Compact bilinear operators and commutators

Árpád Bényi
Department of Mathematics
Western Washington University, USA

Modern Methods of Time-Frequency Analysis II:
Phase-Space Methods for Pseudodifferential Operators
Erwin Schrödinger Institute, Vienna, October 15-19, 2012
Joint work with

Kabe Moen (University of Alabama)
Rodolfo Torres (University of Kansas)

Research partially supported by a Simons Foundation grant
Outline of the talk

- From linear to bilinear theory
 - Bilinear Calderón-Zygmund operators and commutators
 - Compact bilinear operators
 - A nice connection
Outline of the talk

- From linear to bilinear theory
- Bilinear Calderón-Zygmund operators and commutators
 - Compact bilinear operators
 - A nice connection
Outline of the talk

- From linear to bilinear theory
- Bilinear Calderón-Zygmund operators and commutators
- Compact bilinear operators
- A nice connection
Outline of the talk

- From linear to bilinear theory
- Bilinear Calderón-Zygmund operators and commutators
- Compact bilinear operators
- A nice connection
Linear multipliers

\[T(f)(x) = (k \ast f)(x) = \int_{\mathbb{R}^n} k(x - y)f(y) \, dy \]

or

\[T(f)(x) = \int_{\mathbb{R}^n} \hat{k}(\xi) \hat{f}(\xi) e^{ix \cdot \xi} \, d\xi. \]

Trivially, \(T : L^2 \to L^2 \iff m \in L^\infty. \)

Theorem (Hörmander-Mihlin)

If \(|\partial^\alpha m(\xi)| \lesssim |\xi|^{-|\alpha|} \), then \(T : L^p \to L^p \), \(1 < p < \infty \). Also, \(T : L^1 \to L^{1,\infty} \) and \(T : L^\infty \to BMO. \)

Note: \(|\partial^\alpha m(\xi)| \lesssim |\xi|^{-|\alpha|} \Rightarrow |\partial^\alpha k(y)| \lesssim |y|^{-n-|\alpha|}, y \neq 0. \)

Singular integrals of convolution type: if \(k \) decays as above and satisfies an appropriate cancelation, we have \(L^p \) results for \(T. \)
Linear multipliers

\[T(f)(x) = (k \ast f)(x) = \int_{\mathbb{R}^n} k(x - y)f(y) \, dy \]

or

\[T(f)(x) = \int_{\mathbb{R}^n} \hat{k}(\xi)\hat{f}(\xi)e^{ix \cdot \xi} m(\xi) \, d\xi. \]

Trivially, \(T : L^2 \to L^2 \iff m \in L^\infty. \)

Theorem (Hörmander-Mihlin)

If \(|\partial^\alpha m(\xi)| \lesssim |\xi|^{-|\alpha|} \), then \(T : L^p \to L^p \), \(1 < p < \infty \). Also, \(T : L^1 \to L^{1,\infty} \) and \(T : L^\infty \to BMO \).

Note: \(|\partial^\alpha m(\xi)| \lesssim |\xi|^{-|\alpha|} \Rightarrow |\partial^\alpha k(y)| \lesssim |y|^{-n-|\alpha|}, y \neq 0. \)

Singular integrals of convolution type: if \(k \) decays as above and satisfies an appropriate cancelation, we have \(L^p \) results for \(T \).
Linear multipliers

\[T(f)(x) = (k \ast f)(x) = \int_{\mathbb{R}^n} k(x - y)f(y) \, dy \]

or

\[T(f)(x) = \int_{\mathbb{R}^n} \hat{k}(\xi) \hat{f}(\xi) e^{ix \cdot \xi} \, d\xi. \]

Trivially, \(T : L^2 \rightarrow L^2 \iff m \in L^\infty. \)

Theorem (Hörmander-Mihlin)

If \(|\partial^\alpha m(\xi)| \lesssim |\xi|^{-|\alpha|}, \) then \(T : L^p \rightarrow L^p, \, 1 < p < \infty. \) Also, \(T : L^1 \rightarrow L^{1,\infty} \) and \(T : L^\infty \rightarrow BMO. \)

Note: \(|\partial^\alpha m(\xi)| \lesssim |\xi|^{-|\alpha|} \Rightarrow |\partial^\alpha k(y)| \lesssim |y|^{-n-|\alpha|}, y \neq 0. \)

Singular integrals of convolution type: if \(k \) decays as above and satisfies an appropriate cancelation, we have \(L^p \) results for \(T. \)
Linear multipliers

\[T(f)(x) = (k \ast f)(x) = \int_{\mathbb{R}^n} k(x - y)f(y) \, dy \]

or

\[T(f)(x) = \int_{\mathbb{R}^n} \hat{k}(\xi)\hat{f}(\xi)e^{ix \cdot \xi} \, d\xi. \]

Trivially, \(T : L^2 \to L^2 \iff m \in L^\infty. \)

Theorem (Hörmander-Mihlin)

If \(|\partial^\alpha m(\xi)| \lesssim |\xi|^{-|\alpha|}, \) then \(T : L^p \to L^p, 1 < p < \infty. \) Also, \(T : L^1 \to L^{1,\infty} \) and \(T : L^\infty \to BMO. \)

Note: \(|\partial^\alpha m(\xi)| \lesssim |\xi|^{-|\alpha|} \Rightarrow |\partial^\alpha k(y)| \lesssim |y|^{-n-|\alpha|}, y \neq 0. \)

Singular integrals of convolution type: if \(k \) decays as above and satisfies an appropriate cancelation, we have \(L^p \) results for \(T. \)
Linear multipliers

\[T(f)(x) = (k \ast f)(x) = \int_{\mathbb{R}^n} k(x - y)f(y) \, dy \]

or

\[T(f)(x) = \int_{\mathbb{R}^n} \hat{k}(\xi)\hat{f}(\xi)e^{ix \cdot \xi} \frac{d\xi}{m(\xi)} \]

Trivially, \(T : L^2 \to L^2 \iff m \in L^\infty \).

Theorem (Hörmander-Mihlin)

If \(|\partial^\alpha m(\xi)| \lesssim |\xi|^{-|\alpha|} \), then \(T : L^p \to L^p \), \(1 < p < \infty \). Also, \(T : L^1 \to L^{1,\infty} \) and \(T : L^\infty \to BMO \).

Note: \(|\partial^\alpha m(\xi)| \lesssim |\xi|^{-|\alpha|} \Rightarrow |\partial^\alpha k(y)| \lesssim |y|^{-n-|\alpha|}, y \neq 0 \).

Singular integrals of convolution type: if \(k \) decays as above and satisfies an appropriate cancelation, we have \(L^p \) results for \(T \).
Bilinear multipliers

\[T(f, g)(x) = (k\ast(f \otimes g))(x, x) = \int \int k(x-y, x-z)f(y)g(z) \, dydz \]

or

\[T(f)(x) = \int \int \hat{k}(\xi, \eta) \hat{f}(\xi)\hat{g}(\eta)e^{ix \cdot (\xi + \eta)} \, d\xi d\eta. \]

Analogously, if

\[|\partial_\xi^\alpha \partial_\eta^\beta m(\xi, \eta)| \lesssim (|\xi| + |\eta|)^{-|\alpha|-|\beta|} \]

then

\[|\partial_y^\alpha \partial_z^\beta k(y, z)| \lesssim (|y| + |z|)^{-2n-|\alpha|-|\beta|}. \]
Bilinear multipliers

\[T(f, g)(x) = (k*(f \otimes g))(x, x) = \int \int k(x-y, x-z)f(y)g(z) \, dydz \]

or

\[T(f)(x) = \int \int \hat{k}(\xi, \eta) \hat{f}(\xi)\hat{g}(\eta)e^{i\xi \cdot (\xi+\eta)} \, d\xi d\eta. \]

Analogously, if

\[|\partial_\xi^\alpha \partial_\eta^\beta m(\xi, \eta)| \lesssim (|\xi| + |\eta|)^{-|\alpha|-|\beta|} \]

then

\[|\partial_y^\alpha \partial_z^\beta k(y, z)| \lesssim (|y| + |z|)^{-2n-|\alpha|-|\beta|}. \]
A classical result

Theorem (Coifman-Meyer)

If \(|\partial_\xi^\alpha \partial_\eta^\beta m(\xi, \eta)| \lesssim (|\xi| + |\eta|)^{-|\alpha|-|\beta|} \), then \(T : L^p \times L^q \to L^r \), \(1 < p, q < \infty \) and \(1/2 < r < \infty \) (as well as appropriate end-point results).

- Coifman-Meyer ('78): proof via Littlewood-Paley theory when \(r > 1 \)
- Kenig-Stein ('99), Grafakos-Torres ('02): extension to the range \(r > 1/2 \)

Proof: \(T \) is a bilinear operator with Calderón-Zygmund kernel. Also

\[
T(e^{i\xi \cdot}, e^{i\eta \cdot})(x) = m(\xi, \eta) e^{ix \cdot (\xi+\eta)}
\]

which is in \(L^\infty \) (and thus BMO) uniformly in \(\xi, \eta \). The same applies to the transposes of \(T \). One can then apply the bilinear \(T(1) \) for CZ operators to conclude.
A classical result

Theorem (Coifman-Meyer)

If $|\partial_\xi^\alpha \partial_\eta^\beta m(\xi, \eta)| \lesssim (|\xi| + |\eta|)^{-|\alpha| - |\beta|}$, then $T : \mathbb{L}^p \times \mathbb{L}^q \rightarrow \mathbb{L}^r$, $1 < p, q < \infty$ and $1/2 < r < \infty$ (as well as appropriate end-point results).

- Coifman-Meyer ('78): proof via Littlewood-Paley theory when $r > 1$
- Kenig-Stein ('99), Grafakos-Torres ('02): extension to the range $r > 1/2$

Proof: T is a bilinear operator with *Calderón-Zygmund kernel*. Also

$$T(e^{i\xi \cdot}, e^{i\eta \cdot})(x) = m(\xi, \eta)e^{ix \cdot (\xi + \eta)}$$

which is in \mathbb{L}^∞ (and thus BMO) uniformly in ξ, η. The same applies to the transposes of T. One can then apply *the bilinear $T(1)$ for CZ operators to conclude.*
Bilinear operators with Calderón-Zygmund kernels

\[T(f, g)(x) = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} K(x, y, z) f(y) g(z) \, dy \, dz \]

Away from the diagonal \(x = y = z \), the kernel \(K \) satisfies

\[|K(x, y, z)| \lesssim (|x - y| + |x - z| + |y - z|)^{-2n} \quad (1) \]

and

\[|K(x, y, z) - K(x', y, z)| \lesssim \frac{|x - x'|^\varepsilon}{(|x - y| + |x - z| + |y - z|)^{2n + \varepsilon}} \quad (2) \]

for some \(\varepsilon \in (0, 1] \) whenever \(|x - x'| \leq \frac{1}{2} \max\{|x - y|, |x - z|\} \).

For symmetry and interpolation purposes we require that \(K^1(x, y, z) = K(y, x, z) \) and \(K^2(x, y, z) = K(z, y, x) \) also satisfy (2).
Bilinear operators with Calderón-Zygmund kernels

\[T(f, g)(x) = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} K(x, y, z)f(y)g(z) \, dydz \]

Away from the diagonal \(x = y = z \), the kernel \(K \) satisfies

\[|K(x, y, z)| \lesssim (|x - y| + |x - z| + |y - z|)^{-2n} \quad (1) \]

and

\[|K(x, y, z) - K(x', y, z)| \lesssim \frac{|x - x'|^{\varepsilon}}{(|x - y| + |x - z| + |y - z|)^{2n + \varepsilon}} \quad (2) \]

for some \(\varepsilon \in (0, 1] \) whenever \(|x - x'| \leq \frac{1}{2} \max\{|x - y|, |x - z|\} \).

For symmetry and interpolation purposes we require that \(K^1(x, y, z) = K(y, x, z) \) and \(K^2(x, y, z) = K(z, y, x) \) also satisfy (2).
Bilinear operators with Calderón-Zygmund kernels

\[T(f, g)(x) = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} K(x, y, z)f(y)g(z) \, dydz \]

Away from the diagonal \(x = y = z \), the kernel \(K \) satisfies

\[|K(x, y, z)| \lesssim (|x - y| + |x - z| + |y - z|)^{-2n} \quad (1) \]

and

\[|K(x, y, z) - K(x', y, z)| \lesssim \frac{|x - x'|^{\varepsilon}}{(|x - y| + |x - z| + |y - z|)^{2n+\varepsilon}} \quad (2) \]

for some \(\varepsilon \in (0, 1] \) whenever \(|x - x'| \leq \frac{1}{2} \max\{|x - y|, |x - z|\} \).

For symmetry and interpolation purposes we require that
\(K^1(x, y, z) = K(y, x, z) \) and \(K^2(x, y, z) = K(z, y, x) \) also satisfy (2).
For simplicity, in the following we will replace the size and regularity conditions (1)-(2) on K with:

$$
|\partial^{\beta}K(x, y, z)| \lesssim \left(|x - y| + |y - z| + |z - x|\right)^{-2n-|\beta|}, \quad |\beta| \leq 1.
$$

- We say that such a kernel $K(x, y, z)$ is a \textit{bilinear Calderón-Zygmund (CZ) kernel}.
- An operator T is a \textit{bilinear CZ operator} if it extends to a bounded operator from $L^{p_0} \times L^{q_0}$ into L^{r_0} for some $1 < p_0, q_0 < \infty$ and $1/p_0 + 1/q_0 = 1/r_0 \leq 1$.
For simplicity, in the following we will replace the size and regularity conditions (1)-(2) on K with:

$$|\partial^\beta K(x, y, z)| \lesssim \left(|x - y| + |y - z| + |z - x|\right)^{-2n-|\beta|}, \quad |\beta| \leq 1.$$

- We say that such a kernel $K(x, y, z)$ is a \textit{bilinear Calderón-Zygmund (CZ) kernel}.
- An operator T is a \textit{bilinear CZ operator} if it extends to a bounded operator from $L^{p_0} \times L^{q_0}$ into L^{r_0} for some $1 < p_0, q_0 < \infty$ and $1/p_0 + 1/q_0 = 1/r_0 \leq 1$.
Bilinear commutators

For a bilinear operator T, and b, b_1, b_2 some appropriately smooth functions, we are interested in the following three bilinear commutators:

$$(C1)[T, b]_1(f, g) = T(bf, g) - bT(f, g),$$

$$(C2)[T, b]_2(f, g) = T(f, bg) - bT(f, g),$$

$$(C3)[[T, b_1]_1, b_2]_2(f, g) = [T, b_1]_1(f, b_2g) - b_2[T, b_1]_1(f, g).$$

Formally, if T has kernel K, then

$$(C1) = \int \int K(x, y, z)(b(y) - b(x))f(y)g(z) \, dydz,$$

$$(C2) = \int \int K(x, y, z)(b(z) - b(x))f(y)g(z) \, dydz,$$

$$(C3) = \int \int K(x, y, z)(b_1(y) - b_1(x))(b_2(z) - b_2(x))f(y)g(z) \, dydz.$$
Bilinear commutators

For a bilinear operator T, and b, b_1, b_2 some appropriately smooth functions, we are interested in the following three bilinear commutators:

$$(C1)[T, b]_1(f, g) = T(bf, g) - bT(f, g),$$

$$(C2)[T, b]_2(f, g) = T(f, bg) - bT(f, g),$$

$$(C3)[[T, b_1], b_2](f, g) = [T, b_1](f, b_2g) - b_2[T, b_1](f, g).$$

Formally, if T has kernel K, then

$$(C1) = \int \int K(x, y, z)(b(y) - b(x))f(y)g(z) \, dydz,$$

$$(C2) = \int \int K(x, y, z)(b(z) - b(x))f(y)g(z) \, dydz,$$

$$(C3) = \int \int K(x, y, z)(b_1(y) - b_1(x))(b_2(z) - b_2(x))f(y)g(z) \, dydz.$$
Theorem

If T is a bilinear CZ operator with kernel K and $b, b_1, b_2 \in BMO$, then T is bounded from $L^p \times L^q \rightarrow L^r$ with $1/p + 1/q = 1/r$ for all $1 < p, q < \infty$. Moreover, the following estimates hold:

$$\|[T, b]_1(f, g)\|_{L^r}, \|[T, b]_2(f, g)\|_{L^r} \lesssim \|b\|_{BMO} \|f\|_{L^p} \|g\|_{L^q} \quad (3)$$

$$\|[[T, b_1], b_2](f, g)\|_{L^r} \lesssim \|b_1\|_{BMO} \|b_2\|_{BMO} \|f\|_{L^p} \|g\|_{L^q}. \quad (4)$$

- Perez-Torres ('03), Tang ('08),
- Lerner-Ombrosi-Pérez-Torres-Trujillo González ('09),
- Perez-Pradolini-Torres-Trujillo Gonzalez ('11)

Question

Do these bilinear commutators behave “better” if the multiplicative functions b, b_1, b_2 are assumed to be smoother?
Boundedness of commutators

Theorem

If T is a bilinear CZ operator with kernel K and $b, b_1, b_2 \in BMO$, then T is bounded from $L^p \times L^q \rightarrow L^r$ with $1/p + 1/q = 1/r$ for all $1 < p, q < \infty$. Moreover, the following estimates hold:

$$\|[T, b_1](f, g)\|_{L^r}, \|[T, b_2](f, g)\|_{L^r} \lesssim \|b\|_{BMO} \|f\|_{L^p} \|g\|_{L^q} \quad (3)$$

$$\|[[T, b_1], b_2](f, g)\|_{L^r} \lesssim \|b_1\|_{BMO} \|b_2\|_{BMO} \|f\|_{L^p} \|g\|_{L^q}. \quad (4)$$

- Perez-Torres (’03), Tang (’08),
 Lerner-Ombrosi-Pérez-Torres-Trujillo González (’09),
 Perez-Pradolini-Torres-Trujillo Gonzalez (’11)

Question

Do these bilinear commutators behave “better” if the multiplicative functions b, b_1, b_2 are assumed to be smoother?
The main question asked before has a positive answer in the linear case. Denote by CMO the closure of C_c^∞ in the BMO topology.

Theorem (Uchiyama, ’78)

*If T is a linear CZ operator and $b \in CMO$, then $[T, b]$ is a compact operator from $L^p \to L^p$, $p > 1$."

Some relevant applications:

- Coifman-Lions-Meyer-Semmes (’93): Compensated compactness
- Iwaniec-Sbordone (’98): A Fredholm alternative for equations with CMO coefficients in all L^p spaces with $1 < p < \infty$
- Iwaniec (’07): Integrability of Jacobians
The main question asked before has a positive answer in the linear case. Denote by CMO the closure of C_c^∞ in the BMO topology.

Theorem (Uchiyama, ’78)

*If T is a linear CZ operator and $b \in CMO$, then $[T, b]$ is a compact operator from $L^p \to L^p$, $p > 1$.***

Some relevant applications:

- Coifman-Lions-Meyer-Semmes (’93): Compensated compactness
- Iwaniec-Sbordone (’98): A Fredholm alternative for equations with CMO coefficients in all L^p spaces with $1 < p < \infty$
- Iwaniec (’07): Integrability of Jacobians
A motivation

The main question asked before has a positive answer in the linear case. Denote by CMO the closure of C_c^∞ in the BMO topology.

Theorem (Uchiyama, ’78)

*If T is a linear CZ operator and $b \in CMO$, then $[T, b]$ is a compact operator from $L^p \to L^p, p > 1$."

Some relevant applications:

- Coifman-Lions-Meyer-Semmes (’93): Compensated compactness
- Iwaniec-Sbordone (’98): A Fredholm alternative for equations with CMO coefficients in all L^p spaces with $1 < p < \infty$
- Iwaniec (’07): Integrability of Jacobians
A motivation

The main question asked before has a positive answer in the linear case. Denote by CMO the closure of C_c^∞ in the BMO topology.

Theorem (Uchiyama, ’78)

If T is a linear CZ operator and $b \in CMO$, then $[T, b]$ is a compact operator from $L^p \to L^p$, $p > 1$.

Some relevant applications:
- Coifman-Lions-Meyer-Semmes (’93): Compensated compactness
- Iwaniec-Sbordone (’98): A Fredholm alternative for equations with CMO coefficients in all L^p spaces with $1 < p < \infty$
- Iwaniec (’07): Integrability of Jacobians
Compact bilinear operators

Definition (Calderón, ’64)

Let X, Y, Z be three normed spaces and $T : X \times Y \rightarrow Z$ a bilinear operator. T is called compact if $\{ T(x, y) : \|x\|, \|y\| \leq 1 \}$ is precompact in Z.

- B.-Torres (’12): (a) Several natural equivalent statements; (b) If Z is Banach, the space of compact bilinear operators is a closed linear subspace of the space of $X \times Y \rightarrow Z$ bounded operators.
- Note that if T is bilinear compact, then the sections T_x, T_y are linear compact operators for all $x \in X$, $y \in Y$.
- $T : C[0, 1] \times C[0, 1] \rightarrow C[0, 1]$ (endowed with the supremum norm), $T(f, g) = f \cdot g$, is bounded but not compact; for example, because $T_{f=1} = I_d$ is not compact (by Riesz’s theorem).
- $S : C[0, 1] \times C[0, 1] \rightarrow C[0, 1]$ (endowed with the supremum norm), $S(f, g)(x) = \int_0^x f(t)g(t) \, dt$, is bilinear compact (via Arzelà-Ascoli’s theorem).
Compact bilinear operators

Definition (Calderón, ’64)

Let X, Y, Z be three normed spaces and $T : X \times Y \to Z$ a bilinear operator. T is called *compact* if \(\{ T(x, y) : \|x\|, \|y\| \leq 1 \} \) is precompact in Z.

• B.-Torres ('12): (a) Several natural equivalent statements; (b) If Z is Banach, the space of compact bilinear operators is a closed linear subspace of the space of $X \times Y \to Z$ bounded operators.
• Note that if T is bilinear compact, then the sections T_x, T_y are linear compact operators for all $x \in X, y \in Y$.
• $T : C[0, 1] \times C[0, 1] \to C[0, 1]$ (endowed with the supremum norm), $T(f, g) = f \cdot g$, is bounded but not compact; for example, because $T_{f=1} = Id$ is not compact (by Riesz’s theorem).
• $S : C[0, 1] \times C[0, 1] \to C[0, 1]$ (endowed with the supremum norm), $S(f, g)(x) = \int_0^x f(t)g(t) \, dt$, is bilinear compact (via Arzelà-Ascoli’s theorem).
Compact bilinear operators

Definition (Calderón, ’64)

Let X, Y, Z be three normed spaces and $T : X \times Y \to Z$ a bilinear operator. T is called compact if \(\{ T(x, y) : \|x\|, \|y\| \leq 1 \} \) is precompact in Z.

- B.-Torres (’12): (a) Several natural equivalent statements; (b) If Z is Banach, the space of compact bilinear operators is a closed linear subspace of the space of $X \times Y \to Z$ bounded operators.
- Note that if T is bilinear compact, then the sections T_x, T_y are linear compact operators for all $x \in X, y \in Y$.
- $T : C[0, 1] \times C[0, 1] \to C[0, 1]$ (endowed with the supremum norm), $T(f, g) = f \cdot g$, is bounded but not compact; for example, because $T_{f=1} = Id$ is not compact (by Riesz’s theorem).
- $S : C[0, 1] \times C[0, 1] \to C[0, 1]$ (endowed with the supremum norm), $S(f, g)(x) = \int_0^x f(t)g(t) \, dt$, is bilinear compact (via Arzelà-Ascoli’s theorem).
Compact bilinear operators

Definition (Calderón, ’64)

Let X, Y, Z be three normed spaces and $T : X \times Y \to Z$ a bilinear operator. T is called *compact* if \(\{ T(x, y) : \|x\|, \|y\| \leq 1 \} \) is precompact in Z.

- B.-Torres (’12): (a) Several natural equivalent statements; (b) If Z is Banach, the space of compact bilinear operators is a closed linear subspace of the space of $X \times Y \to Z$ bounded operators.
- Note that if T is bilinear compact, then the sections T_x, T_y are linear compact operators for all $x \in X$, $y \in Y$.
- $T : C[0,1] \times C[0,1] \to C[0,1]$ (endowed with the supremum norm), $T(f,g) = f \cdot g$, is bounded but not compact; for example, because $T_{f=1} = Id$ is not compact (by Riesz’s theorem).
- $S : C[0,1] \times C[0,1] \to C[0,1]$ (endowed with the supremum norm), $S(f,g)(x) = \int_0^x f(t)g(t) \, dt$, is bilinear compact (via Arzelà-Ascoli’s theorem).
Compact bilinear operators

Definition (Calderón, ’64)

Let \(X, Y, Z \) be three normed spaces and \(T : X \times Y \to Z \) a bilinear operator. \(T \) is called **compact** if \(\{ T(x, y) : \|x\|, \|y\| \leq 1 \} \) is precompact in \(Z \).

- B.-Torres (’12): (a) Several natural equivalent statements; (b) If \(Z \) is Banach, the space of compact bilinear operators is a closed linear subspace of the space of \(X \times Y \to Z \) bounded operators.
- Note that if \(T \) is bilinear compact, then the sections \(T_x, T_y \) are linear compact operators for all \(x \in X, y \in Y \).
- \(T : C[0,1] \times C[0,1] \to C[0,1] \) (endowed with the supremum norm), \(T(f, g) = f \cdot g \), is bounded but not compact; for example, because \(T_{f=1} = Id \) is not compact (by Riesz’s theorem).
- \(S : C[0,1] \times C[0,1] \to C[0,1] \) (endowed with the supremum norm), \(S(f, g)(x) = \int_0^x f(t)g(t) \, dt \), is bilinear compact (via Arzelà-Ascoli’s theorem).
• The notion of compactness in multilinear setting was only considered in the context of interpolation (Fernandez-da Silva, ’10)

But now we have:

Theorem (B.-Torres, ’12)

Let T be a bilinear CZ operator. If $b \in \text{CMO}$, $1/p + 1/q = 1/r$, $1 < p, q < \infty$ and $1 \leq r < \infty$, then $[T, b]_1 : L^p \times L^q \to L^r$ is compact. Similarly, if b_1, b_2 are also in CMO, then $[T, b]_2$ and $[T, b_1]_1, b_2]_2$ are compact for the same range of exponents.
The notion of compactness in multilinear setting was only considered in the context of interpolation (Fernandez-da Silva, ’10). But now we have:

Theorem (B.-Torres, ’12)

Let T be a bilinear CZ operator. If $b \in \text{CMO}$, $1/p + 1/q = 1/r$, $1 < p, q < \infty$ and $1 \leq r < \infty$, then $[T, b]_1 : L^p \times L^q \to L^r$ is compact. Similarly, if b_1, b_2 are also in CMO, then $[T, b]_2$ and $[T, b_1]_1, b_2]_2$ are compact for the same range of exponents.
The proof for the first commutator

• Relies on the Fréchet-Kolmogorov theorem characterizing the pre-compactness of a set in L^r
• It is enough to show that for $b, f, g \in C_c^\infty$ the following estimates hold:
 (a) Given $\epsilon > 0$, there exists an $A > 0$ ($A = A(\epsilon)$ but independent of f and g) with the property that
 $$\left(\int_{|x| > A} |[T, b]_1(f, g)(x)|^r \, dx \right)^{1/r} \lesssim \epsilon \|f\|_{L^p} \|g\|_{L^q}.$$
 (b) Given $\epsilon \in (0, 1)$ there exists a sufficiently small t_0 ($t_0 = t_0(\epsilon)$ but independent of f and g) such that for all $0 < |t| < t_0$,
 $$|[T, b]_1(f, g)(\cdot) - [T, b]_1(f, g)(\cdot + t)|_{L^r} \lesssim \epsilon \|f\|_{L^p} \|g\|_{L^q}.$$
• The previous estimates emphasize the cancelation phenomenon of the commutators.
The proof of estimate (a)

- Pick $A > 1$ (large), $A > 2 \max\{|y| : y \in \text{supp} \, b\}$. Let $|x| > A$.

\[
|\langle T, b \rangle_1(f, g)(x) | \leq \int \int_{y \in \text{supp} \, b} |K(x, y, z)| |b(y)||f(y)||g(z)| \, dy \, dz
\]
\[
\leq \|b\|_{L^\infty} \int \int_{y \in \text{supp} \, b} \frac{|f(y)||g(z)|}{(|x - y| + |x - z|)^{2n}} \, dy \, dz
\]
\[
\leq \int \int_{y \in \text{supp} \, b} \frac{|f(y)|}{|x - y|^n} \int \frac{|g(z)|}{(|x - y| + |x - z|)^n} \, dz \, dy
\]
\[
\leq 2^n |x|^{-n} \int_{y \in \text{supp} \, b} |f(y)| \left(\int (|x - y| + |x - z|)^{-nq'} \, dz \right)^{1/q'} \, dy \|g\|_{L^q}
\]
\[
\leq 2^n |x|^{-n} |\text{supp} \, b|^{1/p'} \|f\|_{L^p} \left(\int (1/2 + |z|^{-nq'}) \, dz \right)^{1/q'} \|g\|_{L^q}
\]
\[
\lesssim |x|^{-n} |\text{supp} \, b|^{1/p'} \|f\|_{L^p} \|g\|_{L^q}.
\]

Now integrate $|\langle T, b \rangle_1(f, g)(x) |^r$ over $|x| > A$. 15
The proof of estimate (a)

- Pick $A > 1$ (large), $A > 2 \max \{|y| : y \in \text{supp } b\}$. Let $|x| > A$.

\[
|[T, b]_1(f, g)(x)| \leq \int \int_{y \in \text{supp } b} |K(x, y, z)||b(y)||f(y)||g(z)| \, dydz
\]
\[
\leq \|b\|_{L^\infty} \int \int_{y \in \text{supp } b} \frac{|f(y)||g(z)|}{(|x - y| + |x - z|)^{2n}} \, dydz
\]
\[
\leq \int_{y \in \text{supp } b} \frac{|f(y)|}{|x - y|^n} \int \frac{|g(z)|}{(|x - y| + |x - z|)^n} \, dz \, dy
\]
\[
\leq 2^n|x|^{-n} \int_{y \in \text{supp } b} |f(y)| \left(\int (|x - y| + |x - z|)^{-nq'} \, dz \right)^{1/q'} \, dy \|g\|_{L^q}
\]
\[
\leq 2^n|x|^{-n} \text{supp } b^{1/p'} \|f\|_{L^p} \left(\int (1/2 + |z|^{-nq'}) \, dz \right)^{1/q'} \|g\|_{L^q}
\]
\[
\lesssim |x|^{-n} \text{supp } b^{1/p'} \|f\|_{L^p} \|g\|_{L^q}.
\]

Now integrate $|[T, b]_1(f, g)(x)|$ over $|x| > A$.
The proof of estimate (a)

- Pick $A > 1$ (large), $A > 2 \max\{|y| : y \in \text{supp } b\}$. Let $|x| > A$.

$$
|\[T, b\]_1(f, g)(x)| \leq \int \int_{y \in \text{supp } b} |K(x, y, z)||b(y)||f(y)||g(z)| \ dy \ dz
$$

$$
\leq \|b\|_{L^\infty} \int \int_{y \in \text{supp } b} \frac{|f(y)||g(z)|}{(|x - y| + |x - z|)^{2n}} \ dy \ dz
$$

$$
\leq \int_{y \in \text{supp } b} \frac{|f(y)|}{|x - y|^n} \int \frac{|g(z)|}{(|x - y| + |x - z|)^n} \ dz \ dy
$$

$$
\leq 2^n |x|^{-n} \int_{y \in \text{supp } b} |f(y)| \left(\int (|x - y| + |x - z|)^{-nq'} \ dz \right)^{1/q'} \ dy \ \|g\|_{L^q}
$$

$$
\leq 2^n |x|^{-n} |\text{supp } b|^{1/p'} \|f\|_{L^p} \left(\int (1/2 + |z|^{-nq'}) \ dz \right)^{1/q'} \|g\|_{L^q}
$$

$$
\lesssim |x|^{-n} |\text{supp } b|^{1/p'} \|f\|_{L^p} \|g\|_{L^q}.
$$

Now integrate $|[T, b]_1(f, g)(x)|^r$ over $|x| > A$.

[End of page]
The proof of estimate (b)

- More involved: a further decomposition is required.
- Controlling each term in this decomposition uses:
 1. a variant of the maximal truncated bilinear singular integral
 2. the smoothness estimate of the kernel
 3. the L^p boundedness of the Hardy-Littlewood maximal function
- The second commutator is handled similarly.
- The second order commutator $[[T, b_1], b_2]$ is harder to study in general for symbols in BMO. It is in fact easier when the symbols are in CMO because of extra cancelations!
The proof of estimate (b)

- More involved: a further decomposition is required.
- Controlling each term in this decomposition uses:
 1. a variant of the maximal truncated bilinear singular integral
 2. the smoothness estimate of the kernel
 3. the L^p boundedness of the Hardy-Littlewood maximal function

- The second commutator is handled similarly.
- The second order commutator $[[T, b_1], b_2]$ is harder to study in general for symbols in BMO. It is in fact easier when the symbols are in CMO because of extra cancelations!
The proof of estimate (b)

- More involved: a further decomposition is required.
- Controlling each term in this decomposition uses:
 1. a variant of the maximal truncated bilinear singular integral
 2. the smoothness estimate of the kernel
 3. the L^p boundedness of the Hardy-Littlewood maximal function
- The second commutator is handled similarly.
 - The second order commutator $[[T, b_1], b_2]_2$ is harder to study in general for symbols in BMO. It is in fact easier when the symbols are in CMO because of extra cancelations!
The proof of estimate (b)

- More involved: a further decomposition is required.
- Controlling each term in this decomposition uses:
 1. a variant of the maximal truncated bilinear singular integral
 2. the smoothness estimate of the kernel
 3. the L^p boundedness of the Hardy-Littlewood maximal function
- The second commutator is handled similarly.
- The second order commutator $[[T, b_1], b_2]$ is harder to study in general for symbols in BMO. It is in fact easier when the symbols are in CMO because of extra cancelations!
We say that a symbol \(\sigma(x, \xi, \eta) \) belongs to \(BS_{\rho,\delta}^m \) if

\[
|\partial_x^\alpha \partial_{\xi}^\beta \partial_{\eta}^\gamma \sigma(x, \xi, \eta)| \lesssim (1 + |\xi| + |\eta|)^{m+\delta|\alpha|-\rho(|\beta|+|\gamma|)}
\]

for all \((x, \xi, \eta) \in \mathbb{R}^{3n}\) and all multi-indices \(\alpha, \beta, \gamma\).

Associated to such a bilinear symbol, we have a bilinear pseudodifferential operator

\[
T_\sigma(f, g)(x) = \int \int \sigma(x, \xi, \eta) \hat{f}(\xi) \hat{g}(\eta) e^{ix \cdot (\xi + \eta)} d\xi d\eta
\]

- The class \(BS_{1,0}^0 \) includes \(x \)-dependent symbols that generalize the bilinear multipliers of Coifman-Meyer.
We say that a symbol $\sigma(x, \xi, \eta)$ belongs to $BS^m_{\rho, \delta}$ if

$$|\partial_x^\alpha \partial_\xi^\beta \partial_\eta^\gamma \sigma(x, \xi, \eta)| \lesssim (1 + |\xi| + |\eta|)^{m+\delta|\alpha|-\rho(|\beta|+|\gamma|)}$$

for all $(x, \xi, \eta) \in \mathbb{R}^{3n}$ and all multi-indices α, β and γ.

Associated to such a bilinear symbol, we have a bilinear pseudodifferential operator

$$T_\sigma(f, g)(x) = \int \int \sigma(x, \xi, \eta) \hat{f}(\xi) \hat{g}(\eta) e^{ix \cdot (\xi + \eta)} d\xi d\eta$$

- The class $BS^0_{1,0}$ includes x-dependent symbols that generalize the bilinear multipliers of Coifman-Meyer.
We say that a symbol $\sigma(x, \xi, \eta)$ belongs to $BS^{m}_{\rho, \delta}$ if

$$|\partial_x^\alpha \partial_\xi^\beta \partial_\eta^\gamma \sigma(x, \xi, \eta)| \lesssim (1 + |\xi| + |\eta|)^{m+\delta|\alpha|-\rho(|\beta|+|\gamma|)}$$

for all $(x, \xi, \eta) \in \mathbb{R}^{3n}$ and all multi-indices α, β and γ.

Associated to such a bilinear symbol, we have a bilinear pseudodifferential operator

$$T_\sigma(f, g)(x) = \int \int \sigma(x, \xi, \eta) \hat{f}(\xi) \hat{g}(\eta) e^{ix \cdot (\xi + \eta)} d\xi d\eta$$

• The class $BS^0_{1,0}$ includes x-dependent symbols that generalize the bilinear multipliers of Coifman-Meyer.
Grafakos-Torres ('02): Bilinear CZ kernels correspond to bilinear pseudodifferential symbols in the class $BS_{1,1}^0$.

B.-Torres ('03): This class is “forbidden”: in general, for $\sigma \in BS_{1,1}^0$, $T_\sigma : L^2 \times L^2 \not\rightarrow L^1$; substitute results on products of Sobolev spaces.

B.-Maldonado-Naibo-Torres ('10): Existence of a transposition symbolic calculus for the subclass $BS_{1,\delta}^0$, $0 \leq \delta < 1$. Bilinear CZ operators are “essentially the same” as pseudodifferential operators in this subclass; the boundedness of BPSDOs with symbols in this class on products of Lebesgue spaces is another consequence.

B.-Oh ('12): A direct proof using Littlewood-Paley theory of $BS_{1,\delta}^0 : L^p \times L^q \rightarrow L^r$, $1/p + 1/q = 1/r$, $1 < p, q < \infty$.

B.-Bernicot-Maldonado-Naibo-Torres ('12): Several results about other classes $BS_{\rho,\delta}^m$.
Bilinear PSDOs and CZ operators

- Grafakos-Torres ('02): Bilinear CZ kernels correspond to bilinear pseudodifferential symbols in the class $BS_{1,1}^0$.
- B.-Torres ('03): This class is “forbidden”: in general, for $\sigma \in BS_{1,1}^0$, $T_\sigma : L^2 \times L^2 \nrightarrow L^1$; substitute results on products of Sobolev spaces.
- B.-Maldonado-Naibo-Torres ('10): Existence of a transposition symbolic calculus for the subclass $BS_{1,\delta}^0$, $0 \leq \delta < 1$. Bilinear CZ operators are “essentially the same” as pseudodifferential operators in this subclass; the boundedness of BPSDOs with symbols in this class on products of Lebesgue spaces is another consequence.
- B.-Oh ('12): A direct proof using Littlewood-Paley theory of $BS_{1,\delta}^0 : L^p \times L^q \rightarrow L^r$, $1/p + 1/q = 1/r$, $1 < p, q < \infty$.
- B.-Bernicot-Maldonado-Naibo-Torres ('12): Several results about other classes $BS_{\rho,\delta}^m$.

• Grafakos-Torres ('02): Bilinear CZ kernels correspond to bilinear pseudodifferential symbols in the class \(BS_{1,1}^0 \).
• B.-Torres ('03): This class is “forbidden”: in general, for \(\sigma \in BS_{1,1}^0 \), \(T_\sigma : L^2 \times L^2 \nrightarrow L^1 \); substitute results on products of Sobolev spaces.
• B.-Maldonado-Naibo-Torres ('10): Existence of a transposition symbolic calculus for the subclass \(BS_{1,\delta}^0 \), \(0 \leq \delta < 1 \). Bilinear CZ operators are “essentially the same” as pseudodifferential operators in this subclass; the boundedness of BPSDOs with symbols in this class on products of Lebesgue spaces is another consequence.
• B.-Oh ('12): A direct proof using Littlewood-Paley theory of \(BS_{1,\delta}^0 : L^p \times L^q \rightarrow L^r \), \(1/p + 1/q = 1/r \), \(1 < p, q < \infty \).
• B.-Bernicot-Maldonado-Naibo-Torres ('12): Several results about other classes \(BS_{\rho,\delta}^m \).
Bilinear PSDOs and CZ operators

• Grafakos-Torres (’02): Bilinear CZ kernels correspond to bilinear pseudodifferential symbols in the class $BS^0_{1,1}$.
• B.-Torres (’03): This class is “forbidden”: in general, for $\sigma \in BS^0_{1,1}$, $T_\sigma : L^2 \times L^2 \not\to L^1$; substitute results on products of Sobolev spaces.
• B.-Maldonado-Naibo-Torres (’10): Existence of a transposition symbolic calculus for the subclass $BS^0_{1,\delta}$, $0 \leq \delta < 1$. Bilinear CZ operators are “essentially the same” as pseudodifferential operators in this subclass; the boundedness of BPSDOs with symbols in this class on products of Lebesgue spaces is another consequence.
• B.-Oh (’12): A direct proof using Littlewood-Paley theory of $BS^0_{1,\delta} : L^p \times L^q \to L^r$, $1/p + 1/q = 1/r$, $1 < p, q < \infty$.
• B.-Bernicot-Maldonado-Naibo-Torres (’12): Several results about other classes $BS^m_{\rho,\delta}$.

Bilinear PSDOs and CZ operators

- Grafakos-Torres (‘02): Bilinear CZ kernels correspond to bilinear pseudodifferential symbols in the class $BS^{0}_{1,1}$.
- B.-Torres (‘03): This class is “forbidden”: in general, for $\sigma \in BS^{0}_{1,1}$, $T_{\sigma} : L^2 \times L^2 \nrightarrow L^1$; substitute results on products of Sobolev spaces.
- B.-Maldonado-Naibo-Torres (‘10): Existence of a transposition symbolic calculus for the subclass $BS^{0}_{1,\delta}$, $0 \leq \delta < 1$. Bilinear CZ operators are “essentially the same” as pseudodifferential operators in this subclass; the boundedness of BPSDOs with symbols in this class on products of Lebesgue spaces is another consequence.
- B.-Oh (‘12): A direct proof using Littlewood-Paley theory of $BS^{0}_{1,\delta} : L^p \times L^q \rightarrow L^r$, $1/p + 1/q = 1/r$, $1 < p, q < \infty$.
- B.-Bernicot-Maldonado-Naibo-Torres (‘12): Several results about other classes $BS^{m}_{\rho,\delta}$.

Corollary

Let $\sigma \in BS^0_{1,\delta}$, $0 \leq \delta < 1$, and T_σ the associated BPSDO. If $b \in CMO$, $1/p + 1/q = 1/r$, $1 < p, q < \infty$ and $1 \leq r < \infty$, then $[T, b]_1 : L^p \times L^q \to L^r$ is compact. Similarly, if b_1, b_2 are also in CMO, then $[T, b]_2$ and $[T, b_1]_1, b_2]_2$ are compact for the same range of exponents.
A more general scheme

- Bilinear CZ operators are just a family (corresponding to $\alpha = 0$) that belongs to a more general class of bilinear operators $\{ T_\alpha \}_{\alpha \geq 0}$, where

$$T_\alpha(f, g)(x) = \int_{\mathbb{R}^{2n}} K_\alpha(x, y, z)f(y)g(z) \, dydz;$$

The kernel K_α satisfies

$$|\partial^\beta K_\alpha(x, y, z)| \lesssim (|x - y| + |y - z| + |x - z|)^{-2n+\alpha-|\beta|}, |\beta| \leq 1.$$

Example

$$K_\alpha(x, y, z) = (|x - y| + |x - z|)^{-2n+\alpha}, 0 < \alpha < 2n;$$

T_α is the bilinear Riesz potential operator.
A more general scheme

- Bilinear CZ operators are just a family (corresponding to $\alpha = 0$) that belongs to a more general class of bilinear operators $\{ T_\alpha \}_{\alpha \geq 0}$, where

$$T_\alpha(f, g)(x) = \int_{\mathbb{R}^{2n}} K_\alpha(x, y, z)f(y)g(z) \, dydz;$$

The kernel K_α satisfies

$$|\partial^\beta K_\alpha(x, y, z)| \lesssim (|x - y| + |y - z| + |x - z|)^{-2n+\alpha-|\beta|}, |\beta| \leq 1.$$

Example

$$K_\alpha(x, y, z) = (|x - y| + |x - z|)^{-2n+\alpha}, 0 < \alpha < 2n;$$

T_α is the bilinear Riesz potential operator.
A more general scheme

- Bilinear CZ operators are just a family (corresponding to \(\alpha = 0 \)) that belongs to a more general class of bilinear operators \(\{ T_\alpha \}_{\alpha \geq 0} \), where

\[
T_\alpha(f, g)(x) = \int_{\mathbb{R}^{2n}} K_\alpha(x, y, z)f(y)g(z) \, dydz;
\]

The kernel \(K_\alpha \) satisfies

\[
|\partial^\beta K_\alpha(x, y, z)| \lesssim (|x - y| + |y - z| + |x - z|)^{-2n+\alpha-|\beta|}, \ |\beta| \leq 1.
\]

Example

\[
K_\alpha(x, y, z) = (|x - y| + |x - z|)^{-2n+\alpha}, \ 0 < \alpha < 2n;
\]

\(T_\alpha \) is the bilinear Riesz potential operator.
Theorem (B.-Moen-Torres, ’12)

Suppose $0 \leq \alpha < n$, $1 < p, q < \infty$, $\frac{1}{p} + \frac{1}{q} \leq 1$ and

$$\frac{1}{r} = \frac{1}{p} + \frac{1}{q} - \frac{\alpha}{n}.$$

Let T_{α} be the bilinear operator whose kernel K_{α} satisfies size and regularity conditions as above, and $b \in \text{CMO}$. Then

$[b, T_{\alpha}]_1, [b, T_{\alpha}]_2 : L^p \times L^q \to L^r$ are compact.

The same statement holds for the second order commutator.
The proof of estimate (a)

\[|[b, T_\alpha]_1(f, g)(x)| \lesssim \|b\|_\infty \int \int_{y \in \text{supp } b} \frac{|f(y)||g(z)|}{(|x-y| + |x-z|)^{2n-\alpha}} \, dy \, dz \]

\[\lesssim \frac{\|b\|_\infty}{|x|^{2n-\alpha}} \int_{y \in \text{supp } b} |f(y)| \int \frac{|g(z)|}{\left(\frac{1}{2} + \frac{|x-z|}{|x|}\right)^{2n-\alpha}} \, dz \, dy \]

\[\lesssim \frac{\|b\|_\infty \|g\| \|L^q\}}{|x|^{2n-\alpha}} \int_{y \in \text{supp } b} |f(y)| \left(\int \left(\frac{1}{2} + \frac{|x-z|}{|x|}\right)^{-(2n-\alpha)q'} dz\right)^{1/q'} \]

\[= \frac{\|b\|_\infty \|g\| \|L^q\}}{|x|^{2n-\alpha - \frac{n}{q'}}} \int_{\text{supp } b} |f(y)| \left(\int \left(\frac{1}{2} + |z|\right)^{-(2n-\alpha)q'} dz\right)^{1/q'} \, dy \]

\[\lesssim \frac{\|b\|_\infty \|g\| \|f\| \|L^p\}}{|x|^{2n-\alpha - \frac{n}{q'}}} |\text{supp } b|^{1/p'} . \]

We used \((2n - \alpha)q' > n \iff 1 + \frac{1}{q} > \frac{\alpha}{n}\) and

\[r(2n - \alpha - \frac{n}{q'}) > n \iff \frac{1}{q} + 1 - \frac{\alpha}{n} > \frac{1}{r} = \frac{1}{p} + \frac{1}{q} - \frac{\alpha}{n} . \]
The proof of estimate (a)

\[|[b, T_\alpha]_1(f, g)(x)| \lesssim \|b\|_\infty \int \int_{y \in \text{supp } b} \frac{|f(y)||g(z)|}{(|x - y| + |x - z|)^{2n-\alpha}} \ dy \ dz \]

\[\lesssim \frac{\|b\|_\infty}{|x|^{2n-\alpha}} \int_{y \in \text{supp } b} |f(y)| \int \frac{|g(z)|}{\left(\frac{1}{2} + \frac{|x - z|}{|x|}\right)^{2n-\alpha}} \ dz \ dy \]

\[\lesssim \frac{\|b\|_\infty \|g\|_{L^q}}{|x|^{2n-\alpha - \frac{n}{q'}}} \int_{y \in \text{supp } b} |f(y)| \left(\int \left(\frac{1}{2} + \frac{|x - z|}{|x|}\right)^{-(2n-\alpha)q'} \ dz \right)^{1/q'} \ dy \]

\[= \frac{\|b\|_\infty \|g\|_{L^q} \|f\|_{L^p}}{|x|^{2n-\alpha - \frac{n}{q'}}} \int_{\text{supp } b} |f(y)| \left(\int \left(\frac{1}{2} + |z|\right)^{-(2n-\alpha)q'} \ dz \right)^{1/q'} \ dy \]

\[\lesssim \frac{\|b\|_\infty \|g\|_{L^q} \|f\|_{L^p}}{|x|^{2n-\alpha - \frac{n}{q'}}} |\text{supp } b|^{1/p'}. \]

We used \((2n - \alpha)q' > n \iff 1 + \frac{1}{q} > \frac{\alpha}{n}\) and

\[r(2n - \alpha - \frac{n}{q'}) > n \iff \frac{1}{q} + 1 - \frac{\alpha}{n} > \frac{1}{r} = \frac{1}{p} + \frac{1}{q} - \frac{\alpha}{n}. \]
Thank you!