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The Density Operator

Let H be a Hilbert space. A density operator on H is a bounded operatorbρ : H �! H having the three following properties:

1 It is a self-adjoint operator: bρ = bρ� ;

2 It is of trace class (and hence compact) and has trace one: Trbρ = 1 ;
3 It is positive semide�nite bρ � 0 that is hbρψjψi � 0 for all ψ in H.

It is the last property which causes problems, because the conditionbρ � 0 usually holds for some values of �h and is violated for others...
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The Density Operator

It follows from the spectral theorem for compact operators that there exist
normalized functions ψ1,ψ2, ... in H such that

bρ = ∑
j

αjPj with αj � 0 and ∑
j

αj = 1

where Pj is the orthogonal projection of the ray generated by ψj , that is

Pjφ =
D

ψj jφ
E

ψj .

The operator bρ is the density operator of the mixed state ψ = ∑j αjψj .

The average (mean value) of an operator bA (or �observable�) is given by
the formula DbAEbρ = Tr(bAbρ).
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Density Operator and Wigner Distribution

We now assume H = L2(Rn).

The operator kernel of the density operator bρ = ∑j αjPj is
Kbρ = ∑j αjψj 
 ψ�j hence we can write bρ as a Weyl pseudodi¤erential
operator

bρψ(x) =
ZZ

Rn�Rn
e
i
�h p�(x�y )ρ( 12 (x + y), p)ψ(y)dydp.

where ρ is the Wigner distribution of bρ:
ρ(x , p) =

� 1
2π�h

�n Z
Rn
e�

i
�h p�yKbρ(x + 1

2y , x �
1
2y)dy .

Equivalently: ρ(x , p) = ∑j αjWψj (x , p) where

Wψj (x , p) =
� 1
2π�h

�n Z
Rn
e�

i
�h p�yψj (x +

1
2y)ψ

�
j (x � 1

2y)dy

is the Wigner distribution of ψj .

The condition Trbρ = 1 is equivalent to R
Rn�Rn ρ(x , p)dpdx = 1.
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Density operator and Wigner Distribution for Physicists!

If you really insist on preferring bra-ket notation:
The density operator can be written as

bρ = ∑
j

αj

���ψjE Dψj

��� .
and

ρ(x , p) =
� 1
2π�h

�n Z
Rn



x + 1

2y
�� bρ ��x � 1

2y
�
dy .

Also: the kernel can be rewritten:

hy jbρ jxi = Z
Rn
e
i
�h (y�x )�pρ( 12 (x + y), p)dp.
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Density operator and Weyl�Heisenberg Operators

Let z = (x , p) and z 0 = (x 0, p0). The symplectic Fourier ρ�hσ = Fσρ
transform of the Wigner distribution ρ of bρ is de�ned by

ρ�hσ (z) =
� 1
2π�h

�n Z
R2n
e�

i
�h σ(z ,z 0)ρ(z 0)dz 0

where σ(z ; z 0) = p � x 0 � p0 � x is the standard symplectic form.
Notice that the condition Trbρ = 1 is equivalent to ρ�hσ (0) =

� 1
2π�h

�n
.

We then have the beautiful formula

bρ = Z
R2n

ρ�hσ (z0)bT �h(z0)dz0
where bT �h(z0) is the Heisenberg�Weyl operator:

bT �h(z0)ψ(x) = e i
�h (p0 �x�

1
2 p0 �x0)ψ(x � x0).
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Positivity and Uncertainty Principle

The positivity of a density operator is related to the uncertainty
principle of quantum mechanics in its strong (Robertson�Schrödinger)
form. This principle can be stated as follows: let bρ be a putative
density operator. Then

(∆Xj )2bρ(∆Pj )2bρ � [Cov(Xj ,Pj )bρ]2 + 1
4 �h

2

where, by de�nition,

(∆Xj )2bρ = 
X 2j �bρ � hXj i2bρ , (∆Pj )2bρ = 
P2j �bρ � hPj i2bρ
and

Cov(Xj ,Pj )bρ =
Z

R2n
(xj � hxj iρ)(xk � hxk iρ)ρ(z)dz .

The condition bρ � 0 implies the UP.
However: the UP is not su¢ cient to ensure that bρ � 0!
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Positivity and UP

...here is a counterexample due to Narcowich: take for simplicity �h = 1
and choose

ρσ(x , p) = (1� 1
2αx2 � 1

2 βp2)e�(α
2x 4+β2p4) , α, β > 0.

One veri�es that although the uncertainty relations are satis�ed we have

P4
�bρ = Z

R2
p4ρ(x , p)dxdp = �24α2 < 0

so that bρ is not positive semi-de�nite! So the UP is not a su¢ cient
condition for a self-adjoint operator with trace one to be a density
operator.
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Positivity and the KLM conditions

It turns out that the �true� conditions ensuring positive
semi-de�niteness are known in mathematics; they are the KLM
(Kastler, Loupias, Miracle-Sole) conditions. De�ning the �h = 1
symplectic Fourier transform ρσ(z) = ρ�h=1σ (z)the KLM conditions
can be stated in the following way:

For any sequence z1, ..., zN of phase space points zj = (xj , pj ) the
Hermitian N �N operator M�h = (M�h

jk )1�j ,k�N with (j , k) entry

M�h
jk = ρσ(zj � zk )e�i�hσ(zj ,zk )

is positive-de�nite, that is

∑
1�j ,k�N

ρσ(zj � zk )e�
i
2 �hσ(zj ,zk )λjλ

�
k � 0

for all complex numbers λ1, ...,λN . (We assume from now on that ρσ

is continuous).
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Positivity and the KLM conditions

The KLM conditions serve to clarify the connection between classical and
quantum states. When �h = 0 the KLM conditions reduce to the condition
for ρσ to be a function of positive type:

∑
1�j ,k�N

ρσ(zj � zk )λjλ
�
k � 0.

By Bochner�s theorem ρσ is then the (symplectic) Fourier transform of a
non-negative �nite measure on phase space, that is, of a classical state.

Example
Suppose that bρ is the density operator of a pure state: ρ = Wψ. Thenbρ > 0 (strict inequality!) if and only if ψ is a Gaussian: this is the famous
�Hudson�s theorem�.
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KLM, UP, and symplectic camel

Consider now the covariance operator of bρ; it is de�ned as in classical
statistical mechanics by

Σbρ =
�

Cov(X ,X )bρ Cov(X ,P)bρ
Cov(P,X )bρ Cov(P,P)bρ

�
where Cov(X ,X )bρ = (Cov(Xj ,Xk )bρ)1�j ,k�n with

Cov(Xj ,Pj )bρ =
Z

R2n
(xj � hxj ibρ)(xk � hxk ibρ)ρ(z)dz

etc.... For instance, when n = 1:

Σbρ =
"

(∆X )2bρ Cov(X ,P)bρ
Cov(P,X )bρ (∆P)2bρ

#
.
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Positivity and the KLM conditions

It turns out that the KLM conditions ensuring positive
semi-de�niteness of bρ imply (but are not equivalent to, except in the
Gaussian case) the following condition on the condition Σbρ:

Σbρ + 12 i�hJ � 0.
This condition, well-known in quantum optics, is rigorously equivalent
to the UP! But it is also equivalent to a topological condition, which
can be stated in two equivalent ways. Consider the �Wigner ellipsoid�
Wbρ : 12Σ�1bρ z � z � 1; then

There is no way one can embed a phase space ball with radius
p
�h

into Wbρ using only canonical transformations (but one can always �nd
a general volume preserving transformations which does the job!).
The symplectic capacity of the Wigner ellipsoid Wbρ is � π�h = 1

2h
(half the quantum of action...)

(Institute) Density Operators 26.11. 2008 13 / 29



The Narcowich�Wigner Spectrum

As we mentioned before, a given self-adjoint operator with trace one
can be positive semi-de�nite for some values of Planck�s constant,
and not for others. The situation is particularly embarrassing when
one wants to study the classical limit �h! 0...

Narcowich (1986) has introduced the notion of �Wigner spectrum�. It
is de�ned as follows: let ρ be such that

R
ρ(z)dz = 1. Then WS(ρ)

is the set of all numbers η � 0 for which the KLM conditions are
satis�ed by ρσ: for any sequence z1, ..., zN of phase space points
zj = (xj , pj ) the Hermitian N �N operator Mη = (Mη

jk )1�j ,k�N with
(j , k) entry

Mη
jk = ρσ(zj � zk )e�

i
2 ησ(zj ,zk )

is positive-de�nite.
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The Narcowich�Wigner Spectrum

Here are a few properties of the Wigner spectrum:

1 bρ is a density operator if (and only if) �h 2 WS(ρ) ;
2 If 0 is in WS(ρ) then ρ � 0 (it is thus a classical probability) density;
3 If η 2 WS(ρ) then �η 2 WS(ρ);
4 WS(ρ) � [�A,A] for some A � 0.
5 WS(ρ � ρ0) contains WS(ρ) +WS(ρ0).
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Two Questions...

Question 1: For which quantum states bρ do we have
WS(ρ) = [��h, �h] ? This is an interesting question, because (if they
exist) such states go �smoothly� to classical states when �h! 0.

Question 2: What about the condition f��h, 0, �hg � WS(ρ) ?

Answers: Unknown in general.... Werner and Bröcker have shown
that in general a mixture of the three �rst states of the harmonic
oscillator does not satisfy WS(ρ) = [��h, �h], so such a mixture does
not qualify for the limit }! 0. We can however give a
characterization of pure states, following ideas of Narcowich,
O�Connell, Dias, Prata....
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Wigner Spectrum of Pure States

The following result completely describes the Wigner spectrum of the
Wigner transform of a function in L2(Rn):

Theorem
Let ρ = Wψ. Then:
(i) If ψ is (and hence ρ) a Gaussian then WS(ρ) � [��h, �h];
(ii) Otherwise WS(ρ) = f��h, �hg.

Proof.
(i) Since the state is Gaussian we have η 2 WS(ρ) if and only if
Σbρ + 1

2 iηJ � 0. Since �h 2 WS(ρ) we haveΣbρ + 1
2 i�hJ � 0. Set now

η = r �h with 0 � r � 1. We have

Σbρ + 12 iηJ = (1� r)Σbρ + r
�

Σbρ + 12 i�hJ
�
� 0.
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Proof.

(ii) Set Gη(z) = (πη)�n exp(� 1
η jz j2) for η > 0. Assume WS(ρ) contains

η < �h (and > 0). We have

WS(Gη � ρ) � WS(Gη) +WS(ρ) � f��h, 0, �hg

since WS(Gη) = [�η, η] and WS(ρ) � f��h, η, 0, η, �hg. It follows that
Gη � ρ is the Wigner distribution of some state; in view of the KLM
conditions we also have Gη � ρ � 0. De�ne F = G�h � ρ; we have F � 0 (it
is a �Husimi distribution�). Since Gη � Gη0 = Gη+η0 we can write
F = G�h�η � (Gη � ρ) for 0 < η < �h. But F is not a Gaussian (because ρ
isn�t) and hence there exists z0 such that

F (z0) =
Z

Rn
e�

1
�h�η jz0�z j2(Gη � ρ)(z)dz = 0.

But this forces Gη � ρ to be < 0 on a whole set with measure > 0, which
is impossible because Gη � ρ � 0.
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Symplectic capacities

A symplectic capacity on the symplectic space (R2n, σ) assigns to every
subset Ω of R2n a number c(Ω) � 0 or +∞; this assignment has the four
properties listed below. We denote by B(R) the ball jz j � R and by
Zj (R) the cylinder x2j + p

2
j � R2.

Monotonicity: c(Ω) � c(Ω0) if Ω � Ω0;
Symplectic invariance: c(f (Ω)) = c(Ω) for every canonical
transformation f (linear, or not);
Conformality: c(λΩ) = λ2c(Ω) if λ 2 R;
Nontriviality: We have c(B(R)) = c(Zj (R)) = πR2.

Example
The �symplectic area�or �Gromov width�

cGr(Ω) = sup
f canonical

fπr2 : f (B(R)) � Ωg.

That cGr is a symplectic capacity follows from Gromov�s non-squeezing
theorem (it is in fact equivalent to it).
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Symplectic capacities and the UP

The Robertson�Schrödinger uncertainty principle

(∆Xj )2bρ(∆Pj )2bρ � [Cov(Xj ,Pj )bρ]2 + 1
4 �h

2

is equivalent to the condition

Σbρ + 12 i�hJ � 0
which is equivalent to the condition

c(W) � π�h =
1
2
h

for every symplectic capacity; here

W :
1
2

Σ�1bρ z � z � 1

is the so-called �Wigner ellipsoid�.
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Application: Sub-Gaussian Pure states

Let ψ be a normalized pure state (=wavefunction).

Theorem
Assume that there exists a real symmetric operator M > 0 such that
ρ(z) = Wψ(z) � Ce� 1

�hMz �z .
(i) The ellipsoidM = fz : Mz � z � �hg has symplectic capacity
c(M) � 1

2h.
(ii) IfM is the image of the ball B(

p
�h) : jz j2 � �h by a linear symplectic

transformation S then and ψ is a squeezed coherent state Ne�
1
2�h (X+iY )x �x ,

image of ψ0(x) = (π�h)
�n/4e�

1
2�h jx j2 by any one of the two metaplectic

operators corresponding to the symplectic operator S;
(iii) In this case the Wigner spectrum of ρ = Wψ is [��h, �h] (and
lim�h!0 ρ(z) = δ(z)).
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Sub-Gaussian Pure states

Proof.

(i) (Åskloster 2007!). The idea is to perform a symplectic diagonalization:
M = STDS and to use Hardy�s uncertainty principle: Let ψ be square
integrable and let bψ(p) be its �h-Fourier transform. Assume that for some
constant C > 0:

jψ(x)j � Ce� a
2�h x

2
and jbψ(p)j � Ce� b

2�h p
2
.

If ab > 1 then ψ = 0; If ab = 1 then ψ(x) � e� a
2�h x

2
. This leads to

Wψ(Sz) � C exp
"
� 1
�h

n

∑
j=1

λj (x2j + p
2
j )

#

where λ1 � ... � λn are positive real numbers such that λ1 � 1. The
symplectic capacity ofM = fz : Mz � z � �hg is
c(M) = π�h/λ1 � π�h.
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Sub-Gaussian Pure states

Proof.

(ii) We have M = ST S and Wψ(Sz) � Ce� 1
�h jz j2 . Since

Wψ(Sz) = W bS�1ψ(z) (symplectic/metaplectic covariance of the Wigner
transform) Hardy�s theorem now implies that we must have ψ = bSψ0. (iii)
is obvious.
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Sub-Gaussian Mixed states

Here is a generalization of the previous result:

Theorem
Assume that there exists a real symmetric operator M > 0 such that
ρ(z) � Ce� 1

�hMz �z . If bρ is a density operator then the ellipsoid
M = fz : Mz � z � �hg has symplectic capacity c(M) � 1

2h. (ii) IfM is
the image of the ball B(

p
�h) : jz j2 � �h by a linear symplectic

transformation S then c(M) = 1
2h has full Wigner spectrum:

WS(ρ) = [0, �h]; in fact the state represented by bρ is a pure (Gaussian)
state.

Proof.
Using a symplectic diagonalization of M reduces the problem to the case
where M is a diagonal operator; one then applies Hardy�s uncertainty
principle (cf. Åskloster 2007...) to show that M must satisfy the condition
M�1 + iJ � 0, which is equivalent to c(M) � 1

2h.
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Here is a result that generalizes the Gaussian case:

Theorem
Let Q be a real C 2 function on Rn which is strictly and uniformly convex.
Assume that there exists C > 0 such that ρ(z) � Ce� 1

�hQ (z ).
(i) If bρ is a density operator then the set C = fz : Q(z) � �hg has
symplectic capacity c(C) � 1

2h for every symplectic capacity c;
(ii) equivalently

H
γ pdx �

1
2h for every Hamiltonian periodic orbit γ

carried by the boundary ∂C.

Remark 1: Q is strictly and uniformly convex if and only if there exists
c > 0 such that Q 00(z0)z � z � c jz j2 for all z0, z . It follows that the set C
is compact and convex.
Remark 2: Periodic Hamiltonian orbits on a hypersurface are de�ned
unambiguously; such orbits always exist when ∂C bounds a convex and
bounded set.

(Institute) Density Operators 26.11. 2008 25 / 29



Sketch of Proof

1 We may assume Q(0) = 0 (trivial!) and Q 0(0) = rzQ(0) = 0
(replace ρ(z) by ρ(z � z0) for a suitably chosen z0).

2 The condition Q 00(z0)z � z � c jz j2 is equivalent to λQ > 0 where

λQ = inf
z2R2n

fλ(z) : λ(z) is an eigenvalue of Q 00(z)g.

3 We have (Taylor�s formula) Q(z) � 1
2λQ jz j2 ) hence Q(z) � �h

implies 12λQ jz j2 � �h so that B(
p
2�h/λQ ) � C

4 We have ρ(z) � Ce� 1
2�h λQ jz j2 and we have proven elsewhere (cf.

Åskloster 2007...) that Hardy�s uncertainty principle implies that we
must have λQ/2 � 1 hence

c(C) � c(B(
p
2�h/λQ )) � 1

2h.
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Sketch of Proof

5. That we have c(C) � 1
2h()

H
γmin

pdx � 1
2h in the Theorem follows

from the existence of a particular symplectic capacity, the
Hofer�Zehnder capacity cHZ, which has the property that it is given by
cHZ(Ω) =

H
γmin

pdx when Ω is a compact and convex set. (See H.
Hofer and E. Zehnder. Symplectic Invariants and Hamiltonian
Dynamics. Birkhäuser 1994.)
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THANK YOU!
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