Local and Global Aspects of Time-Frequency Analysis With Applications to Sound Analysis

Monika Dörfler, monika.doerfler@univie.ac.at

Dienstag, 28. Mai 2013
Outline

1. Time-frequency (TF) analysis as part of applied harmonic analysis - a conceptual introduction
 - Local aspects
 - Global aspects
2. Adaptive representations: introducing flexibility in TF representations
3. TF localization operators: spectral properties and discretization
4. Applications
5. Summary and Perspectives
Time-frequency (TF) analysis

Overarching idea: try to efficiently represent a function/signal f with few and simple basic elements g_j by

$$f = \sum_j c_j g_j.$$
Time-frequency (TF) analysis

Overarching idea: try to efficiently represent a function/signal f with few and simple basic elements g_j by

$$f = \sum_j c_j g_j.$$

g_j should be easy to understand, interpret, implement ...
Time-frequency (TF) analysis

Overarching idea: try to efficiently represent a function/signal f with few and simple basic elements g_j by

$$f = \sum_j c_j g_j.$$

g_j should be easy to understand, interpret, implement ...
Audio: What can an appropriate signal representation provide?
Time, Frequency – and Time-Frequency

\[f(t) = \sum_{n} c_n \delta_n(t) = \sum_{k} \hat{c}_k e^{2\pi i k \omega_0 t} \]
Time, Frequency – and Time-Frequency

\[f(t) = \sum_{n} c_n \delta_n(t) = \sum_{k} \hat{c}_k e^{2\pi i k \omega_0 t} = \sum_{n,k} \tilde{c}_{n,k} g_{n,k}(t) \]
Measuring time-frequency energy: STFT

Definition: short-time Fourier transform (STFT)

\[\mathcal{V}_g f(z) = \mathcal{V}_g f(x, \xi) = \int_{\mathbb{R}} f(t)g(t-x)e^{-2\pi i \xi t} dt \] \hspace{1cm} (1)

Short-time Fourier transform of \(f \) with respect to a window function \(g \in L^2(\mathbb{R}) \), \(z = (x, \xi) \in \mathbb{R}^2 \).
Measuring time-frequency energy: STFT

Definition: short-time Fourier transform (STFT)

\[\mathcal{V}_g f(z) = \mathcal{V}_g f(x, \xi) = \int_{\mathbb{R}} f(t) g(t-x) e^{-2\pi i \xi t} dt \] \hspace{1cm} (1)

Short-time Fourier transform of \(f \) with respect to a window function \(g \in L^2(\mathbb{R}) \), \(z = (x, \xi) \in \mathbb{R}^2 \).

Time-frequency representations typically ambiguous: what we measure depends on how we measure. On the other hand, for all \(g \in L^2 \) have:

\[f = \frac{1}{\|g\|^2_2} \int_{\mathbb{R}^2} \mathcal{V}_g f(z) \pi(z) g \, dz. \]

Here: \(\pi(z) g(t) = M_\xi T_x g(t) = g(t-x) e^{2\pi i \xi t} \)
Local aspects: uncertainty and concentration

Measure locally in time - ok, but what happens in frequency?
Local aspects: uncertainty and concentration

Measure locally in time - ok, but what happens in frequency?
Local aspects: uncertainty and concentration

Measure locally in time - ok, but what happens in frequency?

- Signal and localized signal (red)
- Positive frequency components
Localization: $f \rightarrow f \cdot m$, where m is some compactly supported localizing function (often called window).

Then: $f \cdot m = \hat{f} \ast \hat{m}$. ($\ast$ denotes convolution)

In our example: $m = box$ (boxcar function) and $\hat{m}(\xi) = sinc(\xi) = \frac{\sin(\xi)}{\xi}$.

More generally (Heisenberg’s) uncertainty principle prohibits arbitrary precision simultaneously in time and frequency.
Gabor’s idea: use window with optimal simultaneous localization in time \textit{and} frequency - the Gaussian window \(g(t) = e^{-\pi x^2} \), and pave the time-frequency plane with its time-frequency shifts on \(\mathbb{Z} \times \mathbb{Z} \):
However, a system constructed according to Gabor’s idea, with a Gaussian function, cannot form an orthonormal (or even Riesz) basis; nor with any other ”nice window”...
Global aspects: energy conservation

However, a system constructed according to Gabor’s idea, with a Gaussian function, cannot form an orthonormal (or even Riesz) basis; nor with any other ”nice window”...

Definition: Frames

A sequence \(\{g_j, j \in J\} \) in \(L^2(\mathbb{R}) \) is a frame if for some positive constants \(A, B > 0 \) and all \(f \in L^2(\mathbb{R}) \)

\[
A \|f\|_2^2 \leq \sum_{j \in J} |\langle f, g_j \rangle|^2 \leq B \|f\|_2^2.
\]

– Good time-frequency resolution requires redundancy! –

Unconditional convergence of frame expansions.
Global aspects: energy conservation

Gabor frames (Weyl-Heisenberg frames, time-frequency frames) are given, according to Gabor’s idea, by time-frequency shifts of a window g along a lattice Λ, which replaces $\mathbb{Z} \times \mathbb{Z}$ and is slightly more dense in general:

Definition: Gabor Frames

For a (non-zero) window function g and parameters $a, b > 0$, the set of time-frequency shifts of g along the lattice $\Lambda = a\mathbb{Z} \times b\mathbb{Z}$, given as

$$\mathcal{G}(g, \Lambda) = \{M_{bk} T_{an}g : k, n \in \mathbb{Z}\}$$

$$= \{\pi(\lambda)g : \lambda \in \Lambda\}$$

is called a *Gabor system*. If $\mathcal{G}(g, \Lambda)$ is a frame, it is called a *Gabor frame*.
Local aspects: uncertainty and concentration

To obtain different time-frequency resolution, different window eccentricity (dilation) may be chosen:

Salient coefficients for long window

Salient coefficients for short window

Dörfler, Monika
Local and Global Aspects of Time-Frequency Analysis
Local aspects: uncertainty and concentration

To obtain different time-frequency resolution, different window eccentricity (dilation) may be chosen.
Local aspects: uncertainty and concentration

Sometimes, different window shape desired in different parts of the time-frequency plane to provide good representations for various signal components:
Introducing Flexibility

In order to overcome some of the limitations imposed by the uncertainty principle, one can introduce more flexible construction principles:

1. Use various different windows
2. Use more flexible, e.g. adaptive sampling set
3. Combine both
Introducing Flexibility

In order to overcome some of the limitations imposed by the uncertainty principle, one can introduce more flexible construction principles:

1. Use various different windows
2. Use more flexible, e.g., adaptive sampling set
3. Combine both

Main mathematical problems involved:

1. Frame property and characterization of function spaces by frame coefficients - **global** characterization.
2. Invertibility and its realization by means of dual frames.
3. Study the **local** properties of the involved frame elements; this is of particular importance in applications, when frame coefficients are modified.
Introducing Flexibility in time

Regular Gabor frames:

\[g_{n,k}(t) = M_{kb} T_{nag}(t), \quad n, k \in \mathbb{Z} \]

Nonstationary Gabor frames:

\[g_{n,k}(t) = M_{kb_n} g_n(t), \quad n, k \in \mathbb{Z} \]
Introducing Flexibility in Frequency

Regular Gabor frames:

\[g_{n,k}(t) = M_{kb} T_{nag}(t), \quad n, k \in \mathbb{Z} \]

Nonstationary Gabor frames:

\[g_{n,k}(t) = T_{na_k} g_k(t) = g_k(t - na_k), \quad n, k \in \mathbb{Z} \]
Introducing Flexibility

Outline
- Time-frequency (TF) analysis
 - Local aspects
 - Global aspects
- Adaptive representations
 - Nonstationary and Quilted Gabor Frames
- Localization Operators
 - Spectral Properties
 - Gabor multipliers
- Applications
 - Nonstationary Gabor frames
 - Sparsity
- Summary

Dörfler, Monika
Local and Global Aspects of Time-Frequency Analysis
Introducing Flexibility in Time

Outline
Time-frequency (TF) analysis
Local aspects
Global aspects
Adaptive representations
Nonstationary and Quilted Gabor Frames
Localization Operators
Spectral Properties
Gabor multipliers
Applications
Nonstationary Gabor frames
Sparsity
Summary

Dörfler, Monika
Local and Global Aspects of Time-Frequency Analysis
Introducing Flexibility in Frequency

Outline
Time-frequency (TF) analysis
Local aspects
Global aspects
Adaptive representations
Nonstationary and Quilted Gabor Frames
Localization Operators
Spectral Properties
Gabor multipliers
Applications
Nonstationary Gabor frames
Sparsity
Summary

Dörfler, Monika Local and Global Aspects of Time-Frequency Analysis
Existence of Nonstationary Gabor Frames

Gabor analysis: *Walnut representation of frame operator* as central tool to existence results. For nonstationary Gabor frames:

Frame operator

Given a frame $\{g_j, j \in \mathbb{Z}\}$ for $L^2(\mathbb{R})$, the *frame operator* is given as the operator $Sf = \sum_j \langle f, g_j \rangle g_j$ on $L^2(\mathbb{R})$.

Walnut representation for nonstationary Gabor frames (MD/Matusiak 2012)

The frame operator S corresponding to a nonstationary Gabor frame admits a Walnut representation for $f \in L^2(\mathbb{R})$:

$$Sf = \sum_{k,n \in \mathbb{Z}} b_n^{-1} g_n(t - kb_n^{-1})g_n(t) \cdot T_{kb_n^{-1}}f.$$
For compactly supported windows with sufficient overlap, the frame operator is diagonal if the frequency sampling constants b_n are sufficiently small:

$$Sf(t) = \left(\sum_n \frac{1}{b_n} |g_n(t)|^2 \right) f(t).$$

This situation is called, alluding to the famous ”painless non-orthogonal expansions”, the **painless case**.
Existence of Nonstationary Gabor Frames

For compactly supported windows with sufficient overlap, the frame operator is diagonal if the frequency sampling constants b_n are sufficiently small:

$$Sf(t) = \left(\sum_n \frac{1}{b_n} |g_n(t)|^2 \right) f(t).$$

This situation is called, alluding to the famous "painless non-orthogonal expansions", the **painless case**. For polynomially decaying window an existence result in parallel to the regular case can be obtained.
Existence of Nonstationary Gabor Frames

Let \(g = \{g_n \in W(L^\infty, \ell^1) : k \in \mathbb{Z}\} \) be a set of windows such that

- for some positive constants \(A_0, B_0 \):
 \[
 0 < A_0 \leq \sum_{n \in \mathbb{Z}} |g_n(t)|^2 \leq B_0 < \infty \quad \text{a.e. ;}
 \]
- for all \(n \in \mathbb{Z} \), the windows decay polynomially around a \(\delta \)-separated set \(\{a_n : n \in \mathbb{Z}\} \) of time-sampling points \(a_n \)

\[
|g_n(t)| \leq C_n(1 + |t - a_n|)^{-p_n}
\]

where \(p_n \in [p_L, p_U] \subset \mathbb{R}, p_L > 2 \) and \(C_n \in [C_L, C_U] \).

Then there exists a sequence \(\{b_n^0\}_{n \in \mathbb{Z}} \), such that for \(b_n \leq b_n^0, n \in \mathbb{Z} \), the nonstationary Gabor system \(\mathcal{G}(g, b) \) forms a frame for \(L^2(\mathbb{R}) \).
In the painless case, convenient reconstruction is possible (→ applications!), since:

\[f = S^{-1} S f = \sum_{n,k \in \mathbb{Z}} \langle f, M_{kb_n} g_n \rangle M_{kb_n} \frac{g_n}{\sum_{n'} \frac{1}{b_{n'}} |g_{n'}|^2}. \]

Flexibility in both time and frequency, with local structure, is modeled by Quilted Frames. (MD, Quilted Gabor frames - A new concept for adaptive time-frequency representation, 2011.) Here, no ”painless case” is possible...
Localization in Time-Frequency

Basic idea in all presented time-frequency frames was to compute in some way the "local" energy of f in a small region of the time-frequency plane, i.e.

$$f \rightarrow \langle f, g_{n,k} \rangle,$$

hoping, that the coefficients $\langle f, g_{n,k} \rangle$, $n, k \in \mathbb{Z} \times \mathbb{Z}$ globally represent f in an appropriate way and characterize the function space to which f is assumed to belong.
Basic idea in all presented time-frequency frames was to compute in some way the "local" energy of f in a small region of the time-frequency plane, i.e.

$$f \mapsto \langle f, g_{n,k} \rangle,$$

hoping, that the coefficients $\langle f, g_{n,k} \rangle$, $n, k \in \mathbb{Z} \times \mathbb{Z}$ globally represent f in an appropriate way and characterize the function space to which f is assumed to belong.

More general approach to TF-localization: use an operator other than the simple projection $f \mapsto \langle f, g_{n,k} \rangle g_{n,k}$.

E.g. by restriction of the STFT prior to reconstruction: \rightarrow Localization operators
TF Localization operator

Recall: Set $\pi(z)g(t) = g(t - x)e^{2\pi i \xi t}$, for some $g \in L^2(\mathbb{R})$ with $\|g\|_2 = 1$, then

$$f = \int_{\mathbb{R}^2} \mathcal{V}_g f(z) \pi(z) g \, dz.$$
Localization in Time-Frequency

TF Localization operator

Recall: Set $\pi(z)g(t) = g(t - x)e^{2\pi i \xi t}$, for some $g \in L^2(\mathbb{R})$ with $\|g\|_2 = 1$, then

$$f = \int_{\mathbb{R}^2} V_g f(z) \pi(z) g \, dz.$$

Let $\sigma \in L^1(\mathbb{R}^2)$, then the localization operator $H_{\sigma, g}$ is defined by

$$H_{\sigma, g} f = \int_{\mathbb{R}^2} \sigma(z) V_g f(z) \pi(z) g \, dz = V_g^* \sigma V_g f.$$
TF Localization operator

Recall: Set $\pi(z)g(t) = g(t - x)e^{2\pi i \xi t}$, for some $g \in L^2(\mathbb{R})$ with $\|g\|_2 = 1$, then

$$f = \int_{\mathbb{R}^2} \mathcal{V}_g f(z)\pi(z)g \, dz.$$

Let $\sigma \in L^1(\mathbb{R}^2)$, then the localization operator $H_{\sigma, g}$ is defined by

$$H_{\sigma, g} f = \int_{\mathbb{R}^2} \sigma(z)\mathcal{V}_g f(z)\pi(z)g \, dz = \mathcal{V}_g^* \sigma \mathcal{V}_g f.$$

For real symbols σ: $H_{\sigma, g}$ self-adjoint; compact (even trace-class).
Exploiting the spectral decomposition of Localization operators, it is possible to show that modulation spaces can be characterized by a family of localization operators $H_{T,\lambda,\sigma}$, for $\lambda \in \Lambda$, (MD, Gröchenig: *Time-frequency partitions and characterizations of modulations spaces with localization operators*, 2011). Requirement: $\sum_{\lambda \in \Lambda} T_{\lambda,\sigma} \approx 1$.

Using a generalization of this result by J. Romero (2012), it was, reciprocally, shown, that the union of a finite number of eigenfunctions of the localization operators corresponding to an irregular cover, also provide a frame and thus to a characterization of the same function spaces. (MD, Romero: *Frames adapted to a phase-space cover*, 2012).

What do we know about the eigenfunctions?
Daubechies (1988) considered \(g(t) = \varphi(t) = 2^\frac{1}{4} e^{-\pi t^2} \) and \(\sigma(z) = \chi_\Omega(z) \) and the eigenvalue problem

\[
H_\Omega f := H_{\chi_\Omega, \varphi} f = \lambda f
\]

for \(\Omega \) a disc centered at zero.

Then, the eigenfunctions of \(H_{\chi_\Omega, \varphi} \) are the Hermite functions.
Daubechies (1988) considered $g(t) = \varphi(t) = 2^{1/4} e^{-\pi t^2}$ and $\sigma(z) = \chi_{\Omega}(z)$ and the eigenvalue problem

$$H_{\Omega} f := H_{\chi_{\Omega}, \varphi} f = \lambda f$$

(2)

for Ω a disc centered at zero. Then, the eigenfunctions of $H_{\chi_{\Omega}, \varphi}$ are the Hermite functions. Solutions are functions with best concentration in Ω in the sense

$$C_{\Omega}(f) = \frac{\int_{\Omega} |\mathcal{V}_\varphi f(z)|^2 dz}{\|f\|_2^2}.$$

(3)
Consider the "inverse problem":
Given a localization operator H_{Ω} with unknown localization domain Ω, can we recover the shape of Ω from information about its eigenfunctions and eigenvalues?
Consider the "inverse problem": Given a localization operator H_Ω with unknown localization domain Ω, can we recover the shape of Ω from information about its eigenfunctions and eigenvalues?

Theorem (Abreu,MD, 2012)

Let $\Omega \subset \mathbb{R}^2$ be simply connected. If one of the eigenfunctions of the localization operator H_Ω is a Hermite function, then Ω must be a disk centered at 0.
Main ideas to proof:

- Eigenfunctions (resp. their STFT) of localization operators are doubly orthogonal.
- The Bargmann transform maps eigenvalue-problem to the Bargmann-Fock space of analytic functions, with Hermite functions being mapped to the (appropriately normalized) monomials.
- The double orthogonality of the monomials with respect to a simply connected domain Ω and a concentric measure forces Ω to be a disk (at zero).
Remark: Eigenvalue problem for TF localization operators may be set in the more general context of restricting reproducing formulas:

\[
\int_{D_R} F(z)K(\bar{z}, w)\,d\mu(z) = \lambda F(w). \tag{4}
\]

\[
d\mu(z) = e^{-\pi|z|^2}\,dz \quad \rightarrow \quad \text{Gabor localization problem}
\]

\[
d\mu(z) = (1 - |z|^2)^\alpha\,dz \quad \rightarrow \quad \text{wavelet localization}.
\]
Gabor multipliers are the discrete version of TF localization operators - Important in applications, ubiquitously used.
Gabor multipliers are the discrete version of TF localization operators - Important in applications, ubiquitously used. Here, the TF-localization process is defined via the *discrete* TF-representation provided by frames.
Gabor multipliers

Gabor multipliers are the discrete version of TF localization operators - Important in applications, ubiquitously used. Here, the TF-localization process is defined via the *discrete* TF-representation provided by frames. Consider Gabor frames with windows \(\varphi, \phi \) and lattice \(\Lambda \) and the associated analysis operator \(C_{\varphi,\Lambda}(f) = \langle f, \pi(\lambda)\varphi \rangle, \lambda \in \Lambda, \) and synthesis operator \(C_{\phi,\Lambda}^* \).

Definition: Gabor Multiplier

Let \(m \cdot C_{g,\Lambda} f \) denote pointwise multiplication by \(m \in \ell^\infty(\Lambda) \). Then, a Gabor multiplier is defined as

\[
G_m : f \in \mathcal{H} \mapsto G_m f = C_{\phi,\Lambda}^*(m \cdot C_{\varphi,\Lambda} f).
\]
Gabor multipliers

Outline
- Time-frequency (TF) analysis
 - Local aspects
 - Global aspects
- Adaptive representations
 - Nonstationary and Quilted Gabor Frames
- Localization Operators
- Spectral Properties
- Gabor multipliers
- Applications
 - Nonstationary Gabor frames
 - Sparsity
- Summary

Dörfler, Monika | Local and Global Aspects of Time-Frequency Analysis
Discretization \rightarrow aliasing effects studied in Fourier transform domain. For operator sampling: Fourier transform replaced by Plancherel transform \rightarrow spreading representation of operators:

Spreading representation of operators

Let a Hilbert-Schmidt operator $H : \mathbb{R} \mapsto \mathbb{R}$ with integral kernel κ_H be given. Then, its spreading function $\eta_H(b, \nu) = \int_{\mathbb{R}} \kappa_H(x, x - b) e^{-2\pi i\nu x} dx$ is in $L^2(\mathbb{R}^2)$ and provides the following integral representation for H:

$$H = \int_b \int_{\nu} \eta_H(b, \nu) \pi(b, \nu) db d\nu.$$
Approximation with Gabor multipliers

MD/Torresani 2010

The spreading function of a Gabor multiplier G_m takes the form

$$\eta_{G_m}(b, \nu) = M(b, \nu) \cdot V_\varphi \phi(b, \nu),$$

where M is the symplectic Fourier transform of m.

where M is the symplectic Fourier transform of m.

Dörfler, Monika

Local and Global Aspects of Time-Frequency Analysis
The spreading function of a Gabor multiplier G_m takes the form

$$\eta_{G_m}(b, \nu) = \mathcal{M}(b, \nu) \cdot V_\phi \phi(b, \nu),$$

where \mathcal{M} is the symplectic Fourier transform of m. m is a sequence, defined on a lattice Λ, hence its (symplectic) two-dimensional Fourier transform is a periodic function with period given by a fundamental domain of the adjoint lattice.
The spreading function of a Gabor multiplier G_m takes the form

$$\eta_{G_m}(b, \nu) = \mathcal{M}(b, \nu) \cdot \mathcal{V}_\phi \phi(b, \nu),$$

where \mathcal{M} is the symplectic Fourier transform of m.

m is a sequence, defined on a lattice Λ, hence its (symplectic) two-dimensional Fourier transform is a periodic function with period given by a fundamental domain of the adjoint lattice. Consequently, the best approximation of an operator with spreading function η_H is obtained via its spreading function by minimizing the error due to aliasing components. Additionally, error estimates can be relatively easily derived.
Approximation with Gabor multipliers

Figure: Aliasing in operator approximation by Gabor multipliers.
Approximation with Gabor multipliers

MD/Torresani 2010

Fix two windows g, h and a lattice $\Lambda = b_0 \mathbb{Z} \times \nu_0 \mathbb{Z}$. The best Gabor multiplier approximation of a Hilbert-Schmidt operator H with spreading function η_H is given by the sequence m whose discrete symplectic Fourier transform reads

$$M(b, \nu) = \frac{\sum_{n,k=-\infty}^{\infty} \mathcal{V}_g h \left(b + \frac{n}{\nu_0}, \nu + \frac{k}{b_0} \right) \eta_H \left(b + \frac{n}{\nu_0}, \nu + \frac{k}{b_0} \right)}{\sum_{n,k=-\infty}^{\infty} \left| \mathcal{V}_g h \left(b + \frac{n}{\nu_0}, \nu + \frac{k}{b_0} \right) \right|^2}$$

Proof is based on a variational argument.
Approximation with Gabor multipliers

For a given lattice $\Lambda = b_0 \mathbb{Z} \times \nu_0 \mathbb{Z}$, let $\Lambda^\circ = t_0 \mathbb{Z} \times \xi_0 \mathbb{Z}$ with $t_0 = 1/\nu_0$, $\xi_0 = 1/b_0$, and $\Pi^\circ f(\zeta) = \sum_{\lambda^\circ \in \Lambda^\circ} f(\zeta + \lambda^\circ)$, $\zeta \in \Omega^\circ$.

MD/Torresani 2011

Let H_σ be localization operator with respect to analysis and synthesis windows g and h, respectively. Denote by $\tilde{\sigma}$ the symplectic Fourier transform of σ and by $T' = G_m$ the best Gabor multiplier approximation with the same windows, and lattice Λ. Then, the approximation error is given by

$$
\|H_\sigma - T'\|_H^2 = \int_{\Omega^\circ} \left[\Pi^\circ((\tilde{\sigma} \cdot V_g h)^2)(\zeta) - \frac{\Pi^\circ(\tilde{\sigma} \cdot |V_g h|^2)(\zeta)^2}{\Pi^\circ(|V_g h(\zeta)|^2)} \right] d\zeta
$$
Application of nonstationary Gabor frames

- constant Q transform (CQT): method of transforming a time-domain signal f to the time-frequency domain such that the ratio of the center frequencies to the respective bandwidth (Q-factor) is fixed.

- well-suited for the analysis of music signals because of the geometric spacing of the center frequencies.

- Perfect invertibility and real-time implementation has only been provided by NSG-implementation. (Holighaus, MD, Velasco, Grill A framework for invertible, real-time constant-Q transforms IEEE Trans. Audio Speech Lang. Process. 21, 4 (2013))
Application of nonstationary Gabor frames

Idea of geometric spacing in Frequency:

- Linear frequency spacing
- Fixed time-frequency resolution
- Geometric frequency spacing
- Fixed center frequency to resolution ratio (Q-factor)
Application of nonstationary Gabor frames

Outline
Time-frequency (TF) analysis
Local aspects
Global aspects
Adaptive representations
Nonstationary and Quilted Gabor Frames
Localization Operators
Spectral Properties
Gabor multipliers
Applications
Nonstationary Gabor frames
Sparsity
Summary

Figure: STFT with adapted window
Dörfler, Monika
Local and Global Aspects of Time-Frequency Analysis
Computation Time vs. Signal Length

- CQT
- CQ-NSGT (no primes)
- CQ-NSGT (including primes)

<table>
<thead>
<tr>
<th>L</th>
<th>CQT</th>
<th>NSGT</th>
</tr>
</thead>
<tbody>
<tr>
<td>262144</td>
<td>2.23</td>
<td>0.23</td>
</tr>
<tr>
<td>280789</td>
<td>2.26</td>
<td>0.29</td>
</tr>
<tr>
<td>579889</td>
<td>2.82</td>
<td>0.78</td>
</tr>
<tr>
<td>600569</td>
<td>2.86</td>
<td>1.27</td>
</tr>
<tr>
<td>805686</td>
<td>3.27</td>
<td>0.93</td>
</tr>
</tbody>
</table>
Computation Time vs. Number of Bins per Octave

<table>
<thead>
<tr>
<th>bins</th>
<th>CQT</th>
<th>NSGT</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>0.90</td>
<td>0.21</td>
</tr>
<tr>
<td>24</td>
<td>1.35</td>
<td>0.22</td>
</tr>
<tr>
<td>48</td>
<td>2.29</td>
<td>0.25</td>
</tr>
<tr>
<td>96</td>
<td>4.28</td>
<td>0.31</td>
</tr>
</tbody>
</table>
Sparsity and structured sparsity

- Additional idea: search for those coefficients, which best correspond to some prior knowledge.
- By choice of frame (dictionary), only few components for a good representation are needed.
- Minimize $\Delta(f) = \| \sum_{n,k} c_{n,k} \varphi_{n,k} - \hat{f} \|_2^2 + \mu \| c \|_{\ell^1}$...and obtain...
Sparsity and structured sparsity

Outline
- Time-frequency (TF) analysis
 - Local aspects
 - Global aspects
- Adaptive representations
 - Nonstationary and Quilted Gabor Frames
- Localization Operators
 - Spectral Properties
 - Gabor multipliers
- Applications
 - Nonstationary Gabor frames
- Sparsity
- Summary

Dörfler, Monika
Local and Global Aspects of Time-Frequency Analysis
Sparsity and structured sparsity
Sparsity and structured sparsity

Problems with LASSO (pure thresholding): structures not considered.
Sparsity and structured sparsity

Modeling Structures/Persistence:
Sparsity and structured sparsity

The signal
Application to multi-layer decomposition.
Application to multi-layer decomposition.
Application to multi-layer decomposition.

- Listen to residual!

\[\text{(Reconstruction Ton+Trans)} \]
Summary and Perspectives

- Time-frequency analysis requires careful consideration of local and global aspects in order to meet important issues such as invertibility, satisfactory time- and frequency resolution and numerical feasibility.

- Flexible and adaptive transforms involve deep mathematical issues and are useful in applications.

- Sparsity is a powerful concept and leads to exciting mathematical problems.

- Discretization involves additional interesting insight and challenges and is closely related to classical sampling theory.
Summary and Perspectives

Some open questions/new directions:

- Construction of flexible frames in dependence on information criteria, approximate dual frames and error estimates for reconstruction.

- Investigate properties of eigenfunctions of general localization operators; sampling of time-frequency localized functions.

- Relating computational results to corresponding continuous problems.

- Structured sparsity: convergence of iterative algorithms; applications: inpainting, novelty detection, source separation.
Thank you for your attention!

monika.doerfler@univie.ac.at
http://homepage.univie.ac.at/monika.doerfler/
Sparsity and structured sparsity

Details:

Figure: Generalization: Ω is an annulus.
In the Gabor case, the choice of the Gaussian function \(\varphi(t) = 2^{\frac{1}{4}} e^{-\pi t^2} \) allows the translation of the time-frequency localization operator \(H_{\chi, \varphi} \) to the complex analysis set-up via the **Bargmann transform** \(\mathcal{B} \):

\[
\mathcal{B} f(z) = \int_{\mathbb{R}} f(t) e^{2\pi t z - \pi t^2 - \frac{\pi}{2} z^2} dt = e^{-i\pi x \xi + \pi \frac{|z|^2}{2}} \mathcal{V}_\varphi f(x, -\xi).
\]

(7)
In the Gabor case, the choice of the Gaussian function \(\varphi(t) = 2^{\frac{1}{4}} e^{-\pi t^2} \) allows the translation of the time-frequency localization operator \(H_{\chi,\varphi} \) to the complex analysis set-up via the Bargmann transform \(\mathcal{B} \):

\[
\mathcal{B} f(z) = \int_{\mathbb{R}} f(t) e^{2\pi i z t - \pi t^2 - \frac{\pi}{2} z^2} \, dt = e^{-i\pi x \xi + \pi |z|^2} \mathcal{V}_\varphi f(x, -\xi).
\] (7)

\(\mathcal{B} \) maps \(L^2(\mathbb{R}) \) unitarily onto \(\mathcal{F}^2(\mathbb{C}) \), the Bargmann-Fock space of analytic functions with the inner product obtained by choosing the measure \(d\mu(z) = e^{-\pi |z|^2} \, dz \).
Let $h_n(t) = c_n e^{\pi t^2} \left(\frac{d}{dt} \right)^n (e^{-2\pi t^2})$ be the Hermite functions. The normalized monomials

$$e_n = (\pi^n / n!) \cdot z^n = B h_n(z) = e^{-i \pi x \xi + \pi |z|^2} \mathcal{V}_\phi h_n(z)$$

form an orthonormal basis for $\mathcal{F}^2(\mathbb{C})$.

Eigenfunctions of Localization operators
Let \(h_n(t) = c_n e^{\pi t^2} \left(\frac{d}{dt} \right)^n (e^{-2\pi t^2}) \) be the Hermite functions. The normalized monomials

\[
e_n = (\pi^n / n!) \cdot z^n = B h_n(z) = e^{-i\pi x \xi + \pi |z|^2} \mathcal{V}_\varphi h_n(z)
\]

form an orthonormal basis for \(\mathcal{F}^2(\mathbb{C}) \).

As a direct consequence of the unitarity of \(B \) and \(\mathcal{V}_\varphi \), the set \(\{ \mathcal{V}_\varphi h_n, n \in \mathbb{N} \} \) is orthogonal over all discs \(D_R \).
Eigenfunctions of Localization operators

By unitarity of the Bargmann transform, problem $H_\Omega f = \lambda f$ is equivalent to

$$\int_\Omega \mathcal{V}_\varphi f(z) B(\pi(z)\varphi)(w) \, dz = \lambda Bf(w)$$

$B(\pi(z)\varphi)(w) = e^{-\pi ix\xi} e^{-\pi |z|^2/2} e^{\pi w\bar{z}}$, hence

$$\int_\Omega Bf(z) e^{\pi \bar{z}w - \pi |z|^2} \, dz = \lambda Bf(w)$$

and the eigenvalue problem on $L^2(\mathbb{R})$ is equivalent to

$$\int_\Omega F(z) e^{\pi \bar{z}w - \pi |z|^2} \, dz = \lambda F(w)$$

on $\mathcal{F}^2(\mathbb{C})$.
Expand $e^{\pi \bar{z} w}$ in its power series to obtain

$$
\lambda F(w) = \sum_{n=0}^{\infty} \frac{\pi^n}{n!} w^n \int_\Omega F(z) \bar{z}^n e^{-\pi |z|^2} \, dz
$$ \hspace{1cm} (8)

By assumption, one z^m solves (8) for $\lambda = \lambda_m$, hence, setting $F(z) = z^m$ gives

$$
\lambda_m w^m = \sum_{n=0}^{\infty} \frac{\pi^n}{n!} w^n \int_\Omega z^m \bar{z}^n e^{-\pi |z|^2} \, dz
$$

which implies

$$
\int_\Omega \bar{z}^n z^m e^{-\pi |z|^2} \, dz = \lambda_m \frac{m!}{\pi^m} \delta_{n,m}.
$$
Eigenfunctions of Localization operators

From
\[\int_{\Omega} z^n z^m e^{-\pi |z|^2} \, dz = \lambda_m \frac{m!}{\pi^m} \delta_{n,m} \]
and setting \(n = m + k \) leads to
\[\int_{\Omega} |z|^{2m} \overline{z}^k e^{-\pi |z|^2} \, dz = \lambda \delta_{k,0}, \text{ for all } k \geq 1 \tag{9} \]
such that the results on the localization domain of monomials can be applied to conclude that \(\Omega \) must be a disk centered at zero.