On approximation properties of Kantorovich-type sampling operators

Olga Orlova, Gert Tamberg

Department of Mathematics,
Tallinn University of Technology,
ESTONIA

Modern Time-Frequency Analysis
Strobl 2014
AUSTRIA
June 5, 2014

This is a joint work with Andi Kivinukk (Tallinn University)

This research was supported by the Estonian Science Foundation, grant 9383 and by the Estonian Min. of Educ. and Research, project SF0140011s09.
The aim of this talk is to study approximation properties of a generalized Shannon sampling operators

\[(S_w f)(t) := \sum_{k=-\infty}^{\infty} f\left(\frac{k}{w}\right)s(wt - k)\]

with a bandlimited kernel \(s\), which is a Fourier transform of a certain even window function \(\lambda \in C_{[-1,1]}\), \(\lambda(0) = 1\), \(\lambda(u) = 0\) (\(|u| \geq 1\)), i.e.

\[s(t) := s(\lambda; t) := \int_{0}^{1} \lambda(u) \cos(\pi tu) \, du.\]

We give the conditions for the kernel \(s\), which allow us to have the estimate of order of approximation via modulus of smoothness in form:

\[\|f - S_w^r f\| \leq M_r \omega_{2r}(f; \frac{1}{w}).\]
Def

The Bernstein class B^p_σ for $\sigma \geq 0$ and $1 \leq p \leq \infty$ consists of those bounded functions $f \in L^p(\mathbb{R})$ which can be extended to an entire function $f(z)$ ($z \in \mathbb{C}$) of exponential type σ, i.e.,

$$|f(z)| \leq e^{\sigma|y|} \|f\|_C \quad (z = x + iy \in \mathbb{C}).$$

The class B^p_σ is a Banach space if one takes the norm of $L^p(\mathbb{R})$.

Lemma

We have

$$B^1_\sigma \subset B^p_\sigma \subset B^r_\sigma \subset B^\infty_\sigma, \quad 1 \leq p \leq r \leq \infty,$$

$$B^p_\alpha \subset B^p_\beta, \quad 0 \leq \alpha \leq \beta < \infty.$$
Theorem (Whittaker-Kotelnikov-Shannon)

If \(g \in B^p_{\pi W}, 1 \leq p < \infty, \) or \(g \in B^\infty_\sigma \) for some \(0 \leq \sigma < \pi W, \) then

\[
g(t) = \sum_{k=-\infty}^{\infty} g\left(\frac{k}{W}\right) \text{sinc}(Wt - k) =: (S^{\text{sinc}}_W g)(t),
\]

(1)

the series being uniformly convergent on each compact subset of \(\mathbb{R}. \)

The Bernstein class \(B^p_{\pi W} \) forms the set of fixed points of the sampling operators (1). Now it is natural to ask what happens in WKS Theorem if instead of \(g \in B^p_{\pi W} \) we consider uniformly continuous and bounded functions \(f \in C(\mathbb{R})? \) M. Theis [Theis’19] showed that the equality in (1) does not hold for any \(g \in C(\mathbb{R}). \)
Theorem (Whittaker-Kotelnikov-Shannon)

If \(g \in B^p_{\pi W}, 1 \leq p < \infty \), or \(g \in B^\infty_\sigma \) for some \(0 \leq \sigma < \pi W \), then

\[
g(t) = \sum_{k=-\infty}^{\infty} g(\frac{k}{W}) \text{sinc}(Wt - k) =: (S^\text{sinc}_W g)(t),
\]

the series being uniformly convergent on each compact subset of \(\mathbb{R} \).

The Bernstein class \(B^p_{\pi W} \) forms the set of fixed points of the sampling operators (1). Now it is natural to ask what happens in WKS Theorem if instead of \(g \in B^p_{\pi W} \) we consider uniformly continuous and bounded functions \(f \in C(\mathbb{R}) \)? M. Theis [Theis’19] showed that the equality in (1) does not hold for any \(g \in C(\mathbb{R}) \).
Generalized Shannon sampling series

We get uniform convergence

$$\| f - S_w f \|_C \to 0 \quad (w \to \infty)$$

for any $f \in C(\mathbb{R})$ if, instead of the cardinal sine, we use different kernel functions $s \in L^1(\mathbb{R}) \cap C(\mathbb{R})$ (sinc $\not\in L^1(\mathbb{R})$), $\sum_{k \in \mathbb{Z}} s(u - k) = 1$, $u \in \mathbb{R}$. This approach gives us the generalized sampling series for $t \in \mathbb{R}$, $w > 0$

$$(S_w f)(t) := \sum_{k=-\infty}^{\infty} f\left(\frac{k}{w}\right)s(\omega t - k). \quad (2)$$

Whereas a generalized sampling series with a particular kernel were already considered by M. Theis in 1919, a study of those series for arbitrary kernel functions was initiated at RWTH Aachen University (P. L. Butzer et al) and widely studied there since 1977 and in Perugia since 2005.
Generalized Shannon sampling series

We get uniform convergence

$$\|f - S_w f\|_C \to 0 \ (w \to \infty)$$

for any $f \in C(\mathbb{R})$ if, instead of the cardinal sine, we use different kernel functions $s \in L^1(\mathbb{R}) \cap C(\mathbb{R})$ (sinc $\notin L^1(\mathbb{R})$), $\sum_{k \in \mathbb{Z}} s(u - k) = 1$, $u \in \mathbb{R}$. This approach gives us the generalized sampling series for $t \in \mathbb{R}$, $w > 0$

$$(S_w f)(t) := \sum_{k=-\infty}^{\infty} f(\frac{k}{w}) s(w t - k). \quad (2)$$

Whereas a generalized sampling series with a particular kernel were already considered by M. Theis in 1919, a study of those series for arbitrary kernel functions was initiated at RWTH Aachen University (P. L. Butzer et al) and widely studied there since 1977 and in Perugia since 2005.
Take a function f and compute the corresponding sampling series

$$(S_2 f)(t) := \sum_{k=-\infty}^{\infty} f\left(\frac{k}{2}\right) s(2t - k), \quad (W = 2)$$

and the approximation error $S_2 f - f$.
Now we compute the sampling series, taking \(W = 6 \),

\[
(S_6 f)(t) := \sum_{k=-\infty}^{\infty} f \left(\frac{k}{6} \right) s(6t - k)
\]

and the approximation error \(S_6 f - f \).
At last we take $W = 16$, getting

$$(S_{16}f)(t) := \sum_{k=-\infty}^{\infty} f\left(\frac{k}{16}\right) s(16t - k)$$

and the approximation error $S_{16}f - f$.
Since in practice signals are however often discontinuous, this talk is also concerned with the convergence of S_wf to f in the $L^p(\mathbb{R})$-norm for $1 \leq p < \infty$.

The sampling series S_wf of an arbitrary L^p-function f may be divergent. Take $f \in L^p(\mathbb{R})$, $f(k/w) = 1$ for a fixed $w > 0$, then $(S_wf)(t) \equiv 1 \not\in L^p(\mathbb{R})$.

Also operators S_wf do not always provide good results in applications, e.g. in Signal Processing. Generalized sampling operators depend on exact values $f(k/w)$, whilst in practice we often have to deal with the so called "jitter errors" i.e. the impossibility to determine the exact values at the nodes. Replacing the exact value $f(k/w)$ with an average of f around k/w might lead to smaller errors and therefore be useful in applications.
Z. Burinska, K. Runovski and H. J. Schmeisser introduced in [BRS’06] for $0 < p \leq \infty$ additional shifts λ:

\[
(S_{w;\lambda} f)(t) := \sum_{k=-\infty}^{\infty} f\left(\frac{k}{w} + \lambda\right)s\left(w(t - \lambda) - k\right)
\]

and estimated the order of approximation via modulus of smoothness.

C. Bardaro, P. L. Butzer, R. Stens and G. Vinti in [BBSV’06] introduced a suitable subspace of $L^p(\mathbb{R})$. They estimated the order of approximation for the classical (Whittaker-Kotel’nikov-Shannon) operator for $1 < p < \infty$ and for sampling operators with time-limited kernels for $1 \leq p < \infty$ in [Butzer, Stens’08] and [BBSV’10] via averaged modulus of smoothness.

We used the same approach and estimated the order of approximation for sampling operators with band-limited kernels for $1 < p < \infty$ in [T’13] via the averaged modulus of smoothness and for $1 \leq p < \infty$ in [Kivinukk,T’14] and [T’14] via the classical modulus of smoothness.
Z. Burinska, K. Runovski and H. J. Schmeisser introduced in [BRS’06] for $0 < p \leq \infty$ additional shifts λ:

$$(S_w;\lambda f)(t) := \sum_{k=-\infty}^{\infty} f\left(\frac{k}{w} + \lambda\right)s(w(t - \lambda) - k)$$

and estimated the order of approximation via modulus of smoothness. C. Bardaro, P. L. Butzer, R. Stens and G. Vinti in [BBSV’06] introduced a suitable subspace of $L^p(\mathbb{R})$. They estimated the order of approximation for the classical (Whittaker-Kotel’nikov-Shannon) operator for $1 < p < \infty$ and for sampling operators with time-limited kernels for $1 \leq p < \infty$ in [Butzer, Stens’08] and [BBSV’10] via averaged modulus of smoothness.

We used the same approach and estimated the order of approximation for sampling operators with band-limited kernels for $1 < p < \infty$ in [T’13] via the averaged modulus of smoothness and for $1 \leq p < \infty$ in [Kivinukk,T’14] and [T’14] via the classical modulus of smoothness.
Z. Burinska, K. Runovski and H. J. Schmeisser introduced in [BRS’06] for $0 < p \leq \infty$ additional shifts λ:

$$(S_w;\lambda f)(t) := \sum_{k=-\infty}^{\infty} f\left(\frac{k}{w} + \lambda\right)s(w(t - \lambda) - k)$$

and estimated the order of approximation via modulus of smoothness. C. Bardaro, P. L. Butzer, R. Stens and G. Vinti in [BBSV’06] introduced a suitable subspace of $L^p(\mathbb{R})$. They estimated the order of approximation for the classical (Whittaker-Kotel’nikov-Shannon) operator for $1 < p < \infty$ and for sampling operators with time-limited kernels for $1 \leq p < \infty$ in [Butzer, Stens’08] and [BBSV’10] via averaged modulus of smoothness.

We used the same approach and estimated the order of approximation for sampling operators with band-limited kernels for $1 < p < \infty$ in [T’13] via the averaged modulus of smoothness and for $1 \leq p < \infty$ in [Kivinukk,T’14] and [T’14] via the classical modulus of smoothness.
C. Bardaro, P. L. Butzer, R. Stens and G. Vinti in [BBSV’07] introduced Kantorovich-type sampling operators

\[(S^K_w f)(t) = \sum_{k=-\infty}^{\infty} \left(\frac{(k+1)/w}{w} \int_{k/w}^{(k+1)/w} f(u) \, du \right) s(wt - k)\]

and proved the convergence for $1 \leq p < \infty$ case.

We estimated the order of approximation for Kantorovich-type sampling operators

\[(S^l_{w,n} f)(t) = \sum_{k=-\infty}^{\infty} \left(\frac{(2nk+1)/2nw}{nw} \int_{(2nk-1)/2nw}^{(2nk+1)/2nw} f(u) \, du \right) s(wt - k)\]

with band-limited kernels for $1 \leq p \leq \infty$ in [Orlova,T’14] via the classical modulus of smoothness.
C. Bardaro, P. L. Butzer, R. Stens and G. Vinti in [BBSV’07] introduced Kantorovich-type sampling operators

\[(S^K_w f)(t) = \sum_{k=-\infty}^{\infty} \left(w \int_{k/w}^{(k+1)/w} f(u) \, du \right) s(wt - k) \]

and proved the convergence for \(1 \leq p < \infty\) case.

We estimated the order of approximation for Kantorovich-type sampling operators

\[(S^l_{w,n} f)(t) = \sum_{k=-\infty}^{\infty} \left(nw \int_{(2nk-1)/2nw}^{(2nk+1)/2nw} f(u) \, du \right) s(wt - k) \]

with band-limited kernels for \(1 \leq p \leq \infty\) in [Orlova,T’14] via the classical modulus of smoothness.
Singular integrals

In order to proceed with Kantorovich-type sampling operators we need to define the singular integral. If $\chi \in L^1(\mathbb{R})$ is such that

$$\int_{-\infty}^{\infty} \chi(u) du = 1,$$

then the convolution integral of f with $\chi_\rho(u) := \rho \chi(\rho u)$, namely

$$ (l^\chi f)(x) := (f * \chi_\rho)(x) = \int_{-\infty}^{\infty} f(u) \rho \chi(\rho(x - u)) du \quad (x \in \mathbb{R})$$

is called the singular (convolution) integral with kernel χ.
As a final step we replace the exact value $f(k/w)$ in (2) with an average of f around k/w, using the singular integral $I_{nw}^{\chi} f$ ($n \in \mathbb{N}$) with k/w as an argument. Thus for $f \in L^p(\mathbb{R})$ ($1 \leq p \leq \infty$) the Kantorovich-type sampling operators are given by ($t \in \mathbb{R}; w > 0; n \in \mathbb{N}$)

\[
(S^K_{w,n} f)(t) := \sum_{k=-\infty}^{\infty} \left(\int_{-\infty}^{\infty} f(u) nw\chi(nw(\frac{k}{w} - u))du \right) s(wt - k) \quad (4)
\]

with kernels $s, \chi \in L^1(\mathbb{R}), \int_{-\infty}^{\infty} \chi(u)du = 1, \sum_{k \in \mathbb{Z}} s(u - k) = 1$ ($u \in \mathbb{R}$).

Remark. Bardaro, Butzer, Stens and Vinti considered the case $\chi = \chi[0,1], n = 1$ only.
Bandlimited kernels

In this talk we consider an even band-limited kernel s, i.e. $s \in B_{\pi}^1$, defined by an even window function $\lambda \in C_{[-1,1]}$, $\lambda(0) = 1$, $\lambda(u) = 0$ ($|u| \geq 1$) by the equality

$$s(t) := s(\lambda; t) := \int_{0}^{1} \lambda(u) \cos(\pi tu) \, du. \quad (5)$$

In fact, this kernel is the Fourier transform of $\lambda \in L^1(\mathbb{R})$,

$$s(t) = \sqrt{\frac{\pi}{2}} \lambda^{\wedge}(\pi t). \quad (6)$$

Lemma (Butzer, Splettstößer, Stens’88)

If $s \in B_{\pi}^1$, then for $f \in C(\mathbb{R})$

$$\| S_w^s f - f \|_C \asymp \| l_w^s f - f \|_C.$$
Many kernels can be defined by

\[s(t) := \int_{0}^{1} \lambda(u) \cos(\pi tu) \, du, \]

e.g.
1) \(\lambda(u) = 1 \) defines the sinc function;
2) \(\lambda(u) = 1 - u \) defines the Fejér kernel \(s_F(t) = \frac{1}{2} \text{sinc} \frac{2t}{2} \) (cf. [13]);
3) \(\lambda_j(u) := \cos \pi(j + 1/2)u, j = 0, 1, 2, \ldots \) defines the Rogosinski-type kernel (see [7]) in the form

\[r_j(t) := \frac{1}{2} \left(\text{sinc}(t + j + \frac{1}{2}) + \text{sinc}(t - j - \frac{1}{2}) \right) \]

(7)
4) \(\lambda_H(u) := \cos^2 \frac{\pi u}{2} = \frac{1}{2}(1 + \cos \pi u) \) defines the Hann kernel (see [8])

\[s_H(t) := \frac{1}{2} \frac{\text{sinc} t}{1 - t^2}; \]

(8)
5) the general cosine window

\[\lambda_{C,a}(u) := \sum_{k=0}^{m} a_k \cos k\pi u \] \hspace{1cm} (9)

defines the Blackman-Harris kernel (see [9])

\[s_{C,a}(t) := \frac{1}{2} \sum_{k=0}^{m} a_k \left(\text{sinc}(t - k) + \text{sinc}(t + k) \right) \] \hspace{1cm} (10)

provided (here and following \(\lfloor x \rfloor \) is the largest integer less than or equal to \(x \in \mathbb{R} \))

\[\sum_{k=0}^{\lfloor m/2 \rfloor} a_{2k} = \sum_{k=1}^{\lfloor (m+1)/2 \rfloor} a_{2k-1} = \frac{1}{2}. \] \hspace{1cm} (11)

We get Hann kernel (8) if we take \(m = 1 \) in (10).
6) powers of the Hann window (see [6], formula(25a))

\[
\lambda_{H,m}(u) := \cos^m \left(\frac{\pi u}{2} \right) \quad (12)
\]

\[
= \frac{1}{2^m} \sum_{k=0}^{m} \binom{m}{k} \cos \left((k - \frac{m}{2}) \pi u \right), \quad (13)
\]

give a general Hann kernel in the form

\[
s_{H,m}(t) = 2^{-m} \frac{\Gamma(1 + m)}{\Gamma(1 + \frac{m}{2} - t)\Gamma(1 + \frac{m}{2} + t)}. \quad (14)
\]

Comparing the window function \(\lambda_{H,m} \) in (13) and the general cosine window \(\lambda_{C,a} \) in (9) we see that the general Hann kernel in case of \(m = 2n \) \((n \in \mathbb{N})\) is a special case of the Blackman-Harris kernel. Indeed, \(s_{H,2n} = s_{C,a^*} \), where the parameter vector \(a^* \in \mathbb{R}^{n+1} \) has components \(a_0^* = \frac{1}{2^{2n}} \binom{2n}{n} \) and \(a_k^* = \frac{1}{2^{2n-1}} \binom{2n}{n-k} \) for \(k = 1, 2, \ldots, n \).
7) the general Rogosinski-type window

\[
\lambda_{R,a}(u) := \sum_{j=0}^{m} a_j \lambda_j(u) = \sum_{j=0}^{m} a_j \cos \pi(j + 1/2)u
\] (15)

defines the general Rogosinski-type kernel

\[
r_a(t) := \frac{1}{2} \sum_{j=0}^{m} a_j \left(\text{sinc}(t - \frac{2j + 1}{2}) + \text{sinc}(t + \frac{2j + 1}{2}) \right)
\] (16)

provided

\[
\sum_{j=0}^{m} a_j = 1.
\] (17)

Comparing the window function \(\lambda_{H,m} \) in (13) and the general Rogosinski-type window \(\lambda_{R,a} \) in (15) we see that the general Hann kernel in case of \(m = 2n + 1 \) \((n \in \mathbb{N}_0)\) is a special case of the general Rogosinski-type kernel. Indeed, \(s_{H,2n+1} = s_{R,a^*} \), where the parameter vector \(a^* \in \mathbb{R}^{n+1} \) has components \(a^*_j = \frac{1}{2^{2n}} \binom{2n+1}{n-j} \) for \(j = 0, 1, \ldots, n \).
Kernels for singular integrals

In this talk we consider for the singular integrals an even kernel \(\chi \in L^1(\mathbb{R}) \) with absolute moment

\[
m_0(\chi) := \sup_{u \in \mathbb{R}} \sum_{k \in \mathbb{Z}} |\chi(u - k)| < \infty,
\]

defined by an even window function \(\mu \), \(\mu(0) = 1 \) by the equality

\[
\chi(t) := \chi(\mu; t) := \int_0^\infty \mu(u) \cos(\pi tu) \, du.
\]

(18)

In fact, this kernel is also a kernel for generalized sampling operators, when we additionally require \(\mu(2k) = 0, \ k \in \mathbb{N} \).
Many kernels can be defined by

$$\chi(t) := \chi(\mu; t) := \int_{0}^{\infty} \mu(u) \cos(\pi tu) \, du$$

e.g.

1) $$\mu(u) = \text{sinc}^k \left(\frac{u}{2} \right) \quad (k \in \mathbb{N})$$ defines the B-spline kernel $$B_{k-1}$$, in particular case $$k = 1$$ we get the indicator function $$\chi[-1/2,1/2]$$;

2) $$\mu_a(u) = \sum_{k=0}^{m-1} a_k \text{sinc}^{k+1} \left(\frac{u}{2} \right)$$ defines a spline kernel of degree $$m$$ if $$\sum a_k = 1$$;

3) $$\mu(u) = e^{-\pi \left(\frac{u}{2} \right)^2}$$ defines a Gauss-Weierstraß kernel

$$\chi_{GW}(t) = e^{-\pi t^2}.$$
Theorem

For Kantorovich-type sampling operator $S^K_{w,n} = S_w^s(I_{nw}^\chi)$ we have for $1 \leq p \leq \infty$ an estimate of the operator norm $(1/p + 1/q = 1)$

$$\|S^K_{w,n}\|_{p \to p} \leq \left(n\|s\|_1 m_0(\chi) \right)^{1/p} \left(\|\chi\|_1 m_0(s) \right)^{1/q}$$

Remark. We see that in the case of generalized sampling operators S_w (i.e. $n \to \infty$) this estimate is not bounded for $1 \leq p < \infty$.

Remark. Take $\chi = \chi[-1/2,1/2]$. We proved that in this case for $L^1(\mathbb{R})$ we have $\|S^K_{w,n}\|_{1 \to 1} = n\|s\|_1$ and for $C(\mathbb{R})$ we have $\|S^K_{w,n}\|_{C \to C} = m_0(s)$.
Nikolskii’s inequality

Theorem (Nikolskii’s inequality)

Let $1 \leq p \leq \infty$. Then, for every $s \in B^p_\sigma$,

$$\|s\|_p \leq \sup_{u \in \mathbb{R}} \left\{ \sum_{k=-\infty}^{\infty} |s(u - k)|^p \right\}^{1/p} \leq (1 + \sigma)\|s\|_p.$$

Our kernels $s \in B^1_\pi$. By Nikolskii’s inequality we have

$$\|s\|_1 \leq m_0(s) = \|S_w\|,$$

which gives the estimate

$$\|S_{w,n}^K\|_{p \to p} \leq \|S_w\| \left(n m_0(\chi) \right)^{\frac{1}{p}} \|\chi\|_{\frac{1}{q}}$$
Theorem

If we have for sampling operator S^s_w

$$\| S^s_w f - f \|_p \leq M_1 \omega_k(f; \frac{1}{w})_p$$

and for the singular integral

$$\| I^x_{nw} f - f \|_p \leq M_2 \omega_\ell(f; \frac{1}{w})_p,$$

then for Kantorovich-type sampling operator $S^K_{w,n} = S^s_w(I^x_{nw})$

$$\| S^K_{w,n} f - f \|_p \leq M_3 \omega_r(f; \frac{1}{w})_p,$$

where $r := \min\{k, \ell\}$.
Corollary

For Kantorovich-type sampling operator $S^K_{w,n} = S^s_w(I^\chi_{nw})$, where s is Rogosinski-type, Hann, Blackman-Harris or B-spline kernel and χ is a indicator function or Gauss-Weierstraß kernel we have

$$\|S^K_{w,n}f - f\|_p \leq M\omega_2(f; \frac{1}{w})_p.$$

Indeed, for Rogosinski-type, Hann, Blackman-Harris and B-spline kernels we have the estimates of order of approximation for corresponding generalized sampling operators via modulus of smoothness order 2. For singular integrals with indicator function and Gauss-Weierstraß kernels we have the estimates of the order of approximation via modulus of smoothness order 2.
The main theorem

Let Kantorovich-type sampling operator $S^K_{w,n} = S^s_w(l^\infty_{nw})$ ($w > 0$, $n \in \mathbb{N}$) be defined by the kernel $s \in B^1_\pi$ with window λ and by the kernel $\chi \in L^1$ with window μ. If for some $r \in \mathbb{N}$

$$
\nu_n(u) := \lambda(u)\mu\left(\frac{u}{n}\right) = 1 - \sum_{j=r}^{\infty} c_j u^{2j}, \quad \sum_{j=r}^{\infty} |c_j| \leq \infty. \quad (19)
$$

Then for $f \in L^p(\mathbb{R})$ ($1 \leq p \leq \infty$)

$$
\|S^K_{w,n}f - f\|_p \leq M_r \omega_{2r}(f; \frac{1}{w})_p. \quad (20)
$$

The constants M_r are independent of f and w.
Idea of the proof

Lemma (cf. Butzer, Stens’85)

If $g \in B_{\alpha \pi w}^p$ and $s \in B_{\beta \pi}^1$ ($\alpha + \beta = 2$), then

$$S_s^w g = I_s^w g.$$

Take $g \in B_{\pi w/n}^p$, then $I_{nw}^\chi g \in B_{\pi w}^p$ and for $S_{w,n}^K = S_w^s(I_{nw}^\chi)$

$$\| S_{w,n}^K f - f \|_p \leq \| S_{w,n}^K \|_{p \rightarrow p} \| f - g \|_p + \| I_w^s(I_{nw}^\chi g) - g \|_p + \| g - f \|_p.$$

$I_w^s(I_{nw}^\chi g) = s_w * \chi_{nw} * g = (s * \chi_n)_w * g = \varphi_w * g = I_w^\varphi g = S_w^\varphi g$

where $\varphi \in B_{\pi}^1$ is defined

$$\varphi(t) := \int_0^1 \nu_n(u) \cos \pi ut \, du = \int_0^1 \lambda(u) \mu \left(\frac{u}{n} \right) \cos \pi ut \, du.$$
The space Λ^p

Definition (Bardaro, Butzer, Stens, Vinti’ 2006)

Let $\Sigma := (x_j)_{j \in \mathbb{Z}} \subset \mathbb{R}$ be an admissible partition of \mathbb{R}, i.e.

$0 < \inf_{j \in \mathbb{Z}} \Delta_j \leq \sup_{j \in \mathbb{Z}} \Delta_j < \infty$, $\Delta_j := x_j - x_{j-1}$ and let the discrete $\ell^p(\Sigma)$-seminorm of a sequence of function values f_Σ on Σ of a function $f : \mathbb{R} \to \mathbb{C}$ be defined for $1 \leq p < \infty$ by

$$\|f\|_{\ell^p(\Sigma)} := \left\{ \sum_{j \in \mathbb{Z}} |f(x_j)|^p \Delta_j \right\}^{1/p}.$$

The space Λ^p for $1 \leq p < \infty$ is defined by

$$\Lambda^p := \{ f \in \mathcal{M}(\mathbb{R}); \|f\|_{\ell^p(\Sigma)} < \infty \text{ for each admissible sequence } \Sigma \}.$$
Denote for $1 \leq p < \infty$ $X^p(\mathbb{R}) := \Lambda^p$ and $X^\infty(\mathbb{R}) := C(\mathbb{R})$. $B^p_\sigma \subset X^p(\mathbb{R})$.

Theorem (Kivinukk, T’14)

Let sampling operator S^r_w ($w > 0$) be defined by the kernel $s_r \in B^1_\pi$ with $\lambda = \lambda_r$ and for some $r \in \mathbb{N}$ let

$$\lambda_r(u) := 1 - \sum_{j=r}^{\infty} c_j u^{2j}, \quad \sum_{j=r}^{\infty} |c_j| \leq \infty. \quad (21)$$

Then for $f \in X^p(\mathbb{R})$ ($1 \leq p \leq \infty$)

$$\|S^r_w f - f\|_p \leq M_r \omega_{2r}(f; \frac{1}{w})_p. \quad (22)$$

The constants M_r are independent of f and w.
We have for $g \in B^p_{\frac{n}{w}}$

$$\| S^K_{w,n}g - g \|_p = \| S^\varphi_w g - g \|_p \leq M_r \omega_{2r}(g; \frac{1}{w})_p$$

$$\leq M_r \omega_{2r}(f; \frac{1}{w})_p + M_r \omega_{2r}(g - f; \frac{1}{w})_p \leq M_r \omega_{2r}(f; \frac{1}{w})_p + M_r 2^{2r} \| g - f \|_p.$$

Theorem (Jackson-type theorem)

Given $f \in C(\mathbb{R})$ or $f \in L^p(\mathbb{R})$ ($1 \leq p < \infty$). Then there exists a $g^*_\sigma \in B^p_\sigma$ ($1 \leq p \leq \infty$) and a constant $C_k > 0$ (depending only on $k \in \mathbb{N}$) such that

$$\| f - g^*_\sigma \|_p \leq C_k \omega_k(f; \frac{1}{\sigma})_p.$$
Examples

Theorem

Let \(C^{I}_{w,a} = S^s_w(I_{nw}^\chi) \) be a Kantorovich-type sampling operator whith \(s = s_{C,a} (a \in \mathbb{R}^{m+1}) \) and \(\chi = \chi[-1/2,1/2] \), then for \(f \in L^p(\mathbb{R}) \) (\(1 \leq p \leq \infty \))

\[
\| C^{I}_{w,a,n}f - f \|_p \leq M_{a,2}\omega_2(f; \frac{1}{w})_p.
\]

Moreover, if there holds

\[
\sum_{k=1}^{m} a_k k^2 = -\frac{1}{(2^2 - 1)2^2 n^2},
\]

then

\[
\| C^{I}_{w,a,n}f - f \|_p \leq M_{a,4}\omega_4(f; \frac{1}{w})_p.
\]
The Bibliographic References I

Thank you!
[4], [13], [1], [2], [11], [5], [12], [10], [3]