{-1}z \cdot z \leq 1$$

is the so-called "Wigner ellipsoid".

Let ψ be a normalized pure state (=wavefunction).

Theorem

Assume that there exists a real symmetric operator M > 0 such that $\rho(z) = W\psi(z) < Ce^{-\frac{1}{\hbar}Mz \cdot z}.$ (i) The ellipsoid $\mathcal{M} = \{z : Mz \cdot z \leq \overline{h}\}$ has symplectic capacity $c(\mathcal{M}) \geq \frac{1}{2}h.$ (ii) If \mathcal{M} is the image of the ball $B(\sqrt{\hbar}): |z|^2 \leq \hbar$ by a linear symplectic transformation S then and ψ is a squeezed coherent state $Ne^{-\frac{1}{2\hbar}(X+iY)x\cdot x}$. image of $\psi_0(x) = (\pi \hbar)^{-n/4} e^{-\frac{1}{2\hbar}|x|^2}$ by any one of the two metaplectic operators corresponding to the symplectic operator S; (iii) In this case the Wigner spectrum of $\rho = W\psi$ is $[-\hbar, \hbar]$ (and $\lim_{T\to 0} \rho(z) = \delta(z)$

イロト 不得下 イヨト イヨト 二日

Proof.

(i) (Åskloster 2007!). The idea is to perform a symplectic diagonalization: $M = S^T DS$ and to use Hardy's uncertainty principle: Let ψ be square integrable and let $\hat{\psi}(p)$ be its \hbar -Fourier transform. Assume that for some constant C > 0:

$$|\psi(x)| \leq C e^{-\frac{a}{2\hbar}x^2} \text{ and } |\widehat{\psi}(p)| \leq C e^{-\frac{b}{2\hbar}p^2}.$$

If ab>1 then $\psi=0$; If ab=1 then $\psi(x)\sim e^{-\frac{a}{2\hbar}x^2}$. This leads to

$$W\psi(Sz) \leq C \exp\left[-rac{1}{\hbar}\sum_{j=1}^n \lambda_j(x_j^2+p_j^2)
ight]$$

where $\lambda_1 \geq ... \geq \lambda_n$ are positive real numbers such that $\lambda_1 \leq 1$. The symplectic capacity of $\mathcal{M} = \{z : Mz \cdot z \leq \hbar\}$ is $c(\mathcal{M}) = \pi \hbar / \lambda_1 \geq \pi \hbar$.

Proof.

(ii) We have $M = S^T S$ and $W\psi(Sz) \leq Ce^{-\frac{1}{h}|z|^2}$. Since $W\psi(Sz) = W\widehat{S}^{-1}\psi(z)$ (symplectic/metaplectic covariance of the Wigner transform) Hardy's theorem now implies that we must have $\psi = \widehat{S}\psi_0$. (iii) is obvious.

Sub-Gaussian Mixed states

Here is a generalization of the previous result:

Theorem

Assume that there exists a real symmetric operator M > 0 such that $\rho(z) \leq Ce^{-\frac{1}{\hbar}Mz \cdot z}$. If $\hat{\rho}$ is a density operator then the ellipsoid $\mathcal{M} = \{z : Mz \cdot z \leq \hbar\}$ has symplectic capacity $c(\mathcal{M}) \geq \frac{1}{2}h$. (ii) If \mathcal{M} is the image of the ball $B(\sqrt{\hbar}) : |z|^2 \leq \hbar$ by a linear symplectic transformation S then $c(\mathcal{M}) = \frac{1}{2}h$ has full Wigner spectrum: $WS(\rho) = [0, \hbar]$; in fact the state represented by $\hat{\rho}$ is a pure (Gaussian) state.

Proof.

Using a symplectic diagonalization of M reduces the problem to the case where M is a diagonal operator; one then applies Hardy's uncertainty principle (cf. Åskloster 2007...) to show that M must satisfy the condition $M^{-1} + iJ \ge 0$, which is equivalent to $c(\mathcal{M}) \ge \frac{1}{2}h$.

Here is a result that generalizes the Gaussian case:

Theorem

Let Q be a real C^2 function on \mathbb{R}^n which is strictly and uniformly convex. Assume that there exists C > 0 such that $\rho(z) \leq Ce^{-\frac{1}{\hbar}Q(z)}$. (i) If $\widehat{\rho}$ is a density operator then the set $\mathcal{C} = \{z : Q(z) \leq \hbar\}$ has symplectic capacity $c(\mathcal{C}) \geq \frac{1}{2}h$ for every symplectic capacity c; (ii) equivalently $\oint_{\gamma} pdx \geq \frac{1}{2}h$ for every Hamiltonian periodic orbit γ carried by the boundary $\partial \mathcal{C}$.

Remark 1: Q is strictly and uniformly convex if and only if there exists c > 0 such that $Q''(z_0)z \cdot z \ge c|z|^2$ for all z_0, z . It follows that the set C is compact and convex.

Remark 2: Periodic Hamiltonian orbits on a hypersurface are defined unambiguously; such orbits always exist when ∂C bounds a convex and bounded set.

• We may assume Q(0) = 0 (trivial!) and $Q'(0) = \nabla_z Q(0) = 0$ (replace $\rho(z)$ by $\rho(z - z_0)$ for a suitably chosen z_0).

- We may assume Q(0) = 0 (trivial!) and $Q'(0) = \nabla_z Q(0) = 0$ (replace $\rho(z)$ by $\rho(z z_0)$ for a suitably chosen z_0).
- ${\small @ The condition $Q''(z_0)z\cdot z \geq c|z|^2$ is equivalent to $\lambda_Q>0$ where}$

$$\lambda_{\mathcal{Q}} = \inf_{z \in \mathbb{R}^{2n}} \{\lambda(z) : \lambda(z) \text{ is an eigenvalue of } \mathcal{Q}''(z)\}.$$

- We may assume Q(0) = 0 (trivial!) and $Q'(0) = \nabla_z Q(0) = 0$ (replace $\rho(z)$ by $\rho(z z_0)$ for a suitably chosen z_0).
- 2 The condition $Q''(z_0)z \cdot z \ge c|z|^2$ is equivalent to $\lambda_Q > 0$ where

$$\lambda_Q = \inf_{z \in \mathbb{R}^{2n}} \{\lambda(z) : \lambda(z) \text{ is an eigenvalue of } Q''(z)\}.$$

• We have (Taylor's formula) $Q(z) \ge \frac{1}{2}\lambda_Q |z|^2$) hence $Q(z) \le \hbar$ implies $\frac{1}{2}\lambda_Q |z|^2 \le \hbar$ so that $B(\sqrt{2\hbar/\lambda_Q}) \subset C$

- We may assume Q(0) = 0 (trivial!) and $Q'(0) = \nabla_z Q(0) = 0$ (replace $\rho(z)$ by $\rho(z z_0)$ for a suitably chosen z_0).
- ${\small @ The condition $Q''(z_0)z\cdot z\geq c|z|^2$ is equivalent to $\lambda_Q>0$ where}$

$$\lambda_Q = \inf_{z \in \mathbb{R}^{2n}} \{\lambda(z) : \lambda(z) \text{ is an eigenvalue of } Q''(z)\}.$$

- We have (Taylor's formula) $Q(z) \ge \frac{1}{2}\lambda_Q |z|^2$) hence $Q(z) \le \hbar$ implies $\frac{1}{2}\lambda_Q |z|^2 \le \hbar$ so that $B(\sqrt{2\hbar/\lambda_Q}) \subset C$
- We have $\rho(z) \leq Ce^{-\frac{1}{2\hbar}\lambda_Q|z|^2}$ and we have proven elsewhere (cf. Åskloster 2007...) that Hardy's uncertainty principle implies that we must have $\lambda_Q/2 \leq 1$ hence

$$c(\mathcal{C}) \geq c(B(\sqrt{2\hbar/\lambda_Q})) \geq \frac{1}{2}h.$$

5. That we have $c(\mathcal{C}) \geq \frac{1}{2}h \iff \oint_{\gamma_{\min}} pdx \geq \frac{1}{2}h$ in the Theorem follows from the existence of a particular symplectic capacity, the Hofer-Zehnder capacity c_{HZ} , which has the property that it is given by $c_{\text{HZ}}(\Omega) = \oint_{\gamma_{\min}} pdx$ when Ω is a compact and convex set. (See H. Hofer and E. Zehnder. Symplectic Invariants and Hamiltonian Dynamics. Birkhäuser 1994.)

• We may assume Q(0) = 0 (trivial!) and $Q'(0) = \nabla_z Q(0) = 0$ (replace $\rho(z)$ by $\rho(z - z_0)$ for a suitably chosen z_0).

Image: A math and A math and

- We may assume Q(0) = 0 (trivial!) and $Q'(0) = \nabla_z Q(0) = 0$ (replace $\rho(z)$ by $\rho(z z_0)$ for a suitably chosen z_0).
- 2 The condition $Q''(z_0)z\cdot z\geq c|z|^2$ is equivalent to $\lambda_Q>0$ where

$$\lambda_Q = \inf_{z \in \mathbb{R}^{2n}} \{\lambda(z) : \lambda(z) \text{ is an eigenvalue of } Q''(z)\}.$$

- We may assume Q(0) = 0 (trivial!) and $Q'(0) = \nabla_z Q(0) = 0$ (replace $\rho(z)$ by $\rho(z z_0)$ for a suitably chosen z_0).
- ${\small @ The condition $Q''(z_0)z\cdot z \geq c|z|^2$ is equivalent to $\lambda_Q>0$ where}$

$$\lambda_{\mathcal{Q}} = \inf_{z \in \mathbb{R}^{2n}} \{\lambda(z) : \lambda(z) \text{ is an eigenvalue of } \mathcal{Q}''(z)\}.$$

• We have (Taylor's formula) $Q(z) \ge \frac{1}{2}\lambda_Q |z|^2$) hence $Q(z) \le \hbar$ implies $\frac{1}{2}\lambda_Q |z|^2 \le \hbar$ so that $B(\sqrt{2\hbar/\lambda_Q}) \subset C$

- We may assume Q(0) = 0 (trivial!) and $Q'(0) = \nabla_z Q(0) = 0$ (replace $\rho(z)$ by $\rho(z z_0)$ for a suitably chosen z_0).
- 2 The condition $Q''(z_0)z\cdot z\geq c|z|^2$ is equivalent to $\lambda_Q>0$ where

$$\lambda_Q = \inf_{z \in \mathbb{R}^{2n}} \{\lambda(z) : \lambda(z) \text{ is an eigenvalue of } Q''(z)\}.$$

- We have (Taylor's formula) $Q(z) \ge \frac{1}{2}\lambda_Q |z|^2$) hence $Q(z) \le \hbar$ implies $\frac{1}{2}\lambda_Q |z|^2 \le \hbar$ so that $B(\sqrt{2\hbar/\lambda_Q}) \subset C$
- We have $\rho(z) \leq Ce^{-\frac{1}{2\hbar}\lambda_Q|z|^2}$ and we have proven elsewhere (cf. Åskloster 2007...) that Hardy's uncertainty principle implies that we must have $\lambda_Q/2 \leq 1$ hence

$$c(\mathcal{C}) \geq c(B(\sqrt{2\hbar/\lambda_Q})) \geq \frac{1}{2}h.$$

THANK YOU!

(日) (日) (日) (日)