Complete positivity of the map from a basis to its dual basis

Fred Shultz
Wellesley College

GPOTS May 2013
Joint work with Vern Paulsen, University of Houston
\[M_n = M_n(\mathbb{C}) \] dual vector space is denoted \(M_n^d \).
$M_n = M_n(\mathbb{C})$; dual vector space is denoted M_n^d.

Definition

Given a basis \mathcal{B} of M_n, the *duality map* $D_\mathcal{B} : M_n \to M_n^d$ is the linear map that takes the basis \mathcal{B} to its dual basis.
$M_n = M_n(\mathbb{C})$; dual vector space is denoted M_n^d.

Definition

Given a basis \mathcal{B} of M_n, the *duality map* $D_\mathcal{B} : M_n \rightarrow M_n^d$ is the linear map that takes the basis \mathcal{B} to its dual basis.

Theorem

(Paulsen-Todorov-Tomforde) For the standard basis $\mathcal{E} = \{E_{ij} \mid 1 \leq i, j \leq n\}$, $D_\mathcal{E}$ is a complete order isomorphism.
$M_n = M_n(\mathbb{C})$; dual vector space is denoted M_n^d.

Definition

Given a basis B of M_n, the *duality map* $D_B : M_n \to M_n^d$ is the linear map that takes the basis B to its dual basis.

Theorem

(Paulsen-Todorov-Tomforde) For the standard basis $\mathcal{E} = \{E_{ij} \mid 1 \leq i, j \leq n\}$, $D_{\mathcal{E}}$ is a complete order isomorphism.

Main question: for which bases B is the duality map a complete order isomorphism?
Why should one care?

1. Curiosity: what is special about the standard basis \mathcal{E} of M_n when working with complete positivity? Would other bases commonly used in applications work as well?
Why should one care?

1. Curiosity: what is special about the standard basis \(\mathcal{E} \) of \(M_n \) when working with complete positivity? Would other bases commonly used in applications work as well?

2. The answer leads to alternate versions of Choi’s characterization of completely positive maps
Why should one care?

1. Curiosity: what is special about the standard basis E of M_n when working with complete positivity? Would other bases commonly used in applications work as well?

2. The answer leads to alternate versions of Choi’s characterization of completely positive maps

3. Greater convenience when working with bases of interest in quantum information: e.g., Pauli spin matrices and their tensor products, and the Weyl basis.
Why should one care?

1. Curiosity: what is special about the standard basis \mathcal{E} of M_n when working with complete positivity? Would other bases commonly used in applications work as well?

2. The answer leads to alternate versions of Choi’s characterization of completely positive maps.

3. Greater convenience when working with bases of interest in quantum information: e.g., Pauli spin matrices and their tensor products, and the Weyl basis.

4. A source of “entanglement witnesses”: matrices that provide a test of entanglement.
Outline

For which bases \mathcal{B} of M_n is the duality map a complete order isomorphism?

Examples

Alternate characterizations of completely positive maps from M_n to M_p

Expressions for the Choi matrix in non-standard bases
Definition

(Order on $M_p(M_n^d)$) A matrix of functionals $(f_{i,j}) \in M_p(M_n^d)$ belongs to $M_p(M_n^d)^+$ if and only if the evaluation map $\nu \mapsto (f_{i,j}(\nu))$ from M_n to M_p is completely positive map.
Definition

\[\Phi : M_n \rightarrow M_n^d \] is a complete order isomorphism if \(\Phi \) is invertible and \(\Phi \) and \(\Phi^{-1} \) are completely positive.
Definition

Φ : $M_n \rightarrow M_n^d$ is a complete order isomorphism if Φ is invertible and Φ and Φ^{-1} are completely positive.

Definition

A linear map $\Psi : M_n \rightarrow M_n$ or $\Phi : M_n^d \rightarrow M_n$ is called a \textit{co-positive order isomorphism} provided that its composition $t \circ \Psi$ with the transpose map t on M_n is a complete order isomorphism.
Examples of complete or co-positive order isomorphisms

Definition
If $f \in M^d_n$, there is a unique matrix D such that $f(X) = \text{tr}(DX)$ for all $X \in M_n$, and we call this matrix the density matrix for f, with no requirement of positivity for f or D.

Example
The map that takes a functional on M_n to its density matrix is a co-positive order isomorphism.

Example
The map that takes a functional on M_n to the conjugate transpose of its density matrix is a complete order isomorphism but is conjugate linear.
Examples of complete or co-positive order isomorphisms

Definition

If $f \in M^d_n$, there is a unique matrix D such that $f(X) = \text{tr}(DX)$ for all $X \in M_n$, and we call this matrix the *density matrix* for f, with no requirement of positivity for f or D.

Example

The map that takes a functional on M_n to its density matrix is a co-positive order isomorphism.
Examples of complete or co-positive order isomorphisms

Definition

If $f \in M^d_n$, there is a unique matrix D such that $f(X) = \text{tr}(DX)$ for all $X \in M_n$, and we call this matrix the *density matrix* for f, with no requirement of positivity for f or D.

Example

The map that takes a functional on M_n to its density matrix is a co-positive order isomorphism.

Example

The map that takes a functional on M_n to the conjugate transpose of its density matrix is a complete order isomorphism but is conjugate linear.
$L(M_n)$ denotes the set of linear maps from M_n to M_n.

Definition

Let \mathcal{B} be a basis of M_n and \mathcal{E} the standard basis of matrix units, with a fixed order. A *change of basis map* is any linear map $C_{\mathcal{B}}$ in $L(M_n)$ taking the set \mathcal{E} to the set \mathcal{B}.

Definition

By slight abuse of notation, we write $C_{\mathcal{B}}^T$ for the unique linear map in $L(M_n)$ whose matrix in the standard basis \mathcal{E} is the transpose of the matrix of $C_{\mathcal{B}}$. We define $M_{\mathcal{B}} = C_{\mathcal{B}}C_{\mathcal{B}}^T \in L(M_n)$.
Change of basis maps

\(L(M_n)\) denotes the set of linear maps from \(M_n\) to \(M_n\).

Definition

Let \(B\) be a basis of \(M_n\) and \(E\) the standard basis of matrix units, with a fixed order. A *change of basis map* is any linear map \(C_B\) in \(L(M_n)\) taking the set \(E\) to the set \(B\).

Definition

By slight abuse of notation, we write \(C_B^T\) for the unique linear map in \(L(M_n)\) whose matrix in the standard basis \(E\) is the transpose of the matrix of \(C_B\). We define \(M_B = C_B C_B^T \in L(M_n)\).

The map \(M_B\) depends on the basis \(B\), but not on the particular choice of change of basis map \(C_B\).
Complete positivity of the map from a basis to its dual basis

Main Theorem

Notation

If $C \in M_n$, then $\Phi_C : M_n \to M_n$ is the completely positive map defined by $\Phi_C(X) = CXC^*$.

Theorem

Let B be a basis of M_n. Then \mathcal{D}_B is an order isomorphism iff \mathcal{D}_B is either a complete order isomorphism or a co-positive order isomorphism. The former occurs iff there exists $C \in M_n$ such that $M_B = \Phi_C$, and the latter occurs iff $M_B = t \circ \Phi_C$ for some $C \in M_n$.

Fred Shultz Wellesley College
Complete positivity of the map from a basis to its dual basis

Examples: some bases closely related to the standard basis

Theorem

Let \((\lambda_{ij}) \in M_n\), with all \(\lambda_{ij}\) nonzero, and let \(B\) be the basis \(\{\lambda_{ij}E_{ij}\}\). Then \(D_B\) is an order isomorphism if and only if the matrix \((\lambda_{ij}^2)\) is positive semi-definite with rank one. In that case, \(D_B\) is a complete order isomorphism.
Examples: some bases closely related to the standard basis

Theorem

Let $(\lambda_{ij}) \in M_n$, with all λ_{ij} nonzero, and let \mathcal{B} be the basis $\{\lambda_{ij} E_{ij}\}$. Then $\mathcal{D}_\mathcal{B}$ is an order isomorphism if and only if the matrix (λ_{ij}^2) is positive semi-definite with rank one. In that case, $\mathcal{D}_\mathcal{B}$ is a complete order isomorphism.

Example

If $C \in M_n$ is invertible, for the basis $\mathcal{B} = \{CE_{ij}C^*\}$, the duality map $\mathcal{D}_\mathcal{B}$ is a complete order isomorphism. In particular, if \mathcal{B} is a system of matrix units then $\mathcal{D}_\mathcal{B}$ is a complete order isomorphism.
Definition

Let e_0, \ldots, e_{n-1} be the standard basis of \mathbb{C}^n, and $\mathcal{B} = \{E_{ab} \mid a, b \in \mathbb{Z}_n\}$ the corresponding matrix units. Let $U, V \in M_n$ be defined by $Ve_j = z^j e_j$ and $Ue_j = e_{j+1}$ where $z = \exp(2\pi i / n)$ and $j \in \mathbb{Z}_n$. Then $\{\frac{1}{\sqrt{n}} U^a V^b \mid a, b \in \mathbb{Z}_n\}$ is an orthonormal basis for M_n which we call the Weyl basis \mathcal{W}.

The unitary matrices $\{U^a V^b \mid a, b \in \mathbb{Z}_n\}$ are usually called the discrete Weyl matrices or the generalized Pauli matrices.
Theorem

For the Weyl basis \mathcal{W}, the duality map $D_{\mathcal{W}}$ is a complete order isomorphism if $n = 2$, and is not an order isomorphism for $n > 2$.
Theorem

For the Weyl basis \mathcal{W}, the duality map $D_\mathcal{W}$ is a complete order isomorphism if $n = 2$, and is not an order isomorphism for $n > 2$.

Corollary

For the basis of M_{2^n} consisting of tensor products of the 2×2 Weyl basis, the duality map $D_\mathcal{W}$ is a complete order isomorphism.
Testing complete positivity using non-standard bases

Corollary

Let \(B = \{ B_j : 1 \leq j \leq n^2 \} \) be a basis for \(M_n \), and let \(\Psi : M_n \to M_p \) be a linear map.

1. If the duality map \(D_B \) is a complete order isomorphism, then \(\Psi \) is completely positive if and only if
 \[
 \sum_{j=1}^{n^2} \Psi(B_j) \otimes B_j \in (M_p \otimes M_n)^+.
 \]

2. If the duality map \(D_B \) is a co-positive order isomorphism, then \(\Psi \) is completely positive if and only if
 \[
 \sum_{j=1}^{n^2} \Psi(B_j) \otimes B_j^t \in (M_p \otimes M_n)^+.
 \]
A basis-free description of the Choi matrix

In the definition of C_{Φ},

$$C_{\Phi} = \sum_{ij} E_{ij} \otimes \Phi(E_{ij})$$

the basis $\{E_{ij}\}$ can’t be replaced by an arbitrary orthonormal basis. The following result provides an alternate description of the Choi matrix that does have this independence property. Given a matrix $B = (b_{i,j})$ we set $\overline{B} = (\overline{b_{i,j}})$.
A basis-free description of the Choi matrix

In the definition of C_{Φ},

$$C_{\Phi} = \sum_{ij} E_{ij} \otimes \Phi(E_{ij})$$

the basis $\{E_{ij}\}$ can’t be replaced by an arbitrary orthonormal basis. The following result provides an alternate description of the Choi matrix that does have this independence property. Given a matrix $B = (b_{i,j})$ we set $\overline{B} = (\overline{b_{i,j}})$.

Theorem

Let $\{B_l\}_{l=1}^{n^2}$ be an orthonormal basis for M_n, and $\Phi : M_n \to M_p$ linear. Then Choi’s matrix is given by

$$C_{\Phi} = \sum_{l=1}^{n^2} \overline{B_l} \otimes \Phi(B_l) \quad (1)$$
This expression shows that the Choi matrix is the partial transpose of a matrix defined by Jamiołkowski

$$\mathcal{J}(\Phi) = \sum_{ij} E_{ij}^* \otimes \Phi(E_{ij}).$$ \hspace{1cm} (2)

Jamiołski defined this correspondence as a tool in studying linear maps from M_n into M_p. Here E_{ij} could be replaced by any orthonormal basis, but positivity of $\mathcal{J}(\Phi)$ is not equivalent to complete positivity of Φ.
Vern Paulsen and Fred Shultz, Complete positivity of the map from a basis to its dual basis, arXiv:1212.4787