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Key aspects of my talk

1 Browse the (long-standing) history of Fourier Analysis
2 Describing basic time-frequency and Gabor analysis
3 Which questions do we need to treat in this setting
4 Which function spaces are suited best
5 Definition and properties of modulation spaces
6 The Banach Gelfand-Triple (S0,L

2,S ′0)(Rd)
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Probably to be modified later on!!
Overall it will be explained, that the distributional view-point is
nowadays more important than the fine analysis of Lp-spaces using
Lebesgue integration methods. The setting of the Banach Gelfand
Triple (S0,L

2,S ′0)(Rd) appears to be highly suitable for many
applications.
There are many open questions related to time-frequency and
Gabor analysis. In addition the computational side of Harmonic
Analysis is not yet well integrated into the overall investigations in
the area. Therefore the idea of Concenptual Harmonic Analysis,
which includes (and integrates) both Abstract Harmonic Analysis
and Numerical Harmonic Analysis, should be developed further.
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The influence of the window length
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Figure: STFTshortlong1r.eps
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But one can take a maximum over 3 windows

Figure: STFsumcum3.jpg CROPPED!!
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... and remove small amplitudes by threshold

Figure: STFTmaxcumtresh.jpg
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Given a lowpass signal and a Gaussian window...
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Spectrogram (low pass signal) with lattice
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Effect of time-frequency shift on functions
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The discussion in the discrete case

The MATLAB experiments represent in a numerical way the linear
algebra situation for signals (finite, discrete ones) over the group
G = Zn. We work with n = 480 and thus a lattice with lattice
constants a = 20 and b = 16 (in the frequency direction), hence
with n/a = 24 vertical columns with n/b = 30 points per column,
providing us with 720 = n2/(a ∗ b) Gabor atoms, has a
redundancy (factor) of 3/2 (available vectors compared to the
dimension of Cn = `2(Zn)).
Each of these vectors gλ = π(λ), λ∈Λ is a TF-shifted version of
the original window, typically centered at zero both in time and
frequency, often symmetric and real-valued. The natural choice is
some (periodized and sampled) Gauss-function. Then the Gaussian
STFT for these building blocks has a radial symmetric shape
with the peak exactly at the given lattice point λ.
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Representing elements of the Hilbert space L2(Rd)

This family of 720 vectors within Cn (with n = 480) generate this
finite dimensional space if and only if the linear system, which is
naturally formed in the search of coefficients is consistent. All the
possible coefficients of this consistent system differ by some
coefficient sequence in the null-space of the synthesis mapping
(which ought to be 720-480 = 240-dimensional). Hence it makes
sense to search for the solution of the MNLSQ-problem at hand,
i.e. we search for the set of coefficents which is of minimal norm
among all the coefficients which deliver a valid (norm-convergent)
representation using the given Gabor frame.
It turns out that the mapping from signals to MNLSQ coefficients
can be obtained by the so-called dual Gabor family , which is
representing the PINV, the pseudo-inverse resp. Moore-Penrose
inverse. We call the corresponding atom the dual Gabor atom,
and use the symbol g̃ for this (uniquely determined) function.
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The Gabor frame operator

For the infinite dimensional situation the problem appears to be a
bit harder, because it is not enough to know that the closed linear
span of the atoms is the full Hilbert space (now

(
L

2(Rd), ‖ · ‖2

)
),

but one requires an extra conditions, the so-called frame condition:

Definition

A Gabor family (gλ)λ∈Λ is called a Gabor frame if there exist
positive constants A,B > 0 such that

A‖f ‖2 ≤
∑
λ∈Λ

|〈f , gλ〉|2 ≤ B‖f ‖2, ∀f ∈ L2(Rd).

We do not go into technical details, but want to just settle
a few things. First of all the definition ensures that the range
of the so-called coefficient mapping within `2(Z2d) is closed!
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Moore-Penrose inverse for Hilbert spaces

This characteristic property allows to apply the same geometric
approach. The lower estimate implies that the coefficient mapping

Cg ,Λ : f → (〈f , π(λ)g〉)λ∈Λ

is injective. It establishes in fact an isomorphism between the
range of this mapping and the domain, the Hilbert space L2(Rd).
Once one has understood that the range of this mapping is just
the orthogonal complement to the nullspace of synthesis mapping
(the adjoint to the coefficient mapping), which is of the form

R = Rg ,Λ : (cλ)λ∈Λ 7→
∑
λ∈Λ

cλgλ,

mapping back from `2(Λ) to L2(Rd), one can understand the
possible solution of the solution, namely the MNLSQ solution
makes sense geomerically.
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A long list of natural questions:Gabor frames

1 When is a given family (gλ)λ∈Λ generating a Gabor frame?

2 When is it generating a Gaborian Riesz basis?

3 Are there Gaborian Riesz bases for L2(Rd)?

4 How can one compute the Moore-Penrose inverse and is it of
Gaborian form? (Yes!)

5 What can one say about the canoncial dual window g̃?

6 What about tight Gabor frames (with A = B)?

7 Is there a continuous dependence of the dual window on the
ingredients?
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A long list of natural questions: Gabor multipliers

1 What are the properties of Gabor multipliers (with symbol
(m(λ))λ∈Λ) Gg1,g2,Λ,m?

2 Starting e.g.from tight Gabor families (gλ)λ∈Λ, what can one
say about the eigenvalue behaviour?

3 Is the representation of a GM on the symbol unique?

4 How do ingredients change with the lattice?

5 What is the behaviour for increasing density

6 Which operators (and how) can be approximated by Gabor
multipliers?

7 and many more questions.
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The answers will make heavy use of the space(
S0(Rd), ‖ · ‖S0

)

We will see that most of the answers require the use of a certain
Banach space of test functions which was found by the speaker
in 1979 in the study of so-called Segal algebras on LCA groups.
It was shown to be the smallest Segal algebra with the extra
property of being isometric invariant under the modulation
operators

Ms : f 7→ χs · f , with χs(t) = e2πist .
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The key-players for time-frequency analysis

Time-shifts and Frequency shifts

Tx f (t) = f (t − x)

and x , ω, t ∈ Rd

Mωf (t) = e2πiω·t f (t) .

Behavior under Fourier transform

(Tx f )̂ = M−x f̂ (Mωf )̂ = Tω f̂

The Short-Time Fourier Transform

Vg f (λ) = 〈f ,MωTtg〉 = 〈f , π(λ)g〉 = 〈f , gλ〉, λ = (t, ω);
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A Typical Musical STFT

A typical waterfall melody (Beethoven piano sonata) depictured
using the spectrogram, displaying the energy distribution in the TF
= time-frequency plan:
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A Banach Space of Test Functions (Fei 1979)

A function in f ∈ L2(Rd) is in the subspace S0(Rd) if for some
non-zero g (called the “window”) in the Schwartz space S(Rd)

‖f ‖S0 := ‖Vg f ‖L1 =

∫∫
Rd×R̂d

|Vg f (x , ω)|dxdω <∞.

The space
(
S0(Rd), ‖ · ‖S0

)
is a Banach space, for any fixed,

non-zero g ∈ S0(Rd)), and different windows g define the same
space and equivalent norms. Since S0(Rd) contains the Schwartz
space S(Rd), any Schwartz function is suitable, but also
compactly supported functions having an integrable Fourier
transform (such as a trapezoidal or triangular function) are
suitable. It is convenient to use the Gaussian as a window.
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Basic properties of M1 = S0(Rd)

Lemma

Let f ∈ S0(Rd), then the following holds:

(1) π(u, η)f ∈ S0(Rd) for (u, η) ∈ Rd × R̂d , and
‖π(u, η)f ‖S0 = ‖f ‖S0 .

(2) f̂ ∈ S0(Rd), and ‖f̂ ‖S0 = ‖f ‖S0 .

In fact,
(
S0(Rd), ‖ · ‖S0

)
is the smallest non-trivial Banach space

with this property, and therefore contained in any of the Lp-spaces
(and their Fourier images).
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Various Function Spaces

SINC
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FL1
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Figure: The usual Lebesgues space, the Fourier algebra, and
the Segal algebra S0(Rd) inside all these spaces

Hans G. Feichtinger Function spaces for time-frequency analysis: the usefulness of a Banach Gelfand Triple



History Mutual Approximations 2

BANACH GELFAND TRIPLES: a new category

Definition

A triple, consisting of a Banach space (B, ‖ · ‖B), which is densely
embedded into some Hilbert space H, which in turn is contained in
B
′ is called a Banach Gelfand triple.

Definition

If (B1,H1,B
′
1) and (B2,H2,B

′
2) are Gelfand triples then a linear

operator T is called a [unitary] Gelfand triple isomorphism if

1 A is an isomorphism between B1 and B2.

2 A is [unitary] isomorphism between H1 and H2.

3 A extends to a weak∗ isomorphism as well as a norm-to-norm
continuous isomorphism between B ′1 and B ′2.
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A schematic description: the simplified setting

In our picture this simple means that the inner “kernel” is mapped
into the ”kernel”, the Hilbert space to the Hilbert space, and at
the outer level two types of continuity are valid (norm and w∗)!
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The prototypical examples over the torus

In principle every CONB (= complete orthonormal basis)
Ψ = (ψi )i∈I for a given Hilbert space H can be used to establish
such a unitary isomorphism, by choosing as B the space of
elements within H which have an absolutely convergent expansion,
i.e. satisfy

∑
i∈I |〈x , ψi 〉| <∞.

For the case of the Fourier system as CONB for H = L
2([0, 1]), i.e.

the corresponding definition is already around since the times of
N. Wiener: A(T), the space of absolutely continuous Fourier
series. It is also not surprising in retrospect to see that the dual
space PM(T) = A(T)′ is space of pseudo-measures. One can
extend the classical Fourier transform to this space, and in fact
interpret this extended mapping, in conjunction with the classical
Plancherel theorem as the first unitary Banach Gelfand triple
isomorphism, between (A,L2,PM)(T) and (`1, `2, `∞)(Z).
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The Fourier transform as BGT automorphism

The Fourier transform F on Rd has the following properties:

1 F is an isomorphism from S0(Rd) to S0(R̂d),

2 F is a unitary map between L2(Rd) and L2(R̂d),

3 F is a weak* (and norm-to-norm) continuous bijection from
S
′
0(Rd) onto S ′0(R̂d).

Furthermore, we have that Parseval’s formula

〈f , g〉 = 〈f̂ , ĝ〉 (1)

is valid for (f , g) ∈ S0(Rd)× S ′0(Rd), and therefore on each level
of the Gelfand triple (S0,L

2,S ′0)(Rd).
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An alternative form of Admissibility

For any g ∈ L2(Rd) reconstruction of any f ∈ L2(Rd) from its
short-time Fourier transform Vg (f ) is possible via V ∗g , the adjoint
mapping, resp. the continuous integral version of the synthesis
operator, but only in the weak sense. For example, one can obtain
the coordinates of f in an ONB (hn)n≥0 by computing

〈f , hn〉 =

∫
Rd×R̂d

Vg (f )(λ)〈π(λ)g , hn〉dλ =

∫
R2d

Vg (f )(λ)Vg (hn)dλ.

Since Vg is bounded from L
2(Rd) to L2(R2d) Cauchy-Schwarz

guarantees the existence of these integrals.
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Discretizing the continuous reconstruction formula

Note the crucial difference between the classical formula (Fourier
inversion) and the new formula formula While the building blocks
gλ belong to the Hilbert space L2(Rd), in contrast to the
characters χs . Hence finite partial sums cannot approximate the
functions f ∈ L2(Rd) in the Fourier case, but they can (and in fact
do) approximate f in the L2(Rd)-sense.
The continuous reconstruction formula suggests that sufficiently
fine (and extended) Riemannian-sum-type expressions approximate
f . This is a valid view-point, at least for nice windows g (any
Schwartz function, in fact any g ∈ S0(Rd), hence any classical
summability kernel is OK: see Ferenc Weisz: Inversion of the
short-time Fourier transform using Riemannian sums for example
(2007).
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An alternative form of Admissibility

The above situation suggests that one might be able to use
Riemannian sums to these integrals in order to recover f (or
〈f , hn〉) approximately, but even for the boundedness of Rg ,Λ resp.
Cg ,Λ one needs extra assumptions on g . It does not make sense to
ask for this boundedness individually, both respect to Λ and g , but
rather look of a simple and universal answer:

Lemma

Assume that g belongs to
(
S0(Rd), ‖ · ‖S0

)
, then the operators

Cg ,Λ and hence its adjoint Rg ,Λ are uniformly bounded by
constants depending only on the size of the fundamental domain of
Λ and ‖g‖2

S0
. Normalized appropriately one can even have uniform

boundedness over all lattices Λ.
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Chaos otherwise

According to a result by F/Janssen from 2000: feja00 H. G.

Feichtinger and A. J. E. M. Janssen. Validity of WH-frame bound

conditions depends on lattice parameters. Appl. Comput. Harmon.
Anal., 8(1):104–112, 2000.

one can have boundedness for all rational lattices and
unboundedness for all rational multiples of some irrational lattice,
and in fact not even locally (in the domain of lattice parameters)
uniform boundedness (!) over the rational ones.
Such a problem cannot happen for g ∈ S0(Rd), because then the
so-called Bessel bounds (even as operators between Banach
Gelfand triples) are uniformly bounded over “compact sets” of
lattices.
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The Gaussian case, Λ = aZd × bZd

It is generally true, even for g ∈ L2(Rd) and not just the Gauss
function g0(t) = e−π|t|

2
, that a lattice of the form will never create

a Gabor frame (lack of density of atoms, the undersampling (!)
case), if a · b > 1 OR a · b > 1. So one may hope for the case of
a · b < 1 one can prove that for this case one has Gabor frames.
This is in fact true as it is known for a long time. It is also true
that the dual window g̃ , has to be a Schwartz function, even it
might not look like this.
Recently Gröchenig & Stöckler have shown that a an infinite,
parameterized family of functions of totally positive type shares
this property with the Gauss function.
Surprisingly B-spline functions, which are compactly supported,
require not only the natural restrictions on the time-shift
parameter a > 0 but also cannot generate Gabor frames for
specific lattices with a · b < 1 (see J. Lemvig). e
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Is there an orthonormal Gaborian Basis for
(
L

2(R), ‖ · ‖2

)
?

Yes of course. One can take the indicator function 1[0,a] for any
a > 0, take all of its translates along aZ and then do a Fourier
expansions (in the sense of a-periodic functions) of each of the
pieces.
But how does the spectrogram (STFT) of a nice function are
rather broad (spread out in the frequency direction, no integrable,
even if the signal f is a nice bump function!). This is due to the
bad decay properties of F(box) = SINC in this case.
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Bad spread of spectrogram in frequency direction

This slide reminds us, why it is not a good idea to use the
indicator function of some interval as Gabor atom!
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Ideal concentration for Gaussian Window
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The Ron-Shen Duality Theory

Separable TF−lattices for signal length 540
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Figure: lower part: small lattice parameters > frames, red > 1; upper
part: large frame constants > Gaborian Riesz bases, In the middle:
critical line, redundancy = 1.

Hans G. Feichtinger Function spaces for time-frequency analysis: the usefulness of a Banach Gelfand Triple



History Mutual Approximations 2

The Ron-Shen duality explained

The Ron-Shen duality (later formulated for general lattices by
Feichtinger-Kozek) states:
If there is a lattice such that the regular Gabor system generated
from (g ,Λ), where g is the Gabor atom, is a Gabor frame, then
(and only then) is the adjoint Gabor system (g ,Λ◦) a Gaborian
Riesz basis. Moreover the dual Gabor atom (resp. the generator of
the biorthogonal Gaborian RBS) are the same (up to
normalization), and furthermore the condition number of the frame
operator and the Gram matrix (of the RBS) are the same.
Let us mention that for Λ = aZd × bZd one has
Λ◦ = 1/b · Zd × 1/a · Zd .
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So what are we looking for?

Within our landscape of Gabor lattices we look out for lattices of
not too high redundancy which allows us to build good Gabor
frames (with well TF-concentrated dual window, or even better
well TF-concentrated tight Gabor frames) which do not have too
high redundancy, i.e. corresponding to lattices near the critical line.
For mobile communication we search for Gaborian Riesz basis of
“high spectral efficiency” (so high redundancy, coming close to the
critial line from above, while again still having good biorthogonal
generators).
Of course in each case one can also consider (the rich family) of
non-separable lattices, i.e. general lattices within Rd × R̂d ,
not just those of the form aZd × bZd .
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What is the problem with Gabor’s suggestion?

Formally the technical problem with Gabor’s idea of using a
maximally TF-localized window (namely the Gauss function g0,
with g0 = e−π|t|

2
, which is a minimizer to the Heisenberg

uncertainty relation) is the Balian- Low theorem. In fact, while
most likely, formulated in a modern terminology, D. Gabor was
hoping to suggest a Riesz basis obtained from a family of TF-shifts
of the Gauss-function along the integer lattice Z2, i.e. with
a = 1 = b, the analysis in the 80th showed that it is neither a
frame nor a Riesz basic sequence, so of course not a Riesz basis.
What has been overlooked by D. Gabor (at least there is no
indication that he was aware of this problem) that the more one
comes to the critical lattice (e.g. by letting a = b tend to the
critical value a = 1) the more delocalized (in the TF-sense) the
dual window is, i.e. the optimal localization of the Gabor atoms
is in sharp contrast with the significant unsharpness of the
overall system (Gabor and dual Gabor frame!).

Hans G. Feichtinger Function spaces for time-frequency analysis: the usefulness of a Banach Gelfand Triple
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Bastiaan’s dual window γ

The usual formulations of early Gabor analysis suggested that
Gabor analysis was that Gabor expansions are potentially quite
important (because they provide information about the
TF-concentration of signals, concentrated to the Neumann-lattice).
The fact, that for Λ = Z2d the closure of the Gabor family
generated by the (symmetric!) Gauss-function within(
S0(Rd), ‖ · ‖S0

)
has co-dimension ≥ 1 is an indication that it is

not just numerical instability (as it was believed for a long time),
but inappropriate for the expansion of arbitrary signals.
Recall, in the L2-setting they form a total family which did not
look so bad.

Hans G. Feichtinger Function spaces for time-frequency analysis: the usefulness of a Banach Gelfand Triple
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Continuous dependence of Gabor atoms on the lattice
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Figure: Dual Gabor windows g̃ for (a, b): (15, 15),(15, 16), (16, 15) , or
(16, 16), are very similar, taking variable redundancy into account. Even
in S0-norm only ca. 7, 5% relative error.
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Dual windows are automatically in S0(Rd)

It is well known, that a linear mapping between vector spaces
which is invertible (as a mapping between sets) has an inverse
which is automatically linear.
If furthermore domain and target spaces are Banach spaces the
ordinary invertibility combined with boundedness of the forward
mapping automatically implies boundedness of the inverse mapping
(hence one has an isomorphism).
One of the deep and somehow surprising results in Gabor analysis
is the following obtained by Gröchenig/Leinert (AMJ, 2004):

Theorem

Assume that (g ,Λ) generates a Gabor frame with atom
g ∈ S0(Rd)., i.e.assume that the Gabor frame operator Sg ,Λ is
invertible on

(
L

2(Rd), ‖ · ‖2

)
. Then it is a Banach Gelfand Triple

isomorphism. Hence g̃ ∈ S0(Rd) as well.
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Robustness under small changes of lattice parameters

One of the surprising results in Gabor analysis is the robustness
towards changes in the window AND THE LATTICE!. It is not
surprising to find that one may allow S0-perturbation of a window
g ∈ S0(Rd) which generates a Gabor (g ,Λ), because clearly the
invertibility of the frame operator (on

(
L

2(Rd), ‖ · ‖2

)
) is of course

robust to modifications of an operator with respect to the operator
norm on

(
L

2(Rd), ‖ · ‖2

)
. Since the S0-norm of an atom controls

both the norm of the analysis and the synthesis operator changes
of the window only change the frame operator.
One version (still relying on the control of the operator in the
operator norm) is the following: Assume that every lattice points is
modified by a small amount (jitter error). For small jitter the
resulting family is still a Gabor frame and is the original dual still
an approximate dual family.
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Continuous dependence of Gabor atoms on the lattice II

The situation is quite different if one changes the lattice, because
then the difference (in the operator norm) between to very similar
lattices is not controllable by a simple jitter error, and the change
is in fact not continuous in the operator norm, but only in the
strong operator topology.
Whereas the orthonormal basis arising from g = 1[0,1) with Λ = Zd

is highly sensitive to any change of the lattice constants the
S0-setting is quite convenient.

Theorem

Assume that (g ,Λ0), with g ∈ S0(Rd) generates a Gabor frame.
Then there is an open set of lattices containing Λ0 such that (g ,Λ)
generates Gabor frames for Λ near Λ0 (matrix convergence).
Moreover, the dual atom depends continuously (in the S0-norm)
on the lattice.

1 Paper with N. Kaiblinger: Varying the time-frequency lattice
of Gabor frames Trans. Amer. Math. Soc., Vol.356 No.5,
(2004) p.2001-2023.
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Functions, Distributions, Signal Expansions

As a unifying principle that allows me to explain the relevant
points in the historical development of Fourier Analysis in the last
200 years as well as for a better understanding of how we should
teach finally Fourier Analysis in the 21st century I want to focus on
the following aspects:

1 What is a function?

2 What does it mean to represent a function on the basis of its
Fourier coefficients (e.g. Fourier series expansion, ...)

3 How have these concepts changed over time and what was
the effect on the understanding of Fourier Analysis?

Hans G. Feichtinger Function spaces for time-frequency analysis: the usefulness of a Banach Gelfand Triple



History Mutual Approximations 2

Plancherel’s Theorem: Unitarity Property of FT

Using the density of L1(R) ∩ L2(R) in
(
L

2(R), ‖ · ‖2

)
it can be

shown that the Fourier transform extends an a natural and unique
way to

(
L

2(R), ‖ · ‖2

)
:

Theorem

The Fourier (-Plancherel) transform establishes a unitary
automorphism of

(
L

2(R), ‖ · ‖2

)
, i.e. one has

‖f ‖2 = ‖f̂ ‖2, f ∈ L2(R),

〈f , g〉 = 〈f̂ , ĝ〉, f , g ∈ L2(R).

In some sense unitary transformations of a Hilbert transform
is like a change form one ONB to another ONB in Rn.
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The Continuous Superposition of Pure Frequencies

This impression is confirmed by the “continuous representation”
formula, using χs(x) = e2πisx , x , s ∈ R. Since we have

f̂ (s) = 〈f , χs〉, s ∈ R,

we can rewrite (formally) the Fourier inversion formula as

f =

∫
R
〈f , χs〉χs , f ∈ L2(R). (2)

This looks like a perfect orthogonal expansion, but unfortunately
the “building blocks” χs /∈ L2(R)!! (this requires f to be in
L

1(R)).
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Topics of Abstract Harmonic Analysis

The central theme of Harmonic Analysis (according to my advisor
Hans Reiter [1921-1992]) was the study of the Banach algebra(
L

1(G ), ‖ · ‖1

)
, in particular the structure of closed ideals. One of

the central questions is the question of spectral synthesis.
This is a rather involved topic, roughly described as follows:
Can one approximate - in a suitable weak sense - a function f from
finite linear combinations of pure frequencies of those frequencies
which are found “in the signal” f via spectral analysis?
In other words, one considers only this frequencies χs , such that s
belongs to the support of f̂ (i.e. s can be approximated by values
sn with f̂ (sn) 6= 0). Then one expect to approximate f weakly by
trigonometric polynomials tk(x) =

∑n
k=1 ckχsk . The failure of

spectral synthesis for R3 is due to L.Schwartz [1915 - 2002].
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Laurent Schwartz Theory of Tempered Distributions

Laurent Schwartz is mostly known for having introduced the space
of tempered distributions, a topological vector space of
generalized functions or distributions which is invariant under
the Fourier transform.
He starts out by defining the so-called Schwartz space of rapidely
decreasing functions, consisting of all infinitely differentiable
functions on Rd which decay faster at infinity than any polynomial.
This space S(Rd) is naturally endowed with a countable family of
semi-norms, turning the space into a nuclear Frechet space.
The topological dual of S(Rd), i.e. the collection of all linear
functionals σ on S(Rd) satisfying the continuity assumption
fn → f0 in S(Rd) implies σ(fn)→ σ(f0) in C, constitutes
S ′(Rd), the space of tempered distributions.
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The classical setting of test functions & distributions

(
L

1(Rd), ‖ · ‖1

)
,
(
L

2(Rd), ‖ · ‖2

)
,
(
C0(Rd), ‖ · ‖∞

)
,S(Rd),S ′(Rd),

(
FL1(Rd), ‖ · ‖FL1

)

Schw
FL1

Tempered Distr.

L2

C0

L1
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Fourier Transforms of Tempered distributions

The Fourier transform σ̂ of σ ∈ S ′(Rd) is defined by the simple
relation

σ̂(f ) := σ(f̂ ), f ∈ S(Rd).

His construction vastly extends the domain of the Fourier
transform and allows even polynomials to have a Fourier tranform.
Among the objects which can now be treated are also the Dirac
measures δx , as well as Dirac combs tt=

∑
k∈Zd δk .

Poisson’s formula, which expresses that one has for f ∈ S(Rd)∑
k∈Zd

f (k) =
∑
n∈Zd

f̂ (n), (3)

can now be recast in the form

t̂t= tt.
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Sampling and Periodization on the FT side

The convolution theorem, can then be used to show that sampling
corresponds to periodization on the Fourier transform side, with
the interpretaton that

tt· f =
∑
k∈Zd

f (k)δk , f ∈ S(Rd).

In fact, we have
t̂t· f = t̂t∗ f̂ = tt∗ f̂ .

This result is the key to prove Shannon’s Sampling Theorem
which is usually considered as the fundamental fact of digital
signal processing (Claude Shannon: 1916 - 2001).
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Recovery from Samples

If we try to recover a real function f : R→ R from samples, i.e.
from a sequence of values (f (xn))n∈I , where I is a finite or
(countable) infinite set, we cannot expect perfect reconstruction.
In the setting of

(
L

2(R), ‖ · ‖2

)
any sequence constitutes only set

of measure zero, so knowing the sampling values provides zero
information without side-information.
On the other hand it is clear the for a (uniformly) continuous
function, so e.g. a continuous function supported on [−K ,K ] for
some K > 0 piecewise linear interpolation (this is what MATLAB
does automatically when we use the PLOT-routine) is providing a
good (in the uniform sense) approximation to the given function f
as long as the maximal distance between the sampling points
around the interval [−K ,K ] is small enough.
Shannon’s Theorem says that one can have perfect
reconstruction for band-limited functions.
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A Visual Proof of Shannon’s Theorem
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Shannon’s Sampling Theorem

It is kind of clear from this picture that one can recover the
spectrogram of the original function by isolating the central copy
of the periodized version of f̂ by multiplying with some function ĝ ,
with g such that ĝ(x) = 1 on spec(f ) and ĝ(x) = 0 at the shifted
copies of f̂ . This is of course only possible if these shifted copies of
spec(f ) do not overlap, resp. if the sampling is dense enough (and
correspondingly the periodization of f̂ is a course one. This
conditions is known as the Nyquist criterion. If it is satisfied, or
supp(f ) ⊂ [−1/α, 1/α], then

f (t) =
∑
k∈Zd

f (αk)Tαkg(x), x ∈ Rd .
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Building blocks for Discrete Cosine Transform DCT
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The way out: Test Functions and Generalized Functions

The usual way out of this problem zone is to introduce generalized
functions. In order to do so one has to introduce test functions,
and give them a reasonable topology (family of seminorms), so
that it makes sense to separate the continuous linear functionals
from the pathological ones. The “good ones” are admitted and
called generalized functions, since most reasonable ordinary
functions can be identified (uniquely) with a generalized function
(much as 5/7 is a complex number!).
If one wants to have Fourier invariance of the space of
distributions, one must Fourier invariance of the space of test
functions (such as S(Rd)). If one wants to have - in addition -
also closedness with respect to differentiation one has to take more
or less S(Rd). BUT THERE IS MORE!
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The Banach space
(
S0(Rd), ‖ · ‖S0

)
Without differentiability there is a minimal, Fourier and
isometrically translation invariant Banach space (called(
S0(Rd), ‖ · ‖S0

)
or (M1(Rd), ‖ · ‖

M
1)), which will serve our

purpose. Its dual space (S ′0(Rd), ‖ · ‖S ′
0
) is correspondingly the

largest among all Fourier invariant and isometrically translation
invariant “objects” (in fact so-called local pseudo-measures or
quasimeasures, orginally introduced in order to describe translation
invariant systems as convolution operators).
Although there is a rich zoo of Banach spaces around (one can
choose such a family, the so-called Shubin classes - to intersect in
the Schwartz class and their union is corresondingly S ′(Rd)), we
will restrict ourselves to the situation of Banach Gelfand Triples,
mostly related to (S0,L

2,S ′0)(Rd).
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The key-players for time-frequency analysis

Time-shifts and Frequency shifts (II)

Tx f (t) = f (t − x)

and x , ω, t ∈ Rd

Mωf (t) = e2πiω·t f (t) .

Behavior under Fourier transform

(Tx f )̂ = M−x f̂ (Mωf )̂ = Tω f̂

The Short-Time Fourier Transform

Vg f (λ) = 〈f ,MωTtg〉 = 〈f , π(λ)g〉 = 〈f , gλ〉, λ = (t, ω);
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A Typical Musical STFT

A typical waterfall melody (Beethoven piano sonata) depictured
using the spectrogram, displaying the energy distribution in the TF
= time-frequency plan:
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A Banach Space of Test Functions (Fei 1979)

A function in f ∈ L2(Rd) is in the subspace S0(Rd) if for some
non-zero g (called the “window”) in the Schwartz space S(Rd)

‖f ‖S0 := ‖Vg f ‖L1 =

∫∫
Rd×R̂d

|Vg f (x , ω)|dxdω <∞.

The space
(
S0(Rd), ‖ · ‖S0

)
is a Banach space, for any fixed,

non-zero g ∈ S0(Rd)), and different windows g define the same
space and equivalent norms. Since S0(Rd) contains the Schwartz
space S(Rd), any Schwartz function is suitable, but also
compactly supported functions having an integrable Fourier
transform (such as a trapezoidal or triangular function) are
suitable. It is convenient to use the Gaussian as a window.
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Basic properties of M1 = S0(Rd)

Lemma

Let f ∈ S0(Rd), then the following holds:

(1) π(u, η)f ∈ S0(Rd) for (u, η) ∈ Rd × R̂d , and
‖π(u, η)f ‖S0 = ‖f ‖S0 .

(2) f̂ ∈ S0(Rd), and ‖f̂ ‖S0 = ‖f ‖S0 .

In fact,
(
S0(Rd), ‖ · ‖S0

)
is the smallestspace with this property,

and therefore contained in any of the Lp-spaces (and their Fourier
images).(
S0(Rd), ‖ · ‖S0

)
is also invariant under automorphism, such as

dilations or rotations (but not isomerically), and even under
the “Fractional Fourier Transform”. and metaplectic
transformations.

Hans G. Feichtinger Function spaces for time-frequency analysis: the usefulness of a Banach Gelfand Triple



History Mutual Approximations 2

Basic properties of M∞(Rd) = S
′
0(Rd), Ctd.

It is probably no surprise to learn that the dual space of(
S0(Rd), ‖ · ‖S0

)
, i.e. S ′0(Rd) is the largest (reasonable) Banach

space of distributions (in fact local pseudo-measures) which is
isometrically invariant under time-frequency shifts π(λ),
λ ∈ Rd × R̂d . As an amalgam space one has
S
′
0(Rd) = W (FL1, `1)

′
= W (FL∞, `∞)(Rd), the space of

translation bounded quasi-measures, however it is much better to
think of it as the modulation space M∞(Rd), i.e. the space of all
tempered distributions on Rd with bounded Short-time Fourier
transform (for an arbitrary 0 6= g ∈ S0(Rd)).
Consequently norm convergence in S ′0(Rd) is just uniform
convergence of the STFT, while certain atomic characterizations of(
S0(Rd), ‖ · ‖S0

)
imply that w∗-convergence is in fact equivalent to

locally uniform convergence of the STFT.
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BANACH GELFAND TRIPLES: a new category

Definition

A triple, consisting of a Banach space B, which is dense in some
Hilbert space H, which in turn is contained in B ′ is called a
Banach Gelfand triple.

Definition

If (B1,H1,B
′
1) and (B2,H2,B

′
2) are Gelfand triples then a linear

operator T is called a [unitary] Gelfand triple isomorphism if

1 A is an isomorphism between B1 and B2.

2 A is [a unitary operator resp.] an isomorphism between H1

and H2.

3 A extends to a weak∗ isomorphism as well as a norm-to-norm
continuous isomorphism between B ′1 and B ′2.
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A schematic description: the simplified setting

In our picture this simple means that the inner “kernel” is mapped
into the ”kernel”, the Hilbert space to the Hilbert space, and at
the outer level two types of continuity are valid (norm and w∗)!
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A pictorial presentation of the BGTr morphism

Figure: Note: there are three layers of the mapping, but four topological
conditions!
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The prototypical examples over the torus

In principle every CONB (= complete orthonormal basis)
Ψ = (ψi )i∈I for a given Hilbert space H can be used to establish
such a unitary isomorphism, by choosing as B the space of
elements within H which have an absolutely convergent expansion,
i.e. satisfy

∑
i∈I |〈x , ψi 〉| <∞.

For the case of the Fourier system as CONB for H = L
2([0, 1]), i.e.

the corresponding definition is already around since the times of
N. Wiener: A(T), the space of absolutely continuous Fourier
series. It is also not surprising in retrospect to see that the dual
space PM(T) = A(T)′ is space of pseudo-measures. One can
extend the classical Fourier transform to this space, and in fact
interpret this extended mapping, in conjunction with the classical
Plancherel theorem as the first unitary Banach Gelfand triple
isomorphism, between (A,L2,PM)(T) and (`1, `2, `∞)(Z).
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Banach Gelfand Triple (S0,L
2,S ′0): BASICS over Rd

Let us collect a few facts concerning this Banach Gelfand Triple
(BGTr), based on the Segal algebra

(
S0(Rd), ‖ · ‖S0

)
:

S0(Rd) is dense in
(
L

2(Rd), ‖ · ‖2

)
, in fact within any(

L
p(Rd), ‖ · ‖p

)
, with 1 ≤ p <∞ (or in

(
C0(Rd), ‖ · ‖∞

)
);

Any of the Lp-spaces, with 1 ≤ p ≤ ∞ is continuously
embedded into S ′0(Rd);

Any translation bounded measure belongs to S ′0(Rd), in
particular any Dirac-comb ttΛ :=

∑
λ∈Λ δλ, for Λ C Rd .

S0(Rd) is w∗-dense in S ′0(Rd), i.e. for any σ ∈ S ′0(Rd) there
exists a sequence of test functions sn in S0(Rd) such that

(1)

∫
Rd

f (x)sn(x)dx → σ(f ), ∀f ∈ S0(Rd). (4)
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The Fourier transform as BGT automorphism

The Fourier transform F on Rd has the following properties:

1 F is an isomorphism from S0(Rd) to S0(R̂d),

2 F is a unitary map between L2(Rd) and L2(R̂d),

3 F is a weak* (and norm-to-norm) continuous bijection from
S
′
0(Rd) onto S ′0(R̂d).

Furthermore, we have that Parseval’s formula

〈f , g〉 = 〈f̂ , ĝ〉 (5)

is valid for (f , g) ∈ S0(Rd)× S ′0(Rd), and therefore on each level
of the Gelfand triple (S0,L

2,S ′0)(Rd).
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Interpretation of key properties of the Fourier transform

Engineers and theoretical physicists tend to think of the Fourier
transform as a change of basis, from the continuous, orthonormal
system of Dirac measures (δx)x∈Rd to the CONB (χs)s∈Rd . Books
on quantum mechanics use such a terminology, admitting that
these elements are “slightly outside the usual Hilbert space
L

2(Rd)”, calling them “elements of the physical Hilbert space”
(see e.g. R. Shankar’s book on Quantum Physics). Within the
context of BGTs we can give such formal expressions a meaning:
The Fourier transform maps pure frequencies to Dirac measures:

χ̂s = δs and δ̂x = χ−x .

Given the w∗-totality if both of these systems within S ′0(Rd)
we can now claim: The Fourier transform is the unique
BGT-automorphism for (S0,L

2,S ′0)(Rd) with this property!
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There is just one Fourier transform

As a colleague (Jens Fischer) at the German DLR (in
Oberpfaffenhausen) puts it in his writing: “There is just one
Fourier Transform” And I may add: and it is enough to know
about (S ′0(Rd), ‖ · ‖S ′

0
) in order to understand this principle and to

make it mathematically meaningful.
In engineering courses students learn about discrete and
continuous, about periodic and non-periodic signals (typically on R
or R2), and they are treated separately with different formulas.
Finally comes the DFT/FFT for finite signals, when it comes to
computations. The all look similar.
Mathematics students learning Abstract Harmonic Analysis learn
that one has to work with different LCA groups and their dual
groups. Gianfranco Cariolaro (Padua) combines the view-points
somehow in his book Unified Signal Theory (2011).

w∗-convergence justifies the various transitions!
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Periodicity and Fourier Support Properties

The world of distributions allows to deal with continuous and
discrete, periodic and non-periodic signals at equal footing. Let us
discuss how they are connected.
The general Poisson Formula, expressed as

F(ttΛ) = CΛttΛ⊥ (6)

can be used to prove

F(ttΛ ∗ f ) = CΛttΛ⊥ · F(f ), (7)

or interchanging convolution with pointwise multiplication:

F(ttΛ · f ) = CΛttΛ⊥ ∗ F(f ). (8)

I.e.: Convolution by tt (corresponding to periodization)
corresponds to pointwise multiplication (i.e. sampling) on
the Fourier transform domain and vice versa.
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Approximation by discrete and periodic signals

The combination of two such operators, just with the assumption
that the sampling lattice Λ1 is a subgroup (of finite index N) of
the periodization lattice Λ2 implies that

ttΛ2 ∗ [ttΛ1 · f ] = ttΛ1 · [ttΛ2 ∗ f ], f ∈ S0(Rd). (9)

For illustration let us take d = 1 and Λ1 = αZ, Λ2 = NαZ and
hence Λ⊥1 = (1/α)Z. Then the periodic and sampled signal arising
from equ. 9 corresponds to a vector a ∈ CN and the distributional
Fourier transform of the periodic, discrete signal is completely
characterized is again discrete and periodic and its generating
sequence b ∈ CN can be obtained via the DFT
(FT of quotient group), e.g. N = k2, α = 1/k , and period k.
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Approximation by discrete and periodic signals 2

It is not difficult to verify that in this way, by making the sampling
lattice more and more refined and periodization lattice coarser and
coarser the resulting discrete and periodic versions of f ∈ S0(Rd),
viewed as elements within S ′0(Rd), are approximated in a bounded
and w∗-sense by discrete and periodic functions.
This view-point can be used as a justification of the fact used in
books describing heuristically the continuous Fourier transform, as
a limit of Fourier series expansions, with the period going to
infinity.
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Mutual w ∗-approximations

The density of test functions in the dual space can be obtained in
many ways, using so-called regularizing operators, e.g. combined
approximated units for convolution and on the other hand for
pointwise convolution, based on the fact that we have

(S0(Rd) ∗ S ′0(Rd)) · S0(Rd) ⊂ S0(Rd), and (10)

(S0(Rd) · S ′0(Rd)) ∗ S0(Rd) ⊂ S0(Rd). (11)

Alternatively one can take finite partial sums of the Gabor
expansion of a distribution σ ∈ S ′0(Rd) which approximate
σ in the w∗-sense (boundedly), for Gabor windows in S0(Rd).

On the other hand one can approximate test functions (in the
w∗-sense) by discrete and periodic signals!
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Approximation of Distributions by Test Functions

These properties of product-convolution operators or
convolution-product operators can be used to obtain a
w∗-approximation of general elements σ ∈ S ′0(Rd) by test
functions in S0(Rd). For example, one can take a Dirac family
obtained by applying the compression operator

Stρ(g) := ρ−dg(x/ρ), ρ→ 0

in order to approximate σ by bounded and continuous functions of
the form Stρ(g0) ∗ σ.
For the localization one can use the dilation operator

Dρ(h)(z) = h(ρz), ρ→ 0,

so altogether

σ = w∗ − lim
ρ→0

Dρg0 · [(Stρg0) ∗ σ]

where all the functions on the right hand side belong to S0(Rd).
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Generalized Stochastic Processes

The space of test functions is also very useful to model
Generalized Stochastic Processes (GSPs) simple as bounded
linear operators from S0(Rd) to some (abstract, or concrete)
Hilbert space (of random variables): ρ : f → ρ(f ) ∈ H.

Such GSPs have a natural autocorrelation distribution
σ ∈ S ′0(R2d), and its invariance properties correspond to e.g.
wide-sense stationarity of the process itself.

There is also a Fourier transform ρ̂ of such a process, and the
autocorrelation of the ρ̂ is just (the 2d) Fourier transform of σ!
The inverse Fourier transform is a very natural replacement for the
“spectral representation” of a process.

Details can be found in paper with W. Hörmann (see his PhD
thesis).
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Modern Viewpoint I

Todays Rules of the Game

Choose a good window or Gabor atom (any g ∈ S(Rd) will do)
and try to find out, for which lattices Λ ∈ R2d the signal f resp. its
STFT (with that window) can recovered in a STABLE way from
the samples, i.e. from the values 〈f , π(λ)g〉.
We speak of tight Gabor frames (gλ) if we can even have the
expansion (for some constant A > 0)

f = A ·
∑
λ∈Λ

〈f , gλ〉gλ, ∀ f ∈ L2(Rd).

Note that in general tight frames can be characterized as
orthogonal projections of orthonormal bases of larger spaces!!!
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Modern Viewpoint II

Another basic fact is that for each g ∈ S(Rd) one can find, if Λ is
dense enough (e.g. aZ× bZ ⊂ Rd for ab < 1 in the Gaussian
case) a dual Gabor window g̃ such that one has at least

f =
∑
λ∈Λ

〈f , g̃λ〉gλ =
∑
λ∈Λ

〈f , gλ〉g̃λ (12)

g̃ can be found as the solution of the (positive definite) linear
system Sg̃ = g , where Sf =

∑
λ∈Λ〈f , gλ〉gλ, so using g̃ instead

of g for analysis or synthesis corrects for the deviation from the
identity operator. An important fact is the commutation relation
S ◦ π(λ) = π(λ) ◦ S , for all λ ∈ Λ.
Thus (12) is just S ◦ S−1 = Id = S−1 ◦ S in disguise!).
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