Pseudospectral Fourier reconstruction with IPRM

Karlheinz Gröchenig Tomasz Hrycak

European Center of Time-Frequency Analysis Faculty of Mathematics University of Vienna

http://homepage.univie.ac.at/karlheinz.groechenig/

Dagstuhl, December 2008

Outline

- What is IPRM?
- IPRM-Algorithm, Condition Number, Optimality
- Numerical Simulations
- Variations

IPRM I

- Gibbs phenomenon
- IPRM = Inverse polynomial reconstruction method (Jung and Shizgal, 2003–07)
- Goal: Construct an algebraic polynomial from Fourier coefficients
- Find an approximation of a piecewise smooth function from given Fourier coefficients
- How many Fourier coefficients are required for accurate construction of algebraic polynomial?
- Compression
- Relation between Fourier basis and other bases
- Gottlieb, Shu; Gelb, Tanner; Tadmore; etc.

IPRM II

Given function f on [-1,1] and m consecutive Fourier coefficients

$$\hat{f}(k) = \frac{1}{\sqrt{2}} \int_{-1}^1 f(x) \mathrm{e}^{-i\pi k x} \, dx, \qquad -\lfloor \frac{m-1}{2} \rfloor \leq k \leq \lfloor \frac{m}{2} \rfloor \, .$$

Find a polynomial p of degree n-1 with these Fourier coefficients. Expand p into normalized Legendre polynomials $\widetilde{P_k}$

$$p = \sum_{l=0}^{n-1} a_l \widetilde{P}_l$$

IPRM: solve the system

$$\sum_{l=0}^{n-1} a_l \widehat{\widetilde{P}}_l(k) = \widehat{f}(k) \qquad k = -\lfloor \frac{m-1}{2} \rfloor, \ldots, \lfloor \frac{m}{2} \rfloor.$$

IPRM-Algorithm

Input: m Fourier coefficients $\widehat{f}(k)$, Let $A_{m,n}$ be $m \times n$ matrix $A_{m,n}$ with entries

$$a_{kl} = \widehat{\widetilde{P}_l}(k) = \sqrt{2} \left(-i\right)^l \sqrt{l + \frac{1}{2}} j_l(k\pi), \tag{1}$$

$$k = -\lfloor \frac{m-1}{2} \rfloor, \ldots, \lfloor \frac{m}{2} \rfloor, I = 0, \ldots, n-1.$$

3 Solve overdetermined least squares problem for approximate Legendre coefficients $\mathbf{c} = [c_0, \dots, c_{n-1}]^t$

$$\min_{\mathbf{c} \in \mathbb{C}^n} \|A_{m,n}\mathbf{c} - [\widehat{f}(d), \dots, \widehat{f}(D)]^t\|_2, \tag{2}$$

where $d = -\lfloor \frac{m-1}{2} \rfloor$, $D = \lfloor \frac{m}{2} \rfloor$.

Approximate f by truncated Legendre series

$$f_n = \sum_{l=0}^{n-1} c_l \widetilde{P}_l. \tag{3}$$

Existence of a Reconstruction

Theorem

Let d and D be integers such that $d \le 0 \le D$, and let $p \in \mathcal{P}_M$ have vanishing D-d+1 consecutive Fourier coefficients

$$\widehat{p}(d) = \widehat{p}(d+1) = \ldots = \widehat{p}(D-1) = \widehat{p}(D) = 0.$$
 (4)

If $D - d + 1 \ge M + 1$, then p = 0 identically.

REMARK: $A_{n,n}$ is invertible, and for m > n $A_{m,n}$ has full rank. P_M is the space of algebraic polynomials of degree at most M.

Stability of the Reconstruction

Theorem

For every $\alpha > 1$, every n = 1, 2, ..., and every integer $m > \alpha n^2$, the condition number of the matrix $A_{m,n}$ does not exceed $\sqrt{\frac{\alpha}{\alpha-1}}$.

REMARK: $\alpha > 1$ can be pushed to $\alpha > c$ for some $c \approx 1/2$.

Convergence Rates

Theorem

Let $f = \sum_{l=0}^{\infty} a_l \widetilde{P}_l$ with Legendre coefficients

$$|a_l| \le c e^{-\beta l}, \tag{5}$$

where c > 0 and $\beta > 0$, and let f_n be the reconstruction by IPRM (3). If $m > n^2$, then

$$||f - f_n||_{\infty} \le c' n e^{-\beta n}, \tag{6}$$

for another constant c' > 0.

REMARK: Measured by number of Fourier coefficients $m = \alpha n^2$, the convergence is root-exponential: $||f - f_n||_{\infty} \le c' \sqrt{m} e^{-\beta \sqrt{m}}$.

Figure: Condition numbers of the square matrix $A_{n,n}$ for n = 1, ..., 150.

Computation versus Proof

Experimentally: Smallest singular value $\lambda_{\min}(n)$ of $A_{n,n}$ decays exponentially (equivalently: condition number of the square matrix grows exponentially)

Current estimate: $\lambda_{min} < 0.65$

Needed: Behavior of Bessel functions J_{ν} in the non-asymptotic region $\nu \leq x \leq \nu^2$.

Figure: Condition numbers of the matrix $A_{\lceil n^{\frac{3}{2}} \rceil, n}$ for n = 1, ..., 100.

Figure: Condition numbers of the matrix $A_{\lceil \alpha n^2 \rceil, n}$ for $\alpha = \frac{1}{20}, \frac{1}{40}, \frac{1}{60}$.

Figure: Condition numbers of the matrix $A_{n^2,n}$ for n = 1, ..., 100.

Figure: Condition numbers of the matrix $A_{m,20}$ with m Fourier coefficients for m = 1, ..., 100.

Figure: Relative maximum reconstruction errors for the function $\frac{1}{x-0.3i}$ on the interval [-1,1] with the two versions of IPRM.

Figure: Relative maximum reconstruction errors for the function $\frac{1}{x-1.0i}$ on the interval [-1,1] with the two versions of IPRM.

Figure: Relative maximum reconstruction errors for the function $\frac{1}{x-1.0i}$ on the interval [-1,1] with the two versions of IPRM.

Piecewise Polynomials from Fourier Coefficients

Fix nodes

$$-1 = a_0 < a_1 < \ldots < a_{L-1} < a_L = 1, \tag{7}$$

and consider

$$\mathcal{P}_{M,\mathbf{a}} = \{f : f|_{(a_{j-1},a_j)} \text{ is polynomial of degree } M\}$$

$$\dim \mathcal{P}_{\mathbf{a},M} = L(M+1)$$

Theorem

Let d and D be integers such that $d \le 0 \le D$, and let $p \in \mathcal{P}_{M,a}$ have vanishing D-d+1 consecutive Fourier coefficients

$$\widehat{p}(d) = \widehat{p}(d+1) = \ldots = \widehat{p}(D-1) = \widehat{p}(D) = 0.$$
 (8)

If $D - d + 1 \ge L(M + 1)$, then p = 0 identically.

Piecewise Constant Functions with free nodes

$$p = \sum_{j=1}^{L} p_j \chi_{(t_{j-1}, t_j)}.$$
 (9)

Theorem

Let p a step function on [-1,1] with at most L-1 points of discontinuity, and let d, and $D \in \mathbb{Z}$ be such that $d \leq 0 \leq D$. If $D-d+1 \geq 2L-1$, then p is uniquely determined by its D-d+1 consecutive Fourier coefficients $\widehat{p}(d), \widehat{p}(d+1), \ldots, \widehat{p}(D-1), \widehat{p}(D)$.

Reconstruction by Prony's spectral estimator, Used in compressed sensing by M. Vetterli as "Occam's razor"

To Do List

- Optimality of order of condition number
- Open question: Is

$$\lim_{n\to\infty}\kappa(A_{\alpha n^2,n})=\mathrm{e}^{\beta/\alpha}$$

- Condition numbers for piecewise polynomials with fixed nodes
- Variable degrees for piecewise polynomials with fixed nodes
- Method for piecewise polynomials with free nodes
- Reconstruction from arbitrary frequencies, from random frequencies

Summary

- Rigorous convergence analysis of IPRM
- First proof of existence of the square IPRM (invertibility of A_{n,n})
- $n \times n$ IPRM is acceptable for entire functions
- $n^2 \times n$ IPRM is reliable for meromorphic functions
- $n^2 \times n$ IPRM useful in applications because it handles noisy signals and uses all available Fourier coefficients

Thank you!

Further questions also to tomasz.hrycak@univie.ac.at