Identification of Matrices Having a Sparse Representation

Holger Rauhut\footnote{Funded by an Individual Marie Curie Fellowship from the EU}
University of Vienna

Trends in Harmonic Analysis, Strobl
June 20, 2007

Joint work with Götz Pfander and Jared Tanner
Let $\Gamma \in \mathbb{C}^{n \times m}$.

Problem: Identify Γ from its application on a small number of vectors in \mathbb{C}^m.

Motivation: Channel estimation problem in wireless communication and sonar.
Let $\Gamma \in \mathbb{C}^{n \times m}$.

Problem: Identify Γ from its application on a small number of vectors in \mathbb{C}^m.

Motivation: Channel estimation problem in wireless communication and sonar.

If $h_\ell \in \mathbb{C}^m, \ell = 1, \ldots, m$ forms a basis of \mathbb{C}^m then Γ is completely determined by $y_\ell = \Gamma h_\ell, \ell = 1, \ldots, m$.

Let $\Gamma \in \mathbb{C}^{n \times m}$.

Problem: Identify Γ from its application on a small number of vectors in \mathbb{C}^m.

Motivation: Channel estimation problem in wireless communication and sonar.

If $h_\ell \in \mathbb{C}^m$, $\ell = 1, \ldots, m$ forms a basis of \mathbb{C}^m then Γ is completely determined by $y_\ell = \Gamma h_\ell$, $\ell = 1, \ldots, m$.

Without additional knowledge at least m vectors h_ℓ are necessary to identify Γ from Γh_ℓ, $\ell = 1, \ldots, m$.
Let $\Gamma \in \mathbb{C}^{n \times m}$.

Problem: Identify Γ from its application on a small number of vectors in \mathbb{C}^m.

Motivation: Channel estimation problem in wireless communication and sonar.

If $h_\ell \in \mathbb{C}^m$, $\ell = 1, \ldots, m$ forms a basis of \mathbb{C}^m then Γ is completely determined by $y_\ell = \Gamma h_\ell$, $\ell = 1, \ldots, m$.

Without additional knowledge at least m vectors h_ℓ are necessary to identify Γ from Γh_ℓ, $\ell = 1, \ldots, m$.
A matrix dictionary is a set $\Psi = \{\psi_j\}_{j=1}^N$ of matrices $\psi_j \in \mathbb{C}^{n \times m}$ (or $\mathbb{R}^{n \times m}$).

A matrix Γ is said to have a k-sparse representation if

$$\Gamma = \sum_{j \in \Lambda} x_j \psi_j, \quad \text{with } |\Lambda| = k.$$

Problem: Identify a k-sparse $\Gamma \in \mathbb{C}^{n \times m}$ from its action $\Gamma h \in \mathbb{C}^n$ on only one vector $h \in \mathbb{C}^m$.
A matrix dictionary is a set \(\Psi = \{\psi_j\}_{j=1}^N \) of matrices \(\psi_j \in \mathbb{C}^{n \times m} \) (or \(\mathbb{R}^{n \times m} \)).

A matrix \(\Gamma \) is said to have a \(k \)-sparse representation if

\[
\Gamma = \sum_{j \in \Lambda} x_j \psi_j, \quad \text{with } |\Lambda| = k.
\]

Problem: Identify a \(k \)-sparse \(\Gamma \in \mathbb{C}^{n \times m} \) from its action \(\Gamma h \in \mathbb{C}^n \) on only one vector \(h \in \mathbb{C}^m \).

Identification of \(\Gamma \) amounts to determining \(x \).
A matrix dictionary is a set $\Psi = \{\psi_j\}_{j=1}^N$ of matrices $\psi_j \in \mathbb{C}^{n \times m}$ (or $\mathbb{R}^{n \times m}$).

A matrix Γ is said to have a k-sparse representation if

$$\Gamma = \sum_{j \in \Lambda} x_j \psi_j, \quad \text{with } |\Lambda| = k.$$

Problem: Identify a k-sparse $\Gamma \in \mathbb{C}^{n \times m}$ from its action $\Gamma h \in \mathbb{C}^n$ on only one vector $h \in \mathbb{C}^m$.

Identification of Γ amounts to determining x.

No knowledge on the support of x is assumed except its maximal size k.
A matrix dictionary is a set $\Psi = \{\psi_j\}_{j=1}^N$ of matrices $\psi_j \in \mathbb{C}^{n \times m}$ (or $\mathbb{R}^{n \times m}$).

A matrix Γ is said to have a k-sparse representation if

$$\Gamma = \sum_{j \in \Lambda} x_j \psi_j, \quad \text{with } |\Lambda| = k.$$

Problem: Identify a k-sparse $\Gamma \in \mathbb{C}^{n \times m}$ from its action $\Gamma h \in \mathbb{C}^n$ on only one vector $h \in \mathbb{C}^m$.

Identification of Γ amounts to determining x.

No knowledge on the support of x is assumed except its maximal size k.
Let $\Gamma = \sum_j x_j \psi_j$. Then

$$\Gamma h = \sum_j x_j \psi_j h = (\psi_1 h \mid \psi_2 h \mid \ldots \mid \psi_N h) x =: (\Psi h)x.$$

Hence, sparse matrix identification reduces to the problem of finding a sparse representation of Γh in terms of the vector dictionary $(\Psi h) = (\psi_1 h \mid \ldots \mid \psi_N h) \in \mathbb{C}^{n \times N}$.

Techniques from sparse approximation and compressed sensing apply.
Let $\Gamma = \sum_j x_j \Psi_j$. Then

$$\Gamma h = \sum_j x_j \Psi_j h = (\Psi_1 h | \Psi_2 h | \ldots | \Psi_N h) x =: (\Psi h) x.$$

Hence, sparse matrix identification reduces to the problem of finding a sparse representation of Γh in terms of the vector dictionary $(\Psi h) = (\Psi_1 h | \ldots | \Psi_N h) \in \mathbb{C}^{n \times N}$.

Techniques from sparse approximation and compressed sensing apply.

In contrast to sparse approximation we have the additional freedom of choosing h.
Let $\Gamma = \sum_j x_j \psi_j$. Then

$$\Gamma h = \sum_j x_j \psi_j h = (\psi_1 h \mid \psi_2 h \mid \ldots \mid \psi_N h) x =: (\Psi h) x.$$

Hence, sparse matrix identification reduces to the problem of finding a sparse representation of Γh in terms of the vector dictionary $(\Psi h) = (\psi_1 h \mid \ldots \mid \psi_N h) \in \mathbb{C}^{n \times N}$.

Techniques from sparse approximation and compressed sensing apply.

In contrast to sparse approximation we have the additional freedom of choosing h.

Questions

- Good matrix dictionaries $\Psi = \{\psi_j\}_{j=1}^N$?
- Choice of h?
- Which recovery algorithm?
- Maximal sparsity k that ensures identification?
Recovery algorithms

\(\ell_0 \)-minimization:

\[
\min_{x'} \|x'\|_0 \quad \text{subject to } (\Psi h)x' = \Gamma h,
\]

where \(\|x'\|_0 = \#\{j : x_j \neq 0\} \).

Problem: \(\ell_0 \)-minimization is NP-hard.
Recovery algorithms

ℓ_0-minimization:

$$\min_{x'} \|x'\|_0 \quad \text{subject to } (\Psi h) x' = \Gamma h,$$

where $\|x'\|_0 = \# \{j : x_j \neq 0\}$.

Problem: ℓ_0-minimization is NP-hard.

Tractable alternatives:

- **Basis Pursuit** (ℓ_1-minimization)
- Greedy algorithms: **Orthogonal Matching Pursuit**, **Thresholding**.
- ...

Holger Rauhut

Sparse Matrix Identification 6
Recovery algorithms

\(\ell_0 \)-minimization:

\[
\min_{x'} \| x' \|_0 \quad \text{subject to } (\Psi h)x' = \Gamma h,
\]

where \(\| x' \|_0 = \# \{ j : x_j \neq 0 \} \).

Problem: \(\ell_0 \)-minimization is NP-hard.

Tractable alternatives:

- **Basis Pursuit** (\(\ell_1 \)-minimization)
- **Greedy algorithms**: Orthogonal Matching Pursuit, Thresholding.
- ...

Holger Rauhut

Sparse Matrix Identification 6
Basis Pursuit

\(\ell_1 \)-minimization

\[
\min_{x'} \| x' \|_1 \quad \text{subject to } (\Psi h)x' = \Gamma h,
\]

where \(\| x \|_1 = \sum_j |x_j| \).

Convex relaxation of \(\ell_0 \)-minimization problem.

Can be solved efficiently with convex optimization techniques.
Theorem

Let \(h \) be a non-zero vector in \(\mathbb{R}^m \).

(a) Let all entries of the \(N \) matrices \(\Psi_j \in \mathbb{R}^{n \times m}, j = 1, \ldots, N \) be chosen independently according to a standard normal distribution (Gaussian ensemble); or

(b) let all entries of the \(N \) matrices \(\Psi_j \in \mathbb{R}^{n \times m}, j = 1, \ldots, N \) be independent Bernoulli \(\pm 1 \) variables (Bernoulli ensemble).

Then there exists a constant \(c > 0 \) such that

\[
k \leq c \frac{n}{\log \left(\frac{N}{n \varepsilon} \right)}
\]

implies that with probability of at least \(1 - \varepsilon \) all matrices \(\Gamma \in \mathbb{R}^{n \times m} \) having a \(k \)-sparse representation with respect to \(\Psi = \{\Psi_j\} \) can be recovered from \(\Gamma h \) by Basis Pursuit.
Dictionary of time-frequency-shifts

Translation and Modulation on \mathbb{C}^n

$$(T_p h)_q = h(p+q) \mod n \quad \text{and} \quad (M_\ell h)_q = e^{2\pi i \ell q/n} h_q.$$\

$\mathcal{G} = \{ M_\ell T_p : \ell, p = 0, \ldots, n-1 \}$ forms a basis of $\mathbb{C}^{n \times n}$.

$$(\mathcal{G} h) = (M_\ell T_p h)_{\ell, p=0, \ldots, n-1} \in \mathbb{C}^{n \times n^2}$$ is a Gabor system.

Motivation: Wireless communications and sonar. Multipath-propagation of the signal due to reflections at possibly moving scatterers causes time-delays (translation) and Doppler-shifts (modulations).
Dictionary of time-frequency-shifts

Translation and Modulation on \(\mathbb{C}^n \)

\[(T_p h)_q = h_{(p+q) \mod n} \quad \text{and} \quad (M_\ell h)_q = e^{2\pi i \ell q/n} h_q.\]

\(\mathcal{G} = \{M_\ell T_p : \ell, p = 0, \ldots, n-1\} \) forms a basis of \(\mathbb{C}^{n \times n} \).

\((\mathcal{G} h) = (M_\ell T_p h)_{\ell,p=0,\ldots,n-1} \in \mathbb{C}^{n \times n^2} \) is a Gabor system.

Motivation: Wireless communications and sonar.
Multipath-propagation of the signal due to reflections at possibly moving scatterers causes \textit{time-delays} (translation) and \textit{Doppler-shifts} (modulations).
Therefore, the channel in wireless communications and sonar can be modeled as

\[\Gamma = \sum_{\ell,p} x_{\ell p} M_\ell T_p. \]

Usually only a small number of scatterers, hence \(x \) can be assumed sparse.
Dictionary of time-frequency-shifts

Translation and Modulation on \mathbb{C}^n

$$(T_p h)_q = h_{(p+q) \mod n} \quad \text{and} \quad (M_\ell h)_q = e^{2\pi i \ell q/n} h_q.$$

$G = \{ M_\ell T_p : \ell, p = 0, \ldots, n-1 \}$ forms a basis of $\mathbb{C}^{n \times n}$.

$(G h) = (M_\ell T_p h)_{\ell, p=0,\ldots,n-1} \in \mathbb{C}^{n \times n^2}$ is a Gabor system.

Motivation: Wireless communications and sonar.
Multipath-propagation of the signal due to reflections at possibly moving scatterers causes time-delays (translation) and Doppler-shifts (modulations).
Therefore, the channel in wireless communications and sonar can be modeled as

$$\Gamma = \sum_{\ell, p} x_{\ell p} M_\ell T_p.$$

Usually only a small number of scatterers, hence x can be assumed sparse.
Two Choices for h

- Alltop window (Strohmer and Heath) in prime dimension n

\[h^A_q = \frac{1}{\sqrt{n}} e^{2\pi i q^3/n}, \quad q = 0, \ldots, n-1. \]

- Randomly generated window (for arbitrary n)

\[h^R_q = \frac{1}{\sqrt{n}} \epsilon_q, \quad q = 0, \ldots, n-1, \]

where the ϵ_q are independent and uniformly distributed on the torus $\{ z \in \mathbb{C}, |z| = 1 \}$.
Two Choices for h

- Alltop window (Strohmer and Heath) in prime dimension n

$$h^A_q = \frac{1}{\sqrt{n}} e^{2\pi i q^3 / n}, \quad q = 0, \ldots, n-1.$$

- Randomly generated window (for arbitrary n)

$$h^R_q = \frac{1}{\sqrt{n}} \epsilon_q, \quad q = 0, \ldots, n-1,$$

where the ϵ_q are independent and uniformly distributed on the torus $\{ z \in \mathbb{C}, |z| = 1 \}$.

Holger Rauhut
Sparse Matrix Identification 10
Theorem

(a) Let n be prime and h^A be the Alltop window. If $k < \frac{\sqrt{n+1}}{2}$ then BP recovers from Γh^A all matrices Γ having a k-sparse representation with respect to the time–frequency shift dictionary.

(b) Let n be even and choose h^R to be the random unimodular window. Let $t > 0$ and suppose

$$k \leq \frac{1}{4} \sqrt{\frac{n}{C \log(n) + t}} + \frac{1}{2} \tag{1}$$

with $C = 2 \log(4) \approx 2.77$. Then with probability at least $1 - e^{-t}$ BP recovers from Γh^R all matrices $\Gamma \in \mathbb{C}^{n \times n}$ having a k-sparse representation.

Relies on coherence estimates for the Gabor systems $G h^A$ (Strohmer and Heath) and $G h^R$ (Pfander, R, Tanner).
Assuming randomly chosen support set Λ of x and random phases $\text{sign}(x_{\ell p})$, $(\ell, p) \in \Lambda$ one can show recovery for both h^A and h^R under the condition

$$k \leq c \frac{n}{(\log n)^{1+u}}$$

with $c > 0$ and $u > 0$ governing the probability of success.

Based on recent results by Tropp ("Random subdictionaries of general dictionaries").
Theorem (Deterministic Support and Random Phases)

Choose h^R at random. Let $\Lambda \subset \{0, \ldots, n-1\}^2$ with cardinality $|\Lambda| = k$. Let x with $\text{supp}(x) = \Lambda$ and random phases $(\text{sgn}(x_\lambda))_{\lambda \in \Lambda}$ that are independent and uniformly distributed on the torus $\{z \in \mathbb{C}, |z| = 1\}$. Set $\Gamma = \sum_{(\ell, p)} x_{\ell p} M_\ell T_p \in \mathbb{C}^{n \times n}$. Let $\sigma > 8$. Then with probability at least

$$2(n - k) \exp \left(-\frac{n}{\sigma k} \right) + Ck \exp \left(-\frac{n}{16ek} \right) + 4n^{-(\sigma/4-2)}$$

Basis Pursuit recovers Γ from Γh^R. The constant $C \approx 1.075$.

The probability estimate becomes effective once

$$k \leq c \frac{n}{\log(n)},$$

with c “slightly smaller” than $1/(16e) \approx 1/(43.49) \approx 0.023$.

Holger Rauhut
Sparse Matrix Identification 13
Theorem (Deterministic Γ)

Let $\Gamma \in \mathbb{C}^{n \times n}$ be k-sparse with respect to the time-frequency shift dictionary. Choose h^R at random. Assume that

$$k \leq C \frac{n}{\log(n/\epsilon)}.$$

Then with probability at least $1 - \epsilon$ Basis Pursuit recovers Γ from Γh^R.

The proof reveals the more precise condition

$$n \geq \max\{C_1 k \log(n^2/\epsilon), k(C_2 \log(k^4/\epsilon) + C_3)\}$$

with $C_1 = 284.64$, $C_2 = 235.12$ and $C_3 = 8.35$.

Holger Rauhut

Sparse Matrix Identification 14
Theorem (Deterministic Γ)

Let $\Gamma \in \mathbb{C}^{n \times n}$ be k-sparse with respect to the time-frequency shift dictionary. Choose h^R at random. Assume that

$$k \leq C \frac{n}{\log (n/\epsilon)}.$$

Then with probability at least $1 - \epsilon$ Basis Pursuit recovers Γ from Γh^R.

The proof reveals the more precise condition

$$n \geq \max\{C_1 k \log (n^2/\epsilon), k(C_2 \log (k^4/\epsilon) + C_3)\}$$

with $C_1 = 284.64$, $C_2 = 235.12$ and $C_3 = 8.35$.
Numerical experiments for h^A, n prime

Horizontal axis $1/n$, vertical axis k/n.

Contours of success probability, 93% success rate, $1/(2 \log(n))$.

Numerical experiments suggest $k \leq \frac{n}{2 \log(n)}$ ensures recovery of most k-sparse Γ.

Numerical experiments for h^R

Horizontal axis $1/n$, vertical axis k/n.
Contours of success probability, 93% success rate, $1/(2 \log(n))$.
Numerical experiments suggest $k \leq \frac{n}{2 \log(n)}$ ensures recovery of most k-sparse Γ.