with equality if and only if \(f = 0 \) in \(D \) and
\[
\mathcal{M} = \mathcal{N} = \mathcal{M} + (x)\mathcal{M} \geq (x)\mathcal{N}.
\]
(02)

Then we have Young's inequality
\[
\mu(1) = \mu = \mu(1)\mathcal{N}
\]
(10)

where the derivative \(\mu \) is increasing. We set
\[
\mathcal{M}(x < 0) = 0
\]
for all \(x < 0 \). In particular, \(\mathcal{M} \) is a convex function with monotonically increasing derivative \(\mu \). We denote a two times differentiable function on \(\mathbb{R}^+ \) with derivative \(\mathcal{M} \).

Preliminaries and Summary of Results

Directed to Professor N. G. de Brujin

Received September 3, 1987

Reviewed by A. E.燎

Philips Research Laboratories, 5600 MB Eindhoven, The Netherlands

And

S. J. Van Eijndhoven

A. J. E. Jansen

Wigner Distribution and Bargmann Transform

Growth of Hermite Coefficients

Spaces of Type \(\mathcal{M} \).
Wigner distribution of any tempered distribution can be defined. Here we denote the Wigner distribution on \(\mathbb{R}^2 \) by \(\mathcal{W}(\phi) \), where \(\phi \) is a function in \(\mathcal{S}^* \). This \(\mathcal{W}(\phi) \) can be expressed as:

\[
\mathcal{W}(\phi)(x,y) = \int_{\mathbb{R}} e^{2\pi i (x\xi + y\xi^2)} \hat{\phi}(\xi) \, d\xi
\]

where \(\hat{\phi}(\xi) \) is the Fourier transform of \(\phi \).

The Wigner distribution is a generalization of the Fourier transform, and it can be used to analyze non-stationary signals in time and frequency domains. It provides a way to study the local properties of a function at different scales.

\[\int_{\mathbb{R}} \mathcal{W}(\phi)(x,y) \, dx \, dy = \int_{\mathbb{R}} \phi(x) \, dx \]

is a constant.

The Wigner distribution is closely related to the information theory, where it is used to measure the uncertainty in a signal. It is also used in quantum mechanics to describe the distribution of a quantum state in phase space.
Throughout this paper, we deal with the following class of convex functions:
\[\{ f(x) = \frac{1}{2} \| x \|_2^2 + \int_0^1 (\phi(t) x)^2 dt \mid \phi(t) \in C[0,1] \} \]

Here are the corresponding characterizations:

\[\| x \|_2 \leq p \Rightarrow \sup_{\| \phi \|_H \leq 1} \int_0^1 (\phi(t) x)^2 dt \leq p^2 \]

Next, starting from square integrable functions with Wiener distribution, we derive integrals of square integrable functions with different distributions.

The plan of the paper is as follows. Let us consider a square integrable function of the form

\[f(x) = \sum_{n=1}^{\infty} a_n x_n \]

The Bernstein-Gelfand-Fomin space is defined as

\[\sum_{n=1}^{\infty} a_n x_n \in C \Rightarrow \sup_{\| \phi \|_H \leq 1} \int_0^1 (\phi(t) x)^2 dt \leq p^2 \]

For the Bernstein transformation, we refer to [1] where the Bernstein transformation is given.

Therefore, we obtain a unique operator \(A \) from \((0,1) \to (1,0) \). In particular, we have

\[A = \sum_{n=1}^{\infty} a_n x_n \]

The Bernstein transformation is defined by

\[\sum_{n=1}^{\infty} a_n x_n \in C \Rightarrow \sup_{\| \phi \|_H \leq 1} \int_0^1 (\phi(t) x)^2 dt \leq p^2 \]

with the Bernstein-Szego-Fomin space consists of all continuous functions.

The Bernstein-Szego-Fomin space consists of all continuous functions:

\[\{ f(x) = \frac{1}{2} \| x \|_2^2 + \int_0^1 (\phi(t) x)^2 dt \mid \phi(t) \in C[0,1] \} \]

Here, we prove the corresponding characterization:

\[\| x \|_2 \leq p \Rightarrow \sup_{\| \phi \|_H \leq 1} \int_0^1 (\phi(t) x)^2 dt \leq p^2 \]

The Bernstein-Szego-Fomin space consists of all continuous functions in

\[\{ f(x) = \frac{1}{2} \| x \|_2^2 + \int_0^1 (\phi(t) x)^2 dt \mid \phi(t) \in C[0,1] \} \]

The Bernstein-Szego-Fomin space consists of all continuous functions in

\[\{ f(x) = \frac{1}{2} \| x \|_2^2 + \int_0^1 (\phi(t) x)^2 dt \mid \phi(t) \in C[0,1] \} \]

Furthermore, we prove the corresponding characterization:

\[\| x \|_2 \leq p \Rightarrow \sup_{\| \phi \|_H \leq 1} \int_0^1 (\phi(t) x)^2 dt \leq p^2 \]
Now we proceed as follows: Let $0 < \gamma < \eta$. Then we have

$$(b) \mathcal{W} + (d) \mathcal{W} \geq (b + d) \mathcal{W}$$

is square integrable. For all $0 < b, d, \gamma, \eta$, we have

$$(x) \phi \left[\int_{\mathbb{R}^d} (\nabla \phi || \phi ||^2) \right]$$

The conditions on \mathcal{W} imply that for each η, the function $\gamma > \eta > 0$, the inequality $\gamma \frac{\partial}{\partial x} \mathcal{W} - \int_{\mathbb{R}^d} (\nabla \phi || \phi ||^2)$ holds.

Further, as a consequence of Theorem 1.5, we can replace equivalence (6.9).

$$(\int_{\mathbb{R}^d} (\nabla \phi || \phi ||^2)) \mathcal{W} = \mathcal{W}$$

and we have

$$(b) \mathcal{W} + (d) \mathcal{W} \geq (b + d) \mathcal{W}$$

Now let denote the self-adjoint operator of multiplication by x in the space of all \mathcal{W}-isometric operators, such that

$$(x) \phi \left[\int_{\mathbb{R}^d} (\nabla \phi || \phi ||^2) \right]$$

positive self-adjoint operators \mathcal{W} we have

$$(0, \mathcal{W}) \subseteq \mathcal{W} \subseteq \mathcal{W}$$

for all \mathcal{W}-operator x dependent on \mathcal{W}.
\[\int_0^\infty - \int_a^b f \, dx \leq 0 \]

Then

\[\int_0^\infty f \, dx < 0 \quad \text{for some } f \in L^\infty \]

Hence

\[\int_0^1 \frac{x^2}{1 + x^4} \, dx \leq 0 \]

According to [4], Sec. 12.

JANSSEN AND VAN EENDHOVEN

373

Further, since \(f, g \in L^\infty \), it follows that

\[\int_0^1 \frac{x^2}{1 + x^4} \, dx < 0 \]

Hence

\[\int_0^1 \frac{x^2}{1 + x^4} \, dx < 0 \]

Proof. Let \(0 < q < p \), then the function \(x \mapsto x^q \) is convex. We have

\[\int_0^1 \frac{x^2}{1 + x^4} \, dx \leq 0 \quad \text{since the function } x \mapsto x^q \]

Then

\[\int_0^1 \frac{x^2}{1 + x^4} \, dx < 0 \]

Consider the following lemma.

The assertion now follows from the inequality

\[\int_0^1 \frac{x^2}{1 + x^4} \, dx \leq 0 \]

because \(x \mapsto x^q \) is a convex function.

\[\int_0^1 \frac{x^2}{1 + x^4} \, dx \leq 0 \]

Hence

\[\int_0^1 \frac{x^2}{1 + x^4} \, dx < 0 \]

Now let \(q > p \). Then we have

\[\int_0^1 \frac{x^2}{1 + x^4} \, dx < 0 \]

5.3 FUNCTION SPACES
\[
\begin{align*}
&\text{If } \xi \sim \mathcal{N}(0, 1) \text{ and } \gamma > 0 \text{, then} \\
&\quad \mathbb{E}[f(x)] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-x^2/2} dx \\
&\text{and similarly, since } f(\xi) \sim \mathcal{N}(\mu, \sigma^2) \text{, we have} \\
&\quad \mathbb{E}[f(\xi)] = \int_{-\infty}^{\infty} f(x) \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/2\sigma^2} dx.
\end{align*}
\]

Thus we have established a relation between the Hermite coefficients and the Gaussian distribution.

\section*{Characterization Based on Hermite Coefficients}

Now let us derive the Hermite polynomial.

1. \(|x| > \sqrt{2} \Rightarrow |\gamma(x)| \leq 2 \) and similarly, since \(f(\gamma(x)) \sim \mathcal{N}(\mu, \sigma^2) \), we have

\[
\begin{align*}
&\text{Let } \gamma > 0 \text{, then} \\
&\quad \mathbb{E}[f(\gamma(x))] = \int_{-\infty}^{\infty} f(x) \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/2\sigma^2} dx.
\end{align*}
\]

Proof. For \(\gamma > 0 \), we have

\[
\begin{align*}
&\text{Lemma 1.3:} \\
&\quad \mathbb{E}[f(\gamma(x))] = \int_{-\infty}^{\infty} f(x) \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/2\sigma^2} dx.
\end{align*}
\]
where \(\gamma \in \mathbb{N} \), \(\delta \), and \(\omega \) are positive constants.

Thus the claim follows (the term with \(\ell = 0 \) is easily taken care of). Therefore

\[
\ell(i + f) \geq \frac{(f)^i}{\ell} \frac{f}{1 + f}
\]

so by (11) we derive

\[
\ell(i + f) \frac{(f)^i}{\ell} \frac{f}{1 + f} \geq \frac{((f)^i)^{1/\ell}}{\ell} \frac{f}{1 + f}
\]

Indeed we have

\[
\ell(i + f) \frac{(f)^i}{\ell} \frac{f}{1 + f} \geq \frac{(f)^i}{\ell} \frac{f}{1 + f} \]

Now we assert that there are \(c > 0 \) such that

\[
\ell(i + f) \frac{(f)^i}{\ell} \frac{f}{1 + f} \geq \frac{(f)^i}{\ell} \frac{f}{1 + f} \]

so that by (11) we obtain

\[
\ell(i + f) \frac{(f)^i}{\ell} \frac{f}{1 + f} \geq \frac{(f)^i}{\ell} \frac{f}{1 + f} \]

Further, we have the following crude estimate

\[
\ell(i + f) \frac{(f)^i}{\ell} \frac{f}{1 + f} \geq \frac{(f)^i}{\ell} \frac{f}{1 + f} \]

By assumption there exists \(\gamma > 0 \) such that

\[
\ell(i + f) \frac{(f)^i}{\ell} \frac{f}{1 + f} \geq \frac{(f)^i}{\ell} \frac{f}{1 + f} \]

We arrive at the following estimate

\[
\ell(i + f) \frac{(f)^i}{\ell} \frac{f}{1 + f} \geq \frac{(f)^i}{\ell} \frac{f}{1 + f} \]

Clearly, for \(0 > \ell > 0 \),

\[
\ell(i + f) \frac{(f)^i}{\ell} \frac{f}{1 + f} \geq \frac{(f)^i}{\ell} \frac{f}{1 + f} \]
If the minimum is attained at \(x = d \), the function is continuous, and we have the equation

\[
0 < b \quad 0 = ((d + 1)v)_{\text{min}} + d.
\]

If there exists a constant \(q \) such that

\[
0 < b \quad ((d + 1)v)_{\text{min}} + d - b = \gamma.
\]

for all \(x \), there exists a constant \(q \) such that

\[
((d + 1)v)_{\text{min}} + d - b = \gamma
\]

By the mean value theorem, for some \(y \), we have

\[
((d + 1)v)_{\text{min}} + d - b = \gamma.
\]

Since \(y \) is continuous, we have

\[
((d + 1)v)_{\text{min}} + d - b = \gamma.
\]

Hence, by the mean value theorem, we have

\[
((d + 1)v)_{\text{min}} + d - b = \gamma.
\]

Toward an estimate, we consider the equation

\[
((d + 1)v)_{\text{min}} + d - b = \gamma
\]

For \(q > \gamma \), the largest integer between \(q \) and \(\gamma \) is

\[
((d + 1)v)_{\text{min}} + d - b = \gamma
\]

Therefore, for some constant \(q \) such that

\[
((d + 1)v)_{\text{min}} + d - b = \gamma
\]

we find

\[
((d + 1)v)_{\text{min}} + d - b = \gamma
\]

Since \(v \) is continuous, we have

\[
((d + 1)v)_{\text{min}} + d - b = \gamma
\]

Hence, by the mean value theorem, we have

\[
((d + 1)v)_{\text{min}} + d - b = \gamma
\]

We get

\[
0 < d \quad 0 < d
\]

Using that for some \(d \), we have

\[
0 < d
\]
\[
\frac{b_z}{(b) u} = (b) I + \frac{(b) W}{2} - \frac{(b) z}{d} = (b, d) \chi
\]

where the function is defined as

\[
[(b) W - \zeta] dx = \zeta - b \cdot \chi \wedge \zeta + (b, b) \chi
\]

When

\[
1 + (1) \leq b
\]

\[
\frac{3b_z}{(b) u} \leq \frac{(b) W}{2} - \frac{(b) z}{d} = (b, d) \chi
\]

we have

\[
[(i) \chi + \zeta b] dx = \frac{(i) \chi}{\chi} - \zeta = (i) \chi
\]

Now let us consider the function \((b, d) = (b, d) \chi\) is decreasing.

Since \(0 < b \leq (b) u\), we have

\[
(1 - b) \chi \leq \frac{(b) u}{(b) u - (b) u}
\]

Therefore we have

\[
sp \left(1 - \frac{b_z}{d} \right) \frac{(b) u}{(b) u - (b) u} \leq
\]

\[
sp ((s) u - (s) u) \left(\frac{b_z}{d} - \frac{1}{d} \right) \frac{b_z}{d} \leq sp \left(1 - \frac{b_z}{d} \right)
\]

and

\[
(1 - b) \chi \frac{(b) u}{(b) u - (b) u} = 1
\]

Thus we obtain

\[
(1) \chi = (i) \chi
\]

Since \(b \leq (b) u\), the function \(i\) is strictly decreasing. Hence it can be inverted.

\[
0 < b \quad \frac{b_z}{(b) u} = (b) I
\]

A straightforward analysis yields

\[
0 < b \quad (b) W = ((b) I)^{\chi} + (b) \chi b
\]

and

\[
\frac{b_z}{(b) u} = (b) I
\]
By Lemma (3.15), we have
\[
\int_{(1)^2} \left((1)^2 \delta - \left(\frac{\delta}{x} \right) \frac{1}{1} \right) dx \, ds
\]
and by Lemma (3.15), we have
\[
\int \left[(1)^2 \phi - \left(\frac{1}{1} \right) \frac{1}{1} \right] dx \, ds.
\]
By Lemma (3.15), we have
\[
\int ((1)^2 \delta - \left(\frac{1}{1} \right) \frac{1}{1}) dx \, ds.
\]
Finally, since \(x \) is such that \(x = 1 \), we get
\[
\int ((1)^2 \delta - \left(\frac{1}{1} \right) \frac{1}{1}) \, dx \, ds.
\]
The latter integral is estimated by
\[
\int ((1)^2 \delta - \left(\frac{1}{1} \right) \frac{1}{1}) \, dx \, ds.
\]
There exists a constant \(K \) such that for all \(x \leq t \),
the remaining estimations are based on Lemma (3.15).
\[
\int \left(\frac{1}{1} \right) \frac{1}{1} \, ds.
\]
for some $C' < 0$. Then
\[
[(\gamma'(\gamma - \gamma)) - \gamma]' \geq 0
\]
where
\[
\left(\frac{\mu^\gamma}{\omega^z}\right)' \geq 0
\]
defines the property that for certain positive constants $C, \theta, \eta > 0$, for every $\theta > \eta > 0$, the statement yields

Lemma. Let θ be a holomorphic function with the property that

\[
[(\gamma'(\gamma - \gamma)) - \gamma]' \geq 0
\]

then it follows that

\[
[(\gamma'(\gamma - \gamma)) - \gamma]' \geq 0
\]

and also that

\[
[(\gamma'(\gamma - \gamma)) - \gamma]' \geq 0
\]

that one of $\theta > \eta$ or $\eta > \theta$ is true. Since μ^γ is bounded, the set of θ is in the interior of μ^γ. Since b^γ is also θ, the set of θ is in the interior of $\mu^\gamma. \square$
REFERENCES

Consequently, for all \(a, b, c \in \mathbb{R} \) where \(a > 0, b > 0 \), there exists \(c \in (0, \infty) \) such that

\[
(\phi_a) x \in \mathbb{R} \exp([c x] + [c x] + [c x]) + \|x\|.
\]

Because of the inequality \(\|x\| \leq \|x\| + u \) follows that

\[
(\phi_{a + b} + \phi_c) x \in \mathbb{R} \exp([c x] + [c x] + [c x]) + \|x\|.
\]

For all \(u \in I, 1, 2, \ldots \). In particular, for \(u = 1, 2, \ldots \), we get

\[
(\phi_2) x \in \mathbb{R} \exp([c x] + [c x] + [c x]) + \|x\|.
\]

Proof: By Cauchy's formula,