Calcitriol in the human organism – Consequences of Vitamin D deficiency for the human health

Lilian Grünbart, 0605575

Introduction: My Bachelor thesis consisted of two major parts. Firstly, I covered the chemistry of Vitamin D with a bias on its biochemical function and the pathway of its biosynthesis. Secondly, studies were included into my work to emphasize the broad spectrum of functions, Vitamin D fulfills, as well as the etiology of Vitamin D deficiency.

Vitamin D deficiency is mainly caused by exogenous factors, i.e. circumstances of life. We use cars, lack on exercise and have a high calorie diet together with a low intake of essential micronutrients. Vitamin D cannot be produced endogenously in sufficient amounts.

Materials and methods, experimental design, other methodological information: The Vitamin D receptor recruits the so-called retinoid X receptor and forms a complex, which in turn binds to the Vitamin D-responsive element on the DNA-strand. This leads to a modification of the transcription rate of downstream genes and in return in down- or upregulated translation and protein synthesis. 1,25-dihydroxycholecalciferol tends to assemble calcium and phosphate in the bone, which is necessary for mineralization. In the pancreas, Vitamin D regulates the secretion of the hormone insulin.

1.1. 2010 a study by the Warwick Medical School evaluate the concentration of Vitamin D, by measuring 25-hydroxycholecalciferol. The validity of this study was based on the high sample number of 99745 people.

1.2. Another study, published in 2004, deals with the topic of depression and vitamin D deficiency. The effects of the doses on the biochemical functions and wellbeing were compared in a randomized study. The subjects got different doses of Vitamin D and the results were analyzed. The doses that were administered were within a range of 600 IU/d to 4000 IU/d.

1.3. A 2007 study deals with the topic of different types of cancer in post-menopausal women. They were split into three groups and got 1400-1500 mg per day, 1100 IU or a placebo.

1.4. In a study, 1760 women were divided into two groups, the first having a serum level of 52 ng/ml, the second of 13 ng/ml only.

1.5. Researchers calculated the relation between vitamin D deficiency and a testosterone defect. VDR knockout mice show a lower sperm production and activity as well as modified testis. The study design was a cross-section study, carried out on 2299 men. The testosterone level value was calculated via an immunassay.

1.6. Vitamin D fulfills an important role in patients with an end-stage heart insufficiency and that are waiting for transplantation. In a study 123 patients were administered 50 µg Vitamin D3 and 500 mg calcium per day or a placebo and 500 mg Calcium per day for 9 months. Biochemical parameters were recorded before and after the nine months. The survival rate was monitored during the following 15 months.
Results and discussion:

1.1. The study states, that at the highest level of 25-dihydroxycholecaliferol in serum there was a reduction of cardiometabolic disorders by 43%. High levels of vitamin D in middle-aged and elderly populations were associated with a decrease in cardiovascular disease, diabetes type two and metabolic syndrome.

1.2. The highest amount of 25-dihydroxycholecaliferol was measured during the summer months, were having a serum concentration of more than 40 nmol/l and a low parathormone level.

1.3. A daily intake of 1000 IU of 25-hydroxycholecalciferol per day reduces the risk to develop cancer by more than 75% in 1179 post-menopausal female participants over 55 years. The results show that a high Vitamin D status reduces the risk of various cancers in post-menopausal women.

1.4. Women with a higher concentration in the serum had a 50%lower chance of developing breast cancer. To reach a Vitamin D level that high, it was necessary to take 4000 IU per day. You would have to take 2000 IU a day and be exposed to UVB light for 12 minutes to reach a level of 52 ng/ml.

1.5. As a result only 262 men (11.4%) showed an adequate accommodation. 589 men had a deficit (25,6%). 457 men (19,9%) had a serious deficiency. 18% of the participants showed hypogonadismus. The seasonal variation of 25 -dihydroxycholecaliferol and testosterone was very noticeable. In august were 23,4µg/l and in march only 12,2µg/l. It is interesting that in northern countries the conception rate is very high in the summer months and that’s why the most birth rates are in spring.

1.6. Vitamin D is able to reduce pro-inflammatory cytokines that are involved in heart diseases and can help upregulating anti-inflammatory cytokines.

Conclusion: There is definitely a link between vitamin d deficiency and various diseases. Vitamin D receptors are everywhere in our body. This explains the various functions of this vitamin. Most people have a lack and this leads to serious consequences. The problem is, that in some studies the duration is very short, it is not significant enough and they don’t notice seasonal variability.

References:

[Löffler, G., Petrides, PE., Heinrich, PC. Biochemie und Pathobiocomic. Springer, 2007]

[Wildhalm, K. Ernährungsmedizin. Deutscher Aertze-Verlag, 2005]

[Wehr, E., Pilz, S., Boehm, BO., März, W., Obermayer-Pietsch, B: Association of vitamin D status with serum androgen levels in men. *Clinical Endocrinology 2009*]

