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What is IPRM?

IPRM |

e Gibbs phenomenon
e |IPRM = Inverse polynomial reconstruction method (Jung and
Shizgal, 2003-07)

e Goal: Construct an algebraic polynomial from Fourier coefficients
e Find an approximation of a piecewise smooth function from given
Fourier coefficients

e How many Fourier coefficients are required for accurate
construction of algebraic polynomial?

e Compression
o Relation between Fourier basis and other bases

e Gottlieb, Shu; Gelb, Tanner; Tadmore; etc.
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What is IPRM?

IPRM 11

Given function f on [—1, 1] and m consecutive Fourier coefficients

m-1

~ 1 .
f(k):\%/_lf(x)e—'mdx, 1 JgkngJ.

Find a polynomial p of degree n — 1 with these Fourier coefficients.

Expand p into normalized Legendre polynomials I5vk
n—-1 »
p=> aP
1=0
IPRM: solve the system

n—1 ~ N _ m
galpl(k) =fk)  k=-l—5"1....l5)
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IPRM-Algorithm, Condition Number, Optimality

IPRM-Algorithm

Input: m Fourier coefficients ?(k),
Let Amn be m x n matrix Am n With entries

i = P (k) = V2 (~0) |1 + L j (k) ®
k=—-1"31),...,[9],l=0,....,n— 1.

© Solve overdetermined least squares problem for approximate
Legendre coefficients ¢ = [co, . .., Cn_1]*

min [Amnc — [f(d).....F )|z )

whered = -], D = |7 ].
© Approximate f by truncated Legendre series

n—1
fn = Z Py 3)
1=0
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IPRM-Algorithm, Condition Number, Optimality

Existence of a Reconstruction

Theorem

Let d and D be integers such thatd < 0 < D, and let p € Py have
vanishing D — d + 1 consecutive Fourier coefficients

B(d) =P(d +1) =... = (D — 1) = B(D) =O. )

IfD—-d+1>M+ 1, then p = 0 identically.

REMARK: A is invertible, and for m > n An n has full rank. Py is the
space of algebraic polynomials of degree at most M.
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IPRM-Algorithm, Condition Number, Optimality

Stability of the Reconstruction

Theorem

Forevery a > 1, everyn = 1,2, ..., and every integer m > an?, the

condition number of the matrix Am n does not exceed , / —%7.

REMARK: a > 1 can be pushed to « > ¢ for some ¢ ~ 1/2.
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IPRM-Algorithm, Condition Number, Optimality

Convergence Rates
Theorem
Letf =32, a|I5|with Legendre coefficients
laj| < ce ™, (5)

where ¢ > 0 and g > 0, and let f, be the reconstruction by IPRM (3). If
m > n?, then
If = fofloo < cme="", (6)

for another constant ¢’ > 0.

REMARK: Measured by number of Fourier coefficients m = an?, the
convergence is root-exponential: ||f — fy s < ¢’v/me=Avm,
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Numerical Simulations

condition number

Figure: Condition numbers of the square matrix A, , forn =1,...,150.
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Numerical Simulations

Computation versus Proof

Experimentally: Smallest singular value Ayin(n) of A, n decays
exponentially (equivalently: condition number of the square matrix
grows exponentially)

Current estimate: \min < 0.65

Needed: Behavior of Bessel functions J,, in the non-asymptotic region
rv<x< V2,
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Numerical Simulations

condition number
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Figure: Condition numbers of the matrix A[n%] . forn=1,...,100.
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Numerical Simulations

condition number
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Figure: Condition numbers of the matrix A, nz1  for o = 55, 75, &.
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Numerical Simulations
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Figure: Condition numbers of the matrix A,. , forn =1,...,100.
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Numerical Simulations
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Figure: Condition numbers of the matrix Am 20 with m Fourier coefficients for
m=1,...,100.
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Numerical Simulations

relative maximum error
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Figure: Relative maximum reconstruction errors for the function .—5=. on the
interval [—1, 1] with the two versions of IPRM.
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Numerical Simulations
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Figure: Relative maximum reconstruction errors for the function .——. on the

interval [—1, 1] with the two versions of IPRM.
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Numerical Simulations
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Figure: Relative maximum reconstruction errors for the function ;—-. on the

interval [—1, 1] with the two versions of IPRM.

Karlheinz Gréchenig (EUCETIFA) IPRM December 2008 17/21



Variations

Piecewise Polynomials from Fourier Coefficients

Fix nodes
—l=gp<a1<...<a_1<a =1, @)

and consider
Pum,a = {f : f[(a_,.a) is polynomial of degree M}
dimPam = L(M + 1)
Theorem

Let d and D be integers such thatd < 0 < D, and let p € Py 5 have
vanishing D — d + 1 consecutive Fourier coefficients

B(d)=P(d +1) = ... = B(D — 1) = B(D) = O. ®)

IfD—-d+1>L(M+ 1), then p = 0 identically.

v
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Variations

Piecewise Constant Functions with free nodes

P=> PiX( ) 9)

Theorem

Let p a step function on [—1, 1] with at most L — 1 points of
discontinuity, and letd, and D € Z be such thatd < 0 < D. If
D—d +1>2L-—1,then pis uniquely determined by its D —d + 1
consecutive Fourier coefficients p(d), p(d + 1),...,p(D — 1), p(D).

Reconstruction by Prony’s spectral estimator,
Used in compressed sensing by M. Vetterli as “Occam’s razor”
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Variations

To Do List

Optimality of order of condition number
Open guestion: Is

nll_)m KJ( an?, ) - eﬁ/a
Condition numbers for piecewise polynomials with fixed nodes
Variable degrees for piecewise polynomials with fixed nodes
Method for piecewise polynomials with free nodes
Reconstruction from arbitrary frequencies, from random
frequencies
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Variations

Summary

Rigorous convergence analysis of IPRM

First proof of existence of the square IPRM (invertibility of A, )

n x n IPRM is acceptable for entire functions

n? x n IPRM is reliable for meromorphic functions

n? x n IPRM useful in applications because it handles noisy signals
and uses all available Fourier coefficients

Thank you!

Further questions also to t omasz. hr ycak@ni vi e. ac. at
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